Search > Results

You searched for: 2023 (Year of publication)

Showing 1 - 27 of 27

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV210141 2/5 Homo sapiens human umbilical vein endothelial cells IAF
Ultrafiltratrion
(d)(U)C
DG
Zhao F 2023 89%

Study summary

Full title
All authors
Zhao F, Xu Y, Liu N, Lv D, Chen Y, Liu Z, Jin X, Xiao M, Lavillette D, Zhong J, Bartenschlager R, Long G
Journal
EMBO J
Abstract
Mosquito-borne flaviviruses including Zika virus (ZIKV) represent a public health problem in some pa (show more...)Mosquito-borne flaviviruses including Zika virus (ZIKV) represent a public health problem in some parts of the world. Although ZIKV infection is predominantly asymptomatic or associated with mild symptoms, it can lead to neurological complications. ZIKV infection can also cause antibody-dependent enhancement (ADE) of infection with similar viruses, warranting further studies of virion assembly and the function of envelope (E) protein-specific antibodies. Although extracellular vesicles (EVs) from flavivirus-infected cells have been reported to transmit infection, this interpretation is challenged by difficulties in separating EVs from flavivirions due to their similar biochemical composition and biophysical properties. In the present study, a rigorous EV-virion separation method combining sequential ultracentrifugation and affinity capture was developed to study EVs from ZIKV-infected cells. We find that these EVs do not transmit infection, but EVs display abundant E proteins which have an antigenic landscape similar to that of virions carrying E. ZIKV E-coated EVs attenuate antibody-dependent enhancement mediated by ZIKV E-specific and DENV-cross-reactive antibodies in both cell culture and mouse models. We thus report an alternative route for Flavivirus E protein secretion. These results suggest that modulation of E protein release via virions and EVs may present a new approach to regulating flavivirus-host interactions. (hide)
EV-METRIC
89% (98th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
ZIKV infected cells
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Immunoaffinity capture (non-commercial)
Ultrafiltratrion
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: TSG101/ CD63/ CD81/ Alix/ HSP70/ CD9
non-EV: Capsid/ E/ LC3/ Calnexin
Proteomics
no
Show all info
Study aim
New methodological development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
human umbilical vein endothelial cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell count
2,00E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Density gradient
Only used for validation of main results
Yes
Type
Continuous
Lowest density fraction
0%
Highest density fraction
80%
Sample volume (mL)
1
Orientation
Bottom-up
Rotor type
P55ST
Speed (g)
250000
Duration (min)
1080
Fraction volume (mL)
0,3
Ultra filtration
Cut-off size (kDa)
100 kDa
Membrane type
Regenerated cellulose
Immunoaffinity capture
Selected surface protein(s)
CD9
Other
Name other separation method
Ultrafiltratrion
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ CD63/ TSG101/ HSP70/ Alix/ CD81
Detected contaminants
Capsid/ E
Not detected contaminants
LC3/ Calnexin
Characterization: RNA analysis
RNA analysis
Type
RT(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Transmission-EM/ Cryo-EM
Image type
Wide-field
Report size (nm)
100
EV210141 3/5 Homo sapiens human umbilical vein endothelial cells Ultrafiltratrion
(d)(U)C
DG
Zhao F 2023 89%

Study summary

Full title
All authors
Zhao F, Xu Y, Liu N, Lv D, Chen Y, Liu Z, Jin X, Xiao M, Lavillette D, Zhong J, Bartenschlager R, Long G
Journal
EMBO J
Abstract
Mosquito-borne flaviviruses including Zika virus (ZIKV) represent a public health problem in some pa (show more...)Mosquito-borne flaviviruses including Zika virus (ZIKV) represent a public health problem in some parts of the world. Although ZIKV infection is predominantly asymptomatic or associated with mild symptoms, it can lead to neurological complications. ZIKV infection can also cause antibody-dependent enhancement (ADE) of infection with similar viruses, warranting further studies of virion assembly and the function of envelope (E) protein-specific antibodies. Although extracellular vesicles (EVs) from flavivirus-infected cells have been reported to transmit infection, this interpretation is challenged by difficulties in separating EVs from flavivirions due to their similar biochemical composition and biophysical properties. In the present study, a rigorous EV-virion separation method combining sequential ultracentrifugation and affinity capture was developed to study EVs from ZIKV-infected cells. We find that these EVs do not transmit infection, but EVs display abundant E proteins which have an antigenic landscape similar to that of virions carrying E. ZIKV E-coated EVs attenuate antibody-dependent enhancement mediated by ZIKV E-specific and DENV-cross-reactive antibodies in both cell culture and mouse models. We thus report an alternative route for Flavivirus E protein secretion. These results suggest that modulation of E protein release via virions and EVs may present a new approach to regulating flavivirus-host interactions. (hide)
EV-METRIC
89% (98th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
ZIKV infected cells
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Ultrafiltratrion
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: TSG101/ CD63/ CD81/ Alix/ HSP70/ CD9
non-EV: Capsid/ E/ LC3/ Calnexin
Proteomics
no
Show all info
Study aim
New methodological development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
human umbilical vein endothelial cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell count
2,00E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Density gradient
Only used for validation of main results
Yes
Type
Continuous
Lowest density fraction
0%
Highest density fraction
80%
Sample volume (mL)
1
Orientation
Bottom-up
Rotor type
P55ST
Speed (g)
250000
Duration (min)
1080
Fraction volume (mL)
0,3
Ultra filtration
Cut-off size (kDa)
100 kDa
Membrane type
Regenerated cellulose
Other
Name other separation method
Ultrafiltratrion
Characterization: Protein analysis
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ CD63/ TSG101/ HSP70/ Alix/ CD81
Detected contaminants
Capsid/ E
Not detected contaminants
LC3/ Calnexin
Characterization: RNA analysis
RNA analysis
Type
RT(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
100
EV210141 4/5 Homo sapiens human umbilical vein endothelial cells Ultrafiltratrion
(d)(U)C
DG
Zhao F 2023 75%

Study summary

Full title
All authors
Zhao F, Xu Y, Liu N, Lv D, Chen Y, Liu Z, Jin X, Xiao M, Lavillette D, Zhong J, Bartenschlager R, Long G
Journal
EMBO J
Abstract
Mosquito-borne flaviviruses including Zika virus (ZIKV) represent a public health problem in some pa (show more...)Mosquito-borne flaviviruses including Zika virus (ZIKV) represent a public health problem in some parts of the world. Although ZIKV infection is predominantly asymptomatic or associated with mild symptoms, it can lead to neurological complications. ZIKV infection can also cause antibody-dependent enhancement (ADE) of infection with similar viruses, warranting further studies of virion assembly and the function of envelope (E) protein-specific antibodies. Although extracellular vesicles (EVs) from flavivirus-infected cells have been reported to transmit infection, this interpretation is challenged by difficulties in separating EVs from flavivirions due to their similar biochemical composition and biophysical properties. In the present study, a rigorous EV-virion separation method combining sequential ultracentrifugation and affinity capture was developed to study EVs from ZIKV-infected cells. We find that these EVs do not transmit infection, but EVs display abundant E proteins which have an antigenic landscape similar to that of virions carrying E. ZIKV E-coated EVs attenuate antibody-dependent enhancement mediated by ZIKV E-specific and DENV-cross-reactive antibodies in both cell culture and mouse models. We thus report an alternative route for Flavivirus E protein secretion. These results suggest that modulation of E protein release via virions and EVs may present a new approach to regulating flavivirus-host interactions. (hide)
EV-METRIC
75% (95th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
ZIKV infected cells
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Ultrafiltratrion
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: TSG101/ CD63/ CD81/ Alix/ HSP70/ CD9
non-EV: Capsid/ E
Proteomics
no
Show all info
Study aim
New methodological development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
human umbilical vein endothelial cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell count
2,00E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
No
Density gradient
Type
Continuous
Lowest density fraction
0%
Highest density fraction
80%
Sample volume (mL)
1
Orientation
Bottom-up
Rotor type
P55ST
Speed (g)
250000
Duration (min)
1080
Fraction volume (mL)
0,3
Ultra filtration
Cut-off size (kDa)
100 kDa
Membrane type
Regenerated cellulose
Other
Name other separation method
Ultrafiltratrion
Characterization: Protein analysis
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ CD63/ TSG101/ HSP70/ Syntenin
Detected contaminants
Capsid/ E
Characterization: RNA analysis
RNA analysis
Type
RT(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
EV210141 1/5 Homo sapiens human umbilical vein endothelial cells IAF
Ultrafiltratrion
(d)(U)C
Zhao F 2023 67%

Study summary

Full title
All authors
Zhao F, Xu Y, Liu N, Lv D, Chen Y, Liu Z, Jin X, Xiao M, Lavillette D, Zhong J, Bartenschlager R, Long G
Journal
EMBO J
Abstract
Mosquito-borne flaviviruses including Zika virus (ZIKV) represent a public health problem in some pa (show more...)Mosquito-borne flaviviruses including Zika virus (ZIKV) represent a public health problem in some parts of the world. Although ZIKV infection is predominantly asymptomatic or associated with mild symptoms, it can lead to neurological complications. ZIKV infection can also cause antibody-dependent enhancement (ADE) of infection with similar viruses, warranting further studies of virion assembly and the function of envelope (E) protein-specific antibodies. Although extracellular vesicles (EVs) from flavivirus-infected cells have been reported to transmit infection, this interpretation is challenged by difficulties in separating EVs from flavivirions due to their similar biochemical composition and biophysical properties. In the present study, a rigorous EV-virion separation method combining sequential ultracentrifugation and affinity capture was developed to study EVs from ZIKV-infected cells. We find that these EVs do not transmit infection, but EVs display abundant E proteins which have an antigenic landscape similar to that of virions carrying E. ZIKV E-coated EVs attenuate antibody-dependent enhancement mediated by ZIKV E-specific and DENV-cross-reactive antibodies in both cell culture and mouse models. We thus report an alternative route for Flavivirus E protein secretion. These results suggest that modulation of E protein release via virions and EVs may present a new approach to regulating flavivirus-host interactions. (hide)
EV-METRIC
67% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Immunoaffinity capture (non-commercial)
Ultrafiltratrion
(Differential) (ultra)centrifugation
Protein markers
EV: TSG101/ CD63/ CD81/ Alix/ HSP70/ CD9
non-EV: Capsid/ E/ LC3/ Calnexin
Proteomics
no
Show all info
Study aim
New methodological development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
human umbilical vein endothelial cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell count
2,00E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Ultra filtration
Cut-off size (kDa)
100 kDa
Membrane type
Regenerated cellulose
Immunoaffinity capture
Selected surface protein(s)
CD9
Other
Name other separation method
Ultrafiltratrion
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ CD63/ TSG101/ HSP70/ Alix/ CD81
Detected contaminants
Capsid/ E
Not detected contaminants
LC3/ Calnexin
Characterization: RNA analysis
RNA analysis
Type
RT(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Transmission-EM/ Cryo-EM
Image type
Wide-field
Report size (nm)
100
EV230005 1/4 Homo sapiens Serum (d)(U)C Dobra G 2023 55%

Study summary

Full title
All authors
Dobra G, Gyukity-Sebestyén E, Bukva M, Harmati M, Nagy V, Szabó Z, Pankotai T, Klekner Á, Buzás K
Journal
Cancers (Basel)
Abstract
Matrix metalloproteinase-9 (MMP-9) degrades the extracellular matrix, contributes to tumour cell inv (show more...)Matrix metalloproteinase-9 (MMP-9) degrades the extracellular matrix, contributes to tumour cell invasion and metastasis, and its elevated level in brain tumour tissues indicates poor prognosis. High-risk tissue biopsy can be replaced by liquid biopsy/ however, the blood-brain barrier (BBB) prevents tumour-associated components from entering the peripheral blood, making the development of blood-based biomarkers challenging. Therefore, we examined the MMP-9 content of small extracellular vesicles (sEVs)-which can cross the BBB and are stable in body fluids-to characterise tumours with different invasion capacity. From four patient groups (glioblastoma multiforme, brain metastases of lung cancer, meningioma, and lumbar disc herniation as controls), 222 serum-derived sEV samples were evaluated. After isolating and characterising sEVs, their MMP-9 content was measured by ELISA and assessed statistically (correlation, paired -test, Welch's test, ANOVA, ROC). We found that the MMP-9 content of sEVs is independent of gender and age, but is affected by surgical intervention, treatment, and recurrence. We found a relation between low MMP-9 level in sEVs (<28 ppm) and improved survival (8-month advantage) of glioblastoma patients, and MMP-9 levels showed a positive correlation with aggressiveness. These findings suggest that vesicular MMP-9 level might be a useful prognostic marker for brain tumours. (hide)
EV-METRIC
55% (91st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD5L/ MMP-9
non-EV: calnexin
Proteomics
yes
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
T-1270
Pelleting: speed (g)
110000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
Alix/ CD5L
Not detected contaminants
calnexin
ELISA
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
MMP-9
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
77.3
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 1.44E+12
EM
EM-type
Transmission-EM
Image type
Close-up
EV230005 2/4 Homo sapiens Serum (d)(U)C Dobra G 2023 44%

Study summary

Full title
All authors
Dobra G, Gyukity-Sebestyén E, Bukva M, Harmati M, Nagy V, Szabó Z, Pankotai T, Klekner Á, Buzás K
Journal
Cancers (Basel)
Abstract
Matrix metalloproteinase-9 (MMP-9) degrades the extracellular matrix, contributes to tumour cell inv (show more...)Matrix metalloproteinase-9 (MMP-9) degrades the extracellular matrix, contributes to tumour cell invasion and metastasis, and its elevated level in brain tumour tissues indicates poor prognosis. High-risk tissue biopsy can be replaced by liquid biopsy/ however, the blood-brain barrier (BBB) prevents tumour-associated components from entering the peripheral blood, making the development of blood-based biomarkers challenging. Therefore, we examined the MMP-9 content of small extracellular vesicles (sEVs)-which can cross the BBB and are stable in body fluids-to characterise tumours with different invasion capacity. From four patient groups (glioblastoma multiforme, brain metastases of lung cancer, meningioma, and lumbar disc herniation as controls), 222 serum-derived sEV samples were evaluated. After isolating and characterising sEVs, their MMP-9 content was measured by ELISA and assessed statistically (correlation, paired -test, Welch's test, ANOVA, ROC). We found that the MMP-9 content of sEVs is independent of gender and age, but is affected by surgical intervention, treatment, and recurrence. We found a relation between low MMP-9 level in sEVs (<28 ppm) and improved survival (8-month advantage) of glioblastoma patients, and MMP-9 levels showed a positive correlation with aggressiveness. These findings suggest that vesicular MMP-9 level might be a useful prognostic marker for brain tumours. (hide)
EV-METRIC
44% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Glioblastoma
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD5L/ MMP-9
non-EV: calnexin
Proteomics
yes
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
T-1270
Pelleting: speed (g)
110000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
Alix/ CD5L
Not detected contaminants
calnexin
ELISA
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
MMP-9
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
80.6
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 2.46E+12
EV230005 3/4 Homo sapiens Serum (d)(U)C Dobra G 2023 44%

Study summary

Full title
All authors
Dobra G, Gyukity-Sebestyén E, Bukva M, Harmati M, Nagy V, Szabó Z, Pankotai T, Klekner Á, Buzás K
Journal
Cancers (Basel)
Abstract
Matrix metalloproteinase-9 (MMP-9) degrades the extracellular matrix, contributes to tumour cell inv (show more...)Matrix metalloproteinase-9 (MMP-9) degrades the extracellular matrix, contributes to tumour cell invasion and metastasis, and its elevated level in brain tumour tissues indicates poor prognosis. High-risk tissue biopsy can be replaced by liquid biopsy/ however, the blood-brain barrier (BBB) prevents tumour-associated components from entering the peripheral blood, making the development of blood-based biomarkers challenging. Therefore, we examined the MMP-9 content of small extracellular vesicles (sEVs)-which can cross the BBB and are stable in body fluids-to characterise tumours with different invasion capacity. From four patient groups (glioblastoma multiforme, brain metastases of lung cancer, meningioma, and lumbar disc herniation as controls), 222 serum-derived sEV samples were evaluated. After isolating and characterising sEVs, their MMP-9 content was measured by ELISA and assessed statistically (correlation, paired -test, Welch's test, ANOVA, ROC). We found that the MMP-9 content of sEVs is independent of gender and age, but is affected by surgical intervention, treatment, and recurrence. We found a relation between low MMP-9 level in sEVs (<28 ppm) and improved survival (8-month advantage) of glioblastoma patients, and MMP-9 levels showed a positive correlation with aggressiveness. These findings suggest that vesicular MMP-9 level might be a useful prognostic marker for brain tumours. (hide)
EV-METRIC
44% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Brain metastasis originated from non-small cell lung cancer
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD5L/ MMP-9
non-EV: calnexin
Proteomics
yes
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
T-1270
Pelleting: speed (g)
110000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
Alix/ CD5L
Not detected contaminants
calnexin
ELISA
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
MMP-9
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
84.8
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 1.59E+12
EV230005 4/4 Homo sapiens Serum (d)(U)C Dobra G 2023 44%

Study summary

Full title
All authors
Dobra G, Gyukity-Sebestyén E, Bukva M, Harmati M, Nagy V, Szabó Z, Pankotai T, Klekner Á, Buzás K
Journal
Cancers (Basel)
Abstract
Matrix metalloproteinase-9 (MMP-9) degrades the extracellular matrix, contributes to tumour cell inv (show more...)Matrix metalloproteinase-9 (MMP-9) degrades the extracellular matrix, contributes to tumour cell invasion and metastasis, and its elevated level in brain tumour tissues indicates poor prognosis. High-risk tissue biopsy can be replaced by liquid biopsy/ however, the blood-brain barrier (BBB) prevents tumour-associated components from entering the peripheral blood, making the development of blood-based biomarkers challenging. Therefore, we examined the MMP-9 content of small extracellular vesicles (sEVs)-which can cross the BBB and are stable in body fluids-to characterise tumours with different invasion capacity. From four patient groups (glioblastoma multiforme, brain metastases of lung cancer, meningioma, and lumbar disc herniation as controls), 222 serum-derived sEV samples were evaluated. After isolating and characterising sEVs, their MMP-9 content was measured by ELISA and assessed statistically (correlation, paired -test, Welch's test, ANOVA, ROC). We found that the MMP-9 content of sEVs is independent of gender and age, but is affected by surgical intervention, treatment, and recurrence. We found a relation between low MMP-9 level in sEVs (<28 ppm) and improved survival (8-month advantage) of glioblastoma patients, and MMP-9 levels showed a positive correlation with aggressiveness. These findings suggest that vesicular MMP-9 level might be a useful prognostic marker for brain tumours. (hide)
EV-METRIC
44% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Meningioma
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD5L/ MMP-9
non-EV: calnexin
Proteomics
yes
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
T-1270
Pelleting: speed (g)
110000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
Alix/ CD5L
Not detected contaminants
calnexin
ELISA
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
MMP-9
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
82.7
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 3.61E+12
EV220418 1/8 Mus musculus Heart tissue (d)(U)C Schoger E 2023 44%

Study summary

Full title
All authors
Schoger E, Bleckwedel F, Germena G, Rocha C, Tucholla P, Sobitov I, Möbius W, Sitte M, Lenz C, Samak M, Hinkel R, Varga ZV, Giricz Z, Salinas G, Gross JC, Zelarayán LC
Journal
Commun Biol
Abstract
Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell tr (show more...)Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell transcriptome profiling of hearts with inducible cardiomyocyte-specific Wnt activation (β-cat) as well as with compensatory and failing hypertrophic remodeling. We show that functional enrichment analysis points to an involvement of extracellular vesicles (EVs) related processes in hearts of β-cat mice. A proteomic analysis of in vivo cardiac derived EVs from β-cat hearts has identified differentially enriched proteins involving 20 S proteasome constitutes, protein quality control (PQC), chaperones and associated cardiac proteins including α-Crystallin B (CRYAB) and sarcomeric components. The hypertrophic model confirms that cardiomyocytes reacted with an acute early transcriptional upregulation of exosome biogenesis processes and chaperones transcripts including CRYAB, which is ameliorated in advanced remodeling. Finally, human induced pluripotent stem cells (iPSC)-derived cardiomyocytes subjected to pharmacological Wnt activation recapitulated the increased expression of exosomal markers, CRYAB accumulation and increased PQC signaling. These findings reveal that secretion of EVs with a proteostasis signature contributes to early patho-physiological adaptation of cardiomyocytes, which may serve as a read-out of disease progression and can be used for monitoring cellular remodeling in vivo with a possible diagnostic and prognostic role in the future. (hide)
EV-METRIC
44% (35th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Heart tissue
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: CD81
non-EV: calnexin/ GM130
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Mus musculus
Sample Type
Heart tissue
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
MLA-130
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
not specified
Wash: time (min)
90
Wash: Rotor Type
MLA-130
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Bradford
Protein Yield (µg)
not specified
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD81
Not detected contaminants
calnexin/ GM130
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
160
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV220413 1/6 Homo sapiens SKVO3 (d)(U)C
Filtration
Carmen Alarcón-Veleiro 2023 44%

Study summary

Full title
All authors
Carmen Alarcón-Veleiro, Rocío Mato-Basalo, Sergio Lucio-Gallego, Andrea Vidal-Pampín, María Quindós-Varela, Thamer Al-Qatarneh, Germán Berrecoso, Ángel Vizoso-Vázquez, María C. Arufe and Juan Fafián-Labora
Journal
antioxidants
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for E (show more...)Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for EOC involves surgical debulking of the tumors followed by a combination of chemotherapy. While most patients achieve complete remission, many EOCs will recur and develop chemo-resistance. The cancer cells can adapt to several stress stimuli, becoming resistant. Because of this, new ways to fight resistant cells during the disease are being studied. However, the clinical outcomes remain unsatisfactory. Recently, ferroptosis, a novel form of regulated cell death trigged by the accumulation of iron and toxic species of lipid metabolism in cells, has emerged as a promising anti-tumor strategy for EOC treatment. This process has a high potential to become a complementary treatment to the current anti-tumor strategies to eliminate resistant cells and to avoid relapse. Cancer cells, like other cells in the body, release small extracellular vesicles (sEV) that allow the transport of substances from the cells themselves to communicate with their environment. To achieve this, we analyzed the capacity of epithelial ovarian cancer cells (OVCA), treated with ferroptosis inducers, to generate sEV, assessing their size and number, and study the transmission of ferroptosis by sEV. Our results reveal that OVCA cells treated with ferroptotic inducers can modify intercellular communication by sEV, inducing cell death in recipient cells. Furthermore, these receptor cells are able to generate a greater amount of sEV, contributing to a much higher ferroptosis paracrine transmission. Thus, we discovered the importance of the sEV in the communication between cells in OVCA, focusing on the ferroptosis process. These findings could be the beginning form to study the molecular mechanism ferroptosis transmission through sEV. (hide)
EV-METRIC
44% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: CD63
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SKVO3
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
100
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
P70AT
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
15
Wash: time (min)
120
Wash: Rotor Type
P70AT
Wash: speed (g)
100000
Filtration steps
0.2 or 0.22 ?m
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
125
EV concentration
Yes
EV210141 5/5 Homo sapiens Vero 6 IAF
Ultrafiltratrion
(d)(U)C
Zhao F 2023 44%

Study summary

Full title
All authors
Zhao F, Xu Y, Liu N, Lv D, Chen Y, Liu Z, Jin X, Xiao M, Lavillette D, Zhong J, Bartenschlager R, Long G
Journal
EMBO J
Abstract
Mosquito-borne flaviviruses including Zika virus (ZIKV) represent a public health problem in some pa (show more...)Mosquito-borne flaviviruses including Zika virus (ZIKV) represent a public health problem in some parts of the world. Although ZIKV infection is predominantly asymptomatic or associated with mild symptoms, it can lead to neurological complications. ZIKV infection can also cause antibody-dependent enhancement (ADE) of infection with similar viruses, warranting further studies of virion assembly and the function of envelope (E) protein-specific antibodies. Although extracellular vesicles (EVs) from flavivirus-infected cells have been reported to transmit infection, this interpretation is challenged by difficulties in separating EVs from flavivirions due to their similar biochemical composition and biophysical properties. In the present study, a rigorous EV-virion separation method combining sequential ultracentrifugation and affinity capture was developed to study EVs from ZIKV-infected cells. We find that these EVs do not transmit infection, but EVs display abundant E proteins which have an antigenic landscape similar to that of virions carrying E. ZIKV E-coated EVs attenuate antibody-dependent enhancement mediated by ZIKV E-specific and DENV-cross-reactive antibodies in both cell culture and mouse models. We thus report an alternative route for Flavivirus E protein secretion. These results suggest that modulation of E protein release via virions and EVs may present a new approach to regulating flavivirus-host interactions. (hide)
EV-METRIC
44% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Dengue virus infected cells
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Immunoaffinity capture (non-commercial)
Ultrafiltratrion
(Differential) (ultra)centrifugation
Protein markers
EV: CD9/ Syntenin
non-EV: E
Proteomics
no
Show all info
Study aim
New methodological development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Vero 6
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell count
2,00E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Ultra filtration
Cut-off size (kDa)
100 kDa
Membrane type
Regenerated cellulose
Immunoaffinity capture
Selected surface protein(s)
CD9
Other
Name other separation method
Ultrafiltratrion
Characterization: Protein analysis
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ Syntenin
Detected contaminants
E
Characterization: RNA analysis
RNA analysis
Type
RT(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
EV220418 2/8 Mus musculus Heart tissue (d)(U)C
Mouse Exosome Isolation Kit Pan
Schoger E 2023 38%

Study summary

Full title
All authors
Schoger E, Bleckwedel F, Germena G, Rocha C, Tucholla P, Sobitov I, Möbius W, Sitte M, Lenz C, Samak M, Hinkel R, Varga ZV, Giricz Z, Salinas G, Gross JC, Zelarayán LC
Journal
Commun Biol
Abstract
Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell tr (show more...)Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell transcriptome profiling of hearts with inducible cardiomyocyte-specific Wnt activation (β-cat) as well as with compensatory and failing hypertrophic remodeling. We show that functional enrichment analysis points to an involvement of extracellular vesicles (EVs) related processes in hearts of β-cat mice. A proteomic analysis of in vivo cardiac derived EVs from β-cat hearts has identified differentially enriched proteins involving 20 S proteasome constitutes, protein quality control (PQC), chaperones and associated cardiac proteins including α-Crystallin B (CRYAB) and sarcomeric components. The hypertrophic model confirms that cardiomyocytes reacted with an acute early transcriptional upregulation of exosome biogenesis processes and chaperones transcripts including CRYAB, which is ameliorated in advanced remodeling. Finally, human induced pluripotent stem cells (iPSC)-derived cardiomyocytes subjected to pharmacological Wnt activation recapitulated the increased expression of exosomal markers, CRYAB accumulation and increased PQC signaling. These findings reveal that secretion of EVs with a proteostasis signature contributes to early patho-physiological adaptation of cardiomyocytes, which may serve as a read-out of disease progression and can be used for monitoring cellular remodeling in vivo with a possible diagnostic and prognostic role in the future. (hide)
EV-METRIC
38% (14th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Heart tissue
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Mouse Exosome Isolation Kit Pan
Protein markers
EV: TSG101
non-EV: calnexin/ GAPDH/ Vinculin
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Mus musculus
Sample Type
Heart tissue
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Commercial kit
Mouse Exosome Isolation Kit Pan
Other
Name other separation method
Mouse Exosome Isolation Kit Pan
Characterization: Protein analysis
Protein Concentration Method
Bradford
Protein Yield (µg)
not specified
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
TSG101
Not detected contaminants
calnexin/ GAPDH/ Vinculin
Characterization: Lipid analysis
No
EV220418 3/8 Mus musculus Heart tissue (d)(U)C
Mouse Exosome Isolation Kit Pan
Schoger E 2023 38%

Study summary

Full title
All authors
Schoger E, Bleckwedel F, Germena G, Rocha C, Tucholla P, Sobitov I, Möbius W, Sitte M, Lenz C, Samak M, Hinkel R, Varga ZV, Giricz Z, Salinas G, Gross JC, Zelarayán LC
Journal
Commun Biol
Abstract
Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell tr (show more...)Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell transcriptome profiling of hearts with inducible cardiomyocyte-specific Wnt activation (β-cat) as well as with compensatory and failing hypertrophic remodeling. We show that functional enrichment analysis points to an involvement of extracellular vesicles (EVs) related processes in hearts of β-cat mice. A proteomic analysis of in vivo cardiac derived EVs from β-cat hearts has identified differentially enriched proteins involving 20 S proteasome constitutes, protein quality control (PQC), chaperones and associated cardiac proteins including α-Crystallin B (CRYAB) and sarcomeric components. The hypertrophic model confirms that cardiomyocytes reacted with an acute early transcriptional upregulation of exosome biogenesis processes and chaperones transcripts including CRYAB, which is ameliorated in advanced remodeling. Finally, human induced pluripotent stem cells (iPSC)-derived cardiomyocytes subjected to pharmacological Wnt activation recapitulated the increased expression of exosomal markers, CRYAB accumulation and increased PQC signaling. These findings reveal that secretion of EVs with a proteostasis signature contributes to early patho-physiological adaptation of cardiomyocytes, which may serve as a read-out of disease progression and can be used for monitoring cellular remodeling in vivo with a possible diagnostic and prognostic role in the future. (hide)
EV-METRIC
38% (14th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Heart tissue
Sample origin
beta-cat ex3 mutant
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Mouse Exosome Isolation Kit Pan
Protein markers
EV: TSG101
non-EV: calnexin/ GAPDH/ Vinculin
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Mus musculus
Sample Type
Heart tissue
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Commercial kit
Mouse Exosome Isolation Kit Pan
Other
Name other separation method
Mouse Exosome Isolation Kit Pan
Characterization: Protein analysis
Protein Concentration Method
Bradford
Protein Yield (µg)
not specified
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
TSG101
Not detected contaminants
calnexin/ GAPDH/ Vinculin
Characterization: Lipid analysis
No
EV220418 4/8 Homo sapiens iPSC-derived cardiomyocytes (d)(U)C
Exosome Isolation Kit Pan
Schoger E 2023 38%

Study summary

Full title
All authors
Schoger E, Bleckwedel F, Germena G, Rocha C, Tucholla P, Sobitov I, Möbius W, Sitte M, Lenz C, Samak M, Hinkel R, Varga ZV, Giricz Z, Salinas G, Gross JC, Zelarayán LC
Journal
Commun Biol
Abstract
Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell tr (show more...)Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell transcriptome profiling of hearts with inducible cardiomyocyte-specific Wnt activation (β-cat) as well as with compensatory and failing hypertrophic remodeling. We show that functional enrichment analysis points to an involvement of extracellular vesicles (EVs) related processes in hearts of β-cat mice. A proteomic analysis of in vivo cardiac derived EVs from β-cat hearts has identified differentially enriched proteins involving 20 S proteasome constitutes, protein quality control (PQC), chaperones and associated cardiac proteins including α-Crystallin B (CRYAB) and sarcomeric components. The hypertrophic model confirms that cardiomyocytes reacted with an acute early transcriptional upregulation of exosome biogenesis processes and chaperones transcripts including CRYAB, which is ameliorated in advanced remodeling. Finally, human induced pluripotent stem cells (iPSC)-derived cardiomyocytes subjected to pharmacological Wnt activation recapitulated the increased expression of exosomal markers, CRYAB accumulation and increased PQC signaling. These findings reveal that secretion of EVs with a proteostasis signature contributes to early patho-physiological adaptation of cardiomyocytes, which may serve as a read-out of disease progression and can be used for monitoring cellular remodeling in vivo with a possible diagnostic and prognostic role in the future. (hide)
EV-METRIC
38% (72nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Exosome Isolation Kit Pan
Protein markers
EV: TSG101/ CD81/ Ubiquitinated proteins
non-EV: calnexin
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
iPSC-derived cardiomyocytes
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Commercial kit
Exosome Isolation Kit Pan
Other
Name other separation method
Exosome Isolation Kit Pan
Characterization: Protein analysis
Protein Concentration Method
Bradford
Protein Yield (µg)
per milliliter of starting sample
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
TSG101/ CD81/ Ubiquitinated proteins
Not detected contaminants
calnexin
Characterization: Lipid analysis
No
EV220418 5/8 Homo sapiens iPSC-derived cardiomyocytes (d)(U)C
Exosome Isolation Kit Pan
Schoger E 2023 38%

Study summary

Full title
All authors
Schoger E, Bleckwedel F, Germena G, Rocha C, Tucholla P, Sobitov I, Möbius W, Sitte M, Lenz C, Samak M, Hinkel R, Varga ZV, Giricz Z, Salinas G, Gross JC, Zelarayán LC
Journal
Commun Biol
Abstract
Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell tr (show more...)Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell transcriptome profiling of hearts with inducible cardiomyocyte-specific Wnt activation (β-cat) as well as with compensatory and failing hypertrophic remodeling. We show that functional enrichment analysis points to an involvement of extracellular vesicles (EVs) related processes in hearts of β-cat mice. A proteomic analysis of in vivo cardiac derived EVs from β-cat hearts has identified differentially enriched proteins involving 20 S proteasome constitutes, protein quality control (PQC), chaperones and associated cardiac proteins including α-Crystallin B (CRYAB) and sarcomeric components. The hypertrophic model confirms that cardiomyocytes reacted with an acute early transcriptional upregulation of exosome biogenesis processes and chaperones transcripts including CRYAB, which is ameliorated in advanced remodeling. Finally, human induced pluripotent stem cells (iPSC)-derived cardiomyocytes subjected to pharmacological Wnt activation recapitulated the increased expression of exosomal markers, CRYAB accumulation and increased PQC signaling. These findings reveal that secretion of EVs with a proteostasis signature contributes to early patho-physiological adaptation of cardiomyocytes, which may serve as a read-out of disease progression and can be used for monitoring cellular remodeling in vivo with a possible diagnostic and prognostic role in the future. (hide)
EV-METRIC
38% (72nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
GSK-3beta inhibitor
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Exosome Isolation Kit Pan
Protein markers
EV: TSG101/ CD81/ Ubiquitinated proteins
non-EV: calnexin
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
iPSC-derived cardiomyocytes
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Commercial kit
Exosome Isolation Kit Pan
Other
Name other separation method
Exosome Isolation Kit Pan
Characterization: Protein analysis
Protein Concentration Method
Bradford
Protein Yield (µg)
per milliliter of starting sample
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
TSG101/ CD81/ Ubiquitinated proteins
Not detected contaminants
calnexin
Characterization: Lipid analysis
No
EV220418 7/8 Homo sapiens iPSC-derived cardiomyocytes (d)(U)C
Exosome Isolation Kit Pan
Schoger E 2023 38%

Study summary

Full title
All authors
Schoger E, Bleckwedel F, Germena G, Rocha C, Tucholla P, Sobitov I, Möbius W, Sitte M, Lenz C, Samak M, Hinkel R, Varga ZV, Giricz Z, Salinas G, Gross JC, Zelarayán LC
Journal
Commun Biol
Abstract
Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell tr (show more...)Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell transcriptome profiling of hearts with inducible cardiomyocyte-specific Wnt activation (β-cat) as well as with compensatory and failing hypertrophic remodeling. We show that functional enrichment analysis points to an involvement of extracellular vesicles (EVs) related processes in hearts of β-cat mice. A proteomic analysis of in vivo cardiac derived EVs from β-cat hearts has identified differentially enriched proteins involving 20 S proteasome constitutes, protein quality control (PQC), chaperones and associated cardiac proteins including α-Crystallin B (CRYAB) and sarcomeric components. The hypertrophic model confirms that cardiomyocytes reacted with an acute early transcriptional upregulation of exosome biogenesis processes and chaperones transcripts including CRYAB, which is ameliorated in advanced remodeling. Finally, human induced pluripotent stem cells (iPSC)-derived cardiomyocytes subjected to pharmacological Wnt activation recapitulated the increased expression of exosomal markers, CRYAB accumulation and increased PQC signaling. These findings reveal that secretion of EVs with a proteostasis signature contributes to early patho-physiological adaptation of cardiomyocytes, which may serve as a read-out of disease progression and can be used for monitoring cellular remodeling in vivo with a possible diagnostic and prognostic role in the future. (hide)
EV-METRIC
38% (72nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Iso-Quercetin
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Exosome Isolation Kit Pan
Protein markers
EV: TSG101/ CD81/ Ubiquitinated proteins
non-EV: calnexin
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
iPSC-derived cardiomyocytes
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Commercial kit
Exosome Isolation Kit Pan
Other
Name other separation method
Exosome Isolation Kit Pan
Characterization: Protein analysis
Protein Concentration Method
Bradford
Protein Yield (µg)
per milliliter of starting sample
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
TSG101/ CD81/ Ubiquitinated proteins
Not detected contaminants
calnexin
Characterization: Lipid analysis
No
EV220418 6/8 Homo sapiens iPSC-derived cardiomyocytes (d)(U)C
Exosome Isolation Kit Pan
Schoger E 2023 25%

Study summary

Full title
All authors
Schoger E, Bleckwedel F, Germena G, Rocha C, Tucholla P, Sobitov I, Möbius W, Sitte M, Lenz C, Samak M, Hinkel R, Varga ZV, Giricz Z, Salinas G, Gross JC, Zelarayán LC
Journal
Commun Biol
Abstract
Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell tr (show more...)Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell transcriptome profiling of hearts with inducible cardiomyocyte-specific Wnt activation (β-cat) as well as with compensatory and failing hypertrophic remodeling. We show that functional enrichment analysis points to an involvement of extracellular vesicles (EVs) related processes in hearts of β-cat mice. A proteomic analysis of in vivo cardiac derived EVs from β-cat hearts has identified differentially enriched proteins involving 20 S proteasome constitutes, protein quality control (PQC), chaperones and associated cardiac proteins including α-Crystallin B (CRYAB) and sarcomeric components. The hypertrophic model confirms that cardiomyocytes reacted with an acute early transcriptional upregulation of exosome biogenesis processes and chaperones transcripts including CRYAB, which is ameliorated in advanced remodeling. Finally, human induced pluripotent stem cells (iPSC)-derived cardiomyocytes subjected to pharmacological Wnt activation recapitulated the increased expression of exosomal markers, CRYAB accumulation and increased PQC signaling. These findings reveal that secretion of EVs with a proteostasis signature contributes to early patho-physiological adaptation of cardiomyocytes, which may serve as a read-out of disease progression and can be used for monitoring cellular remodeling in vivo with a possible diagnostic and prognostic role in the future. (hide)
EV-METRIC
25% (55th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
TGFbeta1
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Exosome Isolation Kit Pan
Protein markers
EV: CD81/ TSG101
non-EV: calnexin
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
iPSC-derived cardiomyocytes
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Commercial kit
Exosome Isolation Kit Pan
Other
Name other separation method
Exosome Isolation Kit Pan
Characterization: Protein analysis
Protein Concentration Method
Bradford
Protein Yield (µg)
per milliliter of starting sample
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
TSG101/ CD81
Not detected contaminants
calnexin
Characterization: Lipid analysis
No
EV220418 8/8 Homo sapiens iPSC-derived cardiomyocytes (d)(U)C
Exosome Isolation Kit Pan
Schoger E 2023 25%

Study summary

Full title
All authors
Schoger E, Bleckwedel F, Germena G, Rocha C, Tucholla P, Sobitov I, Möbius W, Sitte M, Lenz C, Samak M, Hinkel R, Varga ZV, Giricz Z, Salinas G, Gross JC, Zelarayán LC
Journal
Commun Biol
Abstract
Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell tr (show more...)Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell transcriptome profiling of hearts with inducible cardiomyocyte-specific Wnt activation (β-cat) as well as with compensatory and failing hypertrophic remodeling. We show that functional enrichment analysis points to an involvement of extracellular vesicles (EVs) related processes in hearts of β-cat mice. A proteomic analysis of in vivo cardiac derived EVs from β-cat hearts has identified differentially enriched proteins involving 20 S proteasome constitutes, protein quality control (PQC), chaperones and associated cardiac proteins including α-Crystallin B (CRYAB) and sarcomeric components. The hypertrophic model confirms that cardiomyocytes reacted with an acute early transcriptional upregulation of exosome biogenesis processes and chaperones transcripts including CRYAB, which is ameliorated in advanced remodeling. Finally, human induced pluripotent stem cells (iPSC)-derived cardiomyocytes subjected to pharmacological Wnt activation recapitulated the increased expression of exosomal markers, CRYAB accumulation and increased PQC signaling. These findings reveal that secretion of EVs with a proteostasis signature contributes to early patho-physiological adaptation of cardiomyocytes, which may serve as a read-out of disease progression and can be used for monitoring cellular remodeling in vivo with a possible diagnostic and prognostic role in the future. (hide)
EV-METRIC
25% (55th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
GSK-3beta inhibitor + Iso-Quercetin
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Exosome Isolation Kit Pan
Protein markers
EV: CD81/ TSG101
non-EV: calnexin
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
iPSC-derived cardiomyocytes
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Commercial kit
Exosome Isolation Kit Pan
Other
Name other separation method
Exosome Isolation Kit Pan
Characterization: Protein analysis
Protein Concentration Method
Bradford
Protein Yield (µg)
per milliliter of starting sample
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
TSG101/ CD81
Not detected contaminants
calnexin
Characterization: Lipid analysis
No
EV220413 2/6 Homo sapiens SKVO3 (d)(U)C
Filtration
Carmen Alarcón-Veleiro 2023 14%

Study summary

Full title
All authors
Carmen Alarcón-Veleiro, Rocío Mato-Basalo, Sergio Lucio-Gallego, Andrea Vidal-Pampín, María Quindós-Varela, Thamer Al-Qatarneh, Germán Berrecoso, Ángel Vizoso-Vázquez, María C. Arufe and Juan Fafián-Labora
Journal
antioxidants
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for E (show more...)Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for EOC involves surgical debulking of the tumors followed by a combination of chemotherapy. While most patients achieve complete remission, many EOCs will recur and develop chemo-resistance. The cancer cells can adapt to several stress stimuli, becoming resistant. Because of this, new ways to fight resistant cells during the disease are being studied. However, the clinical outcomes remain unsatisfactory. Recently, ferroptosis, a novel form of regulated cell death trigged by the accumulation of iron and toxic species of lipid metabolism in cells, has emerged as a promising anti-tumor strategy for EOC treatment. This process has a high potential to become a complementary treatment to the current anti-tumor strategies to eliminate resistant cells and to avoid relapse. Cancer cells, like other cells in the body, release small extracellular vesicles (sEV) that allow the transport of substances from the cells themselves to communicate with their environment. To achieve this, we analyzed the capacity of epithelial ovarian cancer cells (OVCA), treated with ferroptosis inducers, to generate sEV, assessing their size and number, and study the transmission of ferroptosis by sEV. Our results reveal that OVCA cells treated with ferroptotic inducers can modify intercellular communication by sEV, inducing cell death in recipient cells. Furthermore, these receptor cells are able to generate a greater amount of sEV, contributing to a much higher ferroptosis paracrine transmission. Thus, we discovered the importance of the sEV in the communication between cells in OVCA, focusing on the ferroptosis process. These findings could be the beginning form to study the molecular mechanism ferroptosis transmission through sEV. (hide)
EV-METRIC
14% (39th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
RSL3 treated
Focus vesicles
small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SKVO3
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
100
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
P70AT
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
15
Wash: time (min)
120
Wash: Rotor Type
P70AT
Wash: speed (g)
100000
Filtration steps
0.2 or 0.22 ?m
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
125
EV concentration
Yes
EV220413 3/6 Homo sapiens SKVO3 (d)(U)C
Filtration
Carmen Alarcón-Veleiro 2023 14%

Study summary

Full title
All authors
Carmen Alarcón-Veleiro, Rocío Mato-Basalo, Sergio Lucio-Gallego, Andrea Vidal-Pampín, María Quindós-Varela, Thamer Al-Qatarneh, Germán Berrecoso, Ángel Vizoso-Vázquez, María C. Arufe and Juan Fafián-Labora
Journal
antioxidants
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for E (show more...)Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for EOC involves surgical debulking of the tumors followed by a combination of chemotherapy. While most patients achieve complete remission, many EOCs will recur and develop chemo-resistance. The cancer cells can adapt to several stress stimuli, becoming resistant. Because of this, new ways to fight resistant cells during the disease are being studied. However, the clinical outcomes remain unsatisfactory. Recently, ferroptosis, a novel form of regulated cell death trigged by the accumulation of iron and toxic species of lipid metabolism in cells, has emerged as a promising anti-tumor strategy for EOC treatment. This process has a high potential to become a complementary treatment to the current anti-tumor strategies to eliminate resistant cells and to avoid relapse. Cancer cells, like other cells in the body, release small extracellular vesicles (sEV) that allow the transport of substances from the cells themselves to communicate with their environment. To achieve this, we analyzed the capacity of epithelial ovarian cancer cells (OVCA), treated with ferroptosis inducers, to generate sEV, assessing their size and number, and study the transmission of ferroptosis by sEV. Our results reveal that OVCA cells treated with ferroptotic inducers can modify intercellular communication by sEV, inducing cell death in recipient cells. Furthermore, these receptor cells are able to generate a greater amount of sEV, contributing to a much higher ferroptosis paracrine transmission. Thus, we discovered the importance of the sEV in the communication between cells in OVCA, focusing on the ferroptosis process. These findings could be the beginning form to study the molecular mechanism ferroptosis transmission through sEV. (hide)
EV-METRIC
14% (39th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Erastin treated
Focus vesicles
small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SKVO3
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
100
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
P70AT
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
15
Wash: time (min)
120
Wash: Rotor Type
P70AT
Wash: speed (g)
100000
Filtration steps
0.2 or 0.22 ?m
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
125
EV concentration
Yes
EV220413 4/6 Homo sapiens A2780 (d)(U)C
Filtration
Carmen Alarcón-Veleiro 2023 14%

Study summary

Full title
All authors
Carmen Alarcón-Veleiro, Rocío Mato-Basalo, Sergio Lucio-Gallego, Andrea Vidal-Pampín, María Quindós-Varela, Thamer Al-Qatarneh, Germán Berrecoso, Ángel Vizoso-Vázquez, María C. Arufe and Juan Fafián-Labora
Journal
antioxidants
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for E (show more...)Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for EOC involves surgical debulking of the tumors followed by a combination of chemotherapy. While most patients achieve complete remission, many EOCs will recur and develop chemo-resistance. The cancer cells can adapt to several stress stimuli, becoming resistant. Because of this, new ways to fight resistant cells during the disease are being studied. However, the clinical outcomes remain unsatisfactory. Recently, ferroptosis, a novel form of regulated cell death trigged by the accumulation of iron and toxic species of lipid metabolism in cells, has emerged as a promising anti-tumor strategy for EOC treatment. This process has a high potential to become a complementary treatment to the current anti-tumor strategies to eliminate resistant cells and to avoid relapse. Cancer cells, like other cells in the body, release small extracellular vesicles (sEV) that allow the transport of substances from the cells themselves to communicate with their environment. To achieve this, we analyzed the capacity of epithelial ovarian cancer cells (OVCA), treated with ferroptosis inducers, to generate sEV, assessing their size and number, and study the transmission of ferroptosis by sEV. Our results reveal that OVCA cells treated with ferroptotic inducers can modify intercellular communication by sEV, inducing cell death in recipient cells. Furthermore, these receptor cells are able to generate a greater amount of sEV, contributing to a much higher ferroptosis paracrine transmission. Thus, we discovered the importance of the sEV in the communication between cells in OVCA, focusing on the ferroptosis process. These findings could be the beginning form to study the molecular mechanism ferroptosis transmission through sEV. (hide)
EV-METRIC
14% (39th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
A2780
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
100
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
P70AT
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
15
Wash: time (min)
120
Wash: Rotor Type
P70AT
Wash: speed (g)
100000
Filtration steps
0.2 or 0.22 ?m
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV220413 5/6 Homo sapiens A2780 (d)(U)C
Filtration
Carmen Alarcón-Veleiro 2023 14%

Study summary

Full title
All authors
Carmen Alarcón-Veleiro, Rocío Mato-Basalo, Sergio Lucio-Gallego, Andrea Vidal-Pampín, María Quindós-Varela, Thamer Al-Qatarneh, Germán Berrecoso, Ángel Vizoso-Vázquez, María C. Arufe and Juan Fafián-Labora
Journal
antioxidants
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for E (show more...)Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for EOC involves surgical debulking of the tumors followed by a combination of chemotherapy. While most patients achieve complete remission, many EOCs will recur and develop chemo-resistance. The cancer cells can adapt to several stress stimuli, becoming resistant. Because of this, new ways to fight resistant cells during the disease are being studied. However, the clinical outcomes remain unsatisfactory. Recently, ferroptosis, a novel form of regulated cell death trigged by the accumulation of iron and toxic species of lipid metabolism in cells, has emerged as a promising anti-tumor strategy for EOC treatment. This process has a high potential to become a complementary treatment to the current anti-tumor strategies to eliminate resistant cells and to avoid relapse. Cancer cells, like other cells in the body, release small extracellular vesicles (sEV) that allow the transport of substances from the cells themselves to communicate with their environment. To achieve this, we analyzed the capacity of epithelial ovarian cancer cells (OVCA), treated with ferroptosis inducers, to generate sEV, assessing their size and number, and study the transmission of ferroptosis by sEV. Our results reveal that OVCA cells treated with ferroptotic inducers can modify intercellular communication by sEV, inducing cell death in recipient cells. Furthermore, these receptor cells are able to generate a greater amount of sEV, contributing to a much higher ferroptosis paracrine transmission. Thus, we discovered the importance of the sEV in the communication between cells in OVCA, focusing on the ferroptosis process. These findings could be the beginning form to study the molecular mechanism ferroptosis transmission through sEV. (hide)
EV-METRIC
14% (39th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
RSL3 treated
Focus vesicles
small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
A2780
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
100
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
P70AT
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
15
Wash: time (min)
120
Wash: Rotor Type
P70AT
Wash: speed (g)
100000
Filtration steps
0.2 or 0.22 ?m
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV220413 6/6 Homo sapiens A2780 (d)(U)C
Filtration
Carmen Alarcón-Veleiro 2023 14%

Study summary

Full title
All authors
Carmen Alarcón-Veleiro, Rocío Mato-Basalo, Sergio Lucio-Gallego, Andrea Vidal-Pampín, María Quindós-Varela, Thamer Al-Qatarneh, Germán Berrecoso, Ángel Vizoso-Vázquez, María C. Arufe and Juan Fafián-Labora
Journal
antioxidants
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for E (show more...)Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. The current treatment for EOC involves surgical debulking of the tumors followed by a combination of chemotherapy. While most patients achieve complete remission, many EOCs will recur and develop chemo-resistance. The cancer cells can adapt to several stress stimuli, becoming resistant. Because of this, new ways to fight resistant cells during the disease are being studied. However, the clinical outcomes remain unsatisfactory. Recently, ferroptosis, a novel form of regulated cell death trigged by the accumulation of iron and toxic species of lipid metabolism in cells, has emerged as a promising anti-tumor strategy for EOC treatment. This process has a high potential to become a complementary treatment to the current anti-tumor strategies to eliminate resistant cells and to avoid relapse. Cancer cells, like other cells in the body, release small extracellular vesicles (sEV) that allow the transport of substances from the cells themselves to communicate with their environment. To achieve this, we analyzed the capacity of epithelial ovarian cancer cells (OVCA), treated with ferroptosis inducers, to generate sEV, assessing their size and number, and study the transmission of ferroptosis by sEV. Our results reveal that OVCA cells treated with ferroptotic inducers can modify intercellular communication by sEV, inducing cell death in recipient cells. Furthermore, these receptor cells are able to generate a greater amount of sEV, contributing to a much higher ferroptosis paracrine transmission. Thus, we discovered the importance of the sEV in the communication between cells in OVCA, focusing on the ferroptosis process. These findings could be the beginning form to study the molecular mechanism ferroptosis transmission through sEV. (hide)
EV-METRIC
14% (39th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Erastin treated
Focus vesicles
small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
A2780
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
100
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
P70AT
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
15
Wash: time (min)
120
Wash: Rotor Type
P70AT
Wash: speed (g)
100000
Filtration steps
0.2 or 0.22 ?m
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV220365 1/2 Homo sapiens Primary myotubes (d)(U)C
UF
qEV
Kargl CK 2023 13%

Study summary

Full title
All authors
Kargl CK, Sullivan BP, Middleton D, York A, Burton LC, Brault JJ, Kuang S, Gavin TP
Journal
Exp Physiol
Abstract
What is the central question of this study? Skeletal muscle extracellular vesicles likely act as pro (show more...)What is the central question of this study? Skeletal muscle extracellular vesicles likely act as pro-angiogenic signalling factors: does overexpression of peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) alter skeletal muscle myotube extracellular vesicle release, contents and angiogenic potential? What is the main finding and its importance? Overexpression of PGC-1α results in secretion of extracellular vesicles that elevate measures of angiogenesis and protect against acute oxidative stress in vitro. Skeletal muscle with high levels of PGC-1α expression, commonly associated with exercise induced angiogenesis and high basal capillarization, may secrete extracellular vesicles that support capillary growth and maintenance. (hide)
EV-METRIC
13% (33rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Ultrafiltration
qEV
Protein markers
EV: Alix/ TSG101
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Primary myotubes
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
50
Membrane type
Polyethersulfone (PES)
Commercial kit
qEV
Other
Name other separation method
qEV
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
per mg myotubes
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
Alix/ TSG101
Characterization: RNA analysis
RNA analysis
Type
(RT)-(q)PCR
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
30-350
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 5-10E09
EV220365 2/2 Homo sapiens Primary myotubes (d)(U)C
UF
qEV
Kargl CK 2023 13%

Study summary

Full title
All authors
Kargl CK, Sullivan BP, Middleton D, York A, Burton LC, Brault JJ, Kuang S, Gavin TP
Journal
Exp Physiol
Abstract
What is the central question of this study? Skeletal muscle extracellular vesicles likely act as pro (show more...)What is the central question of this study? Skeletal muscle extracellular vesicles likely act as pro-angiogenic signalling factors: does overexpression of peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) alter skeletal muscle myotube extracellular vesicle release, contents and angiogenic potential? What is the main finding and its importance? Overexpression of PGC-1α results in secretion of extracellular vesicles that elevate measures of angiogenesis and protect against acute oxidative stress in vitro. Skeletal muscle with high levels of PGC-1α expression, commonly associated with exercise induced angiogenesis and high basal capillarization, may secrete extracellular vesicles that support capillary growth and maintenance. (hide)
EV-METRIC
13% (33rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
PGC1-a overexpression
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Ultrafiltration
qEV
Protein markers
EV: Alix/ TSG101
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Primary myotubes
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
50
Membrane type
Polyethersulfone (PES)
Other
Name other separation method
qEV
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
per mg myotubes
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
Alix/ TSG101
Characterization: RNA analysis
RNA analysis
Type
(RT)-(q)PCR
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
30-1000
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 5-10E09
EV220014 1/2 Homo sapiens Serum ExoQuick
IAF
Burrows K 2023 0%

Study summary

Full title
All authors
Burrows K, Figueroa-Hall LK, Alarbi AM, Stewart JL, Kuplicki R, Tan C, Hannafon BN, Ramesh R, Savitz J, Khalsa S, Teague TK, Risbrough VB, Paulus MP
Journal
Brain Behav Immun Health
Abstract
Ibuprofen, a non-steroidal, anti-inflammatory drug, modulates inflammation but may also have neuropr (show more...)Ibuprofen, a non-steroidal, anti-inflammatory drug, modulates inflammation but may also have neuroprotective effects on brain health that are poorly understood. Astrocyte-enriched extracellular vesicles (AEEVs) facilitate cell-to-cell communication and - among other functions - regulate inflammation and metabolism via microribonucleic acids (miRNAs). Dysfunctions in reward-related processing and inflammation have been proposed to be critical pathophysiological pathways in individuals with mood disorders. This investigation examined whether changes in AEEV cargo induced by an anti-inflammatory agent results in inflammatory modulation that is associated with reward-related processing. Data from a double-blind, randomized, repeated-measures study in healthy volunteers were used to examine the effects of AEEV miRNAs on brain activation during reward-related processing. In three separate visits, healthy participants (N = 20) received a single dose of either placebo, 200 mg, or 600 mg of ibuprofen, completed the monetary incentive delay task during functional magnetic resonance imaging, and provided a blood sample for cytokine and AEEV collection. AEEV miRNA content profiling showed that ibuprofen dose-dependently increased AEEV miR-23b-3p expression with greater increase following the 600 mg administration than placebo. Those individuals who received 600 mg and showed the highest miR-23b-3p expression also showed the (a) lowest serum tumor necrosis factor (TNF) and interleukin-17A (IL-17A) concentrations/ and had the (b) highest striatal brain activation during reward anticipation. These results support the hypothesis that ibuprofen alters the composition of miRNAs in AEEVs. This opens the possibility that AEEV cargo could be used to modulate brain processes that are important for mental health. (hide)
EV-METRIC
0% (median: 13% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
ExoQuick
Immunoaffinity capture (non-commercial)
Protein markers
EV: GLAST
non-EV: None
Proteomics
no
Show all info
Study aim
Function/Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
Commercial kit
ExoQuick
Immunoaffinity capture
Selected surface protein(s)
ACSA-1
Other
Name other separation method
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
per milliliter of starting sample
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
GLAST
Flow cytometry aspecific beads
Antibody details provided?
No
Detected EV-associated proteins
GLAST
Flow cytometry specific beads
Antibody details provided?
Yes
Antibody dilution provided?
No
Selected surface protein(s)
GLAST
Characterization: RNA analysis
RNA analysis
Type
RNA-sequencing
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
192.3
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 1.97E+08
EV220014 2/2 Homo sapiens Serum ExoQuick
IAF
Burrows K 2023 0%

Study summary

Full title
All authors
Burrows K, Figueroa-Hall LK, Alarbi AM, Stewart JL, Kuplicki R, Tan C, Hannafon BN, Ramesh R, Savitz J, Khalsa S, Teague TK, Risbrough VB, Paulus MP
Journal
Brain Behav Immun Health
Abstract
Ibuprofen, a non-steroidal, anti-inflammatory drug, modulates inflammation but may also have neuropr (show more...)Ibuprofen, a non-steroidal, anti-inflammatory drug, modulates inflammation but may also have neuroprotective effects on brain health that are poorly understood. Astrocyte-enriched extracellular vesicles (AEEVs) facilitate cell-to-cell communication and - among other functions - regulate inflammation and metabolism via microribonucleic acids (miRNAs). Dysfunctions in reward-related processing and inflammation have been proposed to be critical pathophysiological pathways in individuals with mood disorders. This investigation examined whether changes in AEEV cargo induced by an anti-inflammatory agent results in inflammatory modulation that is associated with reward-related processing. Data from a double-blind, randomized, repeated-measures study in healthy volunteers were used to examine the effects of AEEV miRNAs on brain activation during reward-related processing. In three separate visits, healthy participants (N = 20) received a single dose of either placebo, 200 mg, or 600 mg of ibuprofen, completed the monetary incentive delay task during functional magnetic resonance imaging, and provided a blood sample for cytokine and AEEV collection. AEEV miRNA content profiling showed that ibuprofen dose-dependently increased AEEV miR-23b-3p expression with greater increase following the 600 mg administration than placebo. Those individuals who received 600 mg and showed the highest miR-23b-3p expression also showed the (a) lowest serum tumor necrosis factor (TNF) and interleukin-17A (IL-17A) concentrations/ and had the (b) highest striatal brain activation during reward anticipation. These results support the hypothesis that ibuprofen alters the composition of miRNAs in AEEVs. This opens the possibility that AEEV cargo could be used to modulate brain processes that are important for mental health. (hide)
EV-METRIC
0% (median: 13% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
NA
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
ExoQuick
Immunoaffinity capture (non-commercial)
Protein markers
EV: GLAST
non-EV: None
Proteomics
no
Show all info
Study aim
Function/Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
Commercial kit
ExoQuick
Immunoaffinity capture
Selected surface protein(s)
ACSA-1
Other
Name other separation method
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
per milliliter of starting sample
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
GLAST
Flow cytometry aspecific beads
Antibody details provided?
No
Detected EV-associated proteins
GLAST
Flow cytometry specific beads
Antibody details provided?
Yes
Antibody dilution provided?
No
Selected surface protein(s)
GLAST
Characterization: RNA analysis
RNA analysis
Type
RNA-sequencing
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
158.5
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 1.97E+08
1 - 27 of 27