Search > Results
You searched for: EV230370 (EV-TRACK ID)
Showing 1 - 8 of 8
Showing 1 - 8 of 8
Details | EV-TRACK ID | Experiment nr. | Species | Sample type | Separation protocol | First author | Year | EV-METRIC |
---|---|---|---|---|---|---|---|---|
EV230370 | 7/8 | Sus scrofa | Primary retinal pigmented epithelial cells |
DC DG (d)(U)C UF |
Hernandez, Belinda J. | 2023 | 75% | |
Study summaryFull title
All authors
Belinda J. Hernandez, Nikolai P. Skiba, Karolina Plössl, Madison Strain, Yutao Liu, Daniel Grigsby, Una Kelly, Martha A. Cady, Vikram Manocha, Arvydas Maminishkis, TeddiJo Watkins, Sheldon S. Miller, Allison Ashley-Koch, W. Daniel Stamer, Bernhard H. F. Weber, Catherine Bowes Rickman, Mikael Klingeborn
Journal
J Extracell Biol
Abstract
The retinal pigmented epithelium (RPE) constitutes the outer blood-retinal barrier, enables photorec (show more...)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
small extracellular vesicle
Separation protocol
Separation protocol
Density cushion
Density gradient (Differential) (ultra)centrifugation Ultrafiltration Protein markers
EV: Syntenin-1/ ANXA2/ ITGB1
non-EV: Calreticulin/ Albumin/ Lamins/ Caspases Proteomics
yes
EV density (g/ml)
1.07-1.11
Show all info
Study aim
Biogenesis/cargo sorting/Identification of content (omics approaches)
Sample
Species
Sus scrofa
Sample Type
Cell culture supernatant
EV-producing cells
Primary retinal pigmented epithelial cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
99
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
3
Orientation
Bottom-up
Speed (g)
200,000
Duration (min)
240
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
12
Pelleting: speed (g)
100,000
Density cushion
Density medium
Iodixanol
Sample volume
36
Cushion volume
2
Density of the cushion
60%
Centrifugation time
180
Centrifugation speed
100,000
Characterization: Protein analysis
Protein Concentration Method
Pierce 660 nm assay
Western Blot
Detected EV-associated proteins
Syntenin-1/ ANXA2/ ITGB1/ KRT10
Not detected contaminants
Calreticulin
Detected contaminants
Albumin
Not detected contaminants
Lamins/ Caspases
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
125.3
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 1.20E+06
|
||||||||
EV230370 | 8/8 | Sus scrofa | Primary retinal pigmented epithelial cells |
DC DG (d)(U)C UF |
Hernandez, Belinda J. | 2023 | 75% | |
Study summaryFull title
All authors
Belinda J. Hernandez, Nikolai P. Skiba, Karolina Plössl, Madison Strain, Yutao Liu, Daniel Grigsby, Una Kelly, Martha A. Cady, Vikram Manocha, Arvydas Maminishkis, TeddiJo Watkins, Sheldon S. Miller, Allison Ashley-Koch, W. Daniel Stamer, Bernhard H. F. Weber, Catherine Bowes Rickman, Mikael Klingeborn
Journal
J Extracell Biol
Abstract
The retinal pigmented epithelium (RPE) constitutes the outer blood-retinal barrier, enables photorec (show more...)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
0.2mM H2O2
Focus vesicles
small extracellular vesicle
Separation protocol
Separation protocol
Density cushion
Density gradient (Differential) (ultra)centrifugation Ultrafiltration Protein markers
EV: Syntenin-1/ ANXA2/ ITGB1
non-EV: Calreticulin/ Albumin/ Lamins/ Caspases Proteomics
yes
EV density (g/ml)
1.07-1.11
Show all info
Study aim
Biogenesis/cargo sorting/Identification of content (omics approaches)
Sample
Species
Sus scrofa
Sample Type
Cell culture supernatant
EV-producing cells
Primary retinal pigmented epithelial cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
99
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
3
Orientation
Bottom-up
Speed (g)
200,000
Duration (min)
240
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
12
Pelleting: speed (g)
100,000
Density cushion
Density medium
Iodixanol
Sample volume
36
Cushion volume
2
Density of the cushion
60%
Centrifugation time
180
Centrifugation speed
100,000
Characterization: Protein analysis
Protein Concentration Method
Pierce 660 nm assay
Western Blot
Detected EV-associated proteins
Syntenin-1/ ANXA2/ ITGB1/ KRT10
Not detected contaminants
Calreticulin
Detected contaminants
Albumin
Not detected contaminants
Lamins/ Caspases
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
143.2
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 3.80E+06
|
||||||||
EV230370 | 1/8 | Homo sapiens | iPSC-derived retinal pigmented epithelial cells |
DC DG (d)(U)C UF |
Hernandez, Belinda J. | 2023 | 50% | |
Study summaryFull title
All authors
Belinda J. Hernandez, Nikolai P. Skiba, Karolina Plössl, Madison Strain, Yutao Liu, Daniel Grigsby, Una Kelly, Martha A. Cady, Vikram Manocha, Arvydas Maminishkis, TeddiJo Watkins, Sheldon S. Miller, Allison Ashley-Koch, W. Daniel Stamer, Bernhard H. F. Weber, Catherine Bowes Rickman, Mikael Klingeborn
Journal
J Extracell Biol
Abstract
The retinal pigmented epithelium (RPE) constitutes the outer blood-retinal barrier, enables photorec (show more...)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
small extracellular vesicle
Separation protocol
Separation protocol
Density cushion
Density gradient (Differential) (ultra)centrifugation Ultrafiltration Protein markers
EV: None
non-EV: None Proteomics
yes
EV density (g/ml)
1.07-1.11
Show all info
Study aim
Biogenesis/cargo sorting/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
iPSC-derived retinal pigmented epithelial cells
EV-harvesting Medium
Serum free medium
Cell viability (%)
99
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
3
Orientation
Bottom-up
Speed (g)
200,000
Duration (min)
240
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
12
Pelleting: speed (g)
100,000
Density cushion
Density medium
Iodixanol
Sample volume
36
Cushion volume
2
Density of the cushion
60%
Centrifugation time
180
Centrifugation speed
100,000
Characterization: Protein analysis
Protein Concentration Method
Pierce 660 nm assay
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
Extra information
Proteomic data sets will be uploaded to publilcy available databases as aprtt of the publication process.
|
||||||||
EV230370 | 2/8 | Homo sapiens | iPSC-derived retinal pigmented epithelial cells |
DC DG (d)(U)C UF |
Hernandez, Belinda J. | 2023 | 50% | |
Study summaryFull title
All authors
Belinda J. Hernandez, Nikolai P. Skiba, Karolina Plössl, Madison Strain, Yutao Liu, Daniel Grigsby, Una Kelly, Martha A. Cady, Vikram Manocha, Arvydas Maminishkis, TeddiJo Watkins, Sheldon S. Miller, Allison Ashley-Koch, W. Daniel Stamer, Bernhard H. F. Weber, Catherine Bowes Rickman, Mikael Klingeborn
Journal
J Extracell Biol
Abstract
The retinal pigmented epithelium (RPE) constitutes the outer blood-retinal barrier, enables photorec (show more...)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Low genetic disease (Age-related macular degeneration) risk cell lines
Focus vesicles
small extracellular vesicle
Separation protocol
Separation protocol
Density cushion
Density gradient (Differential) (ultra)centrifugation Ultrafiltration Protein markers
EV: None
non-EV: None Proteomics
yes
EV density (g/ml)
1.07-1.11
Show all info
Study aim
Biogenesis/cargo sorting/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
iPSC-derived retinal pigmented epithelial cells
EV-harvesting Medium
Serum free medium
Cell viability (%)
99
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
3
Orientation
Bottom-up
Speed (g)
200,000
Duration (min)
240
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
12
Pelleting: speed (g)
100,000
Density cushion
Density medium
Iodixanol
Sample volume
36
Cushion volume
2
Density of the cushion
60%
Centrifugation time
180
Centrifugation speed
100,000
Characterization: Protein analysis
Protein Concentration Method
Pierce 660 nm assay
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
|
||||||||
EV230370 | 3/8 | Homo sapiens | iPSC-derived retinal pigmented epithelial cells |
DC DG (d)(U)C UF |
Hernandez, Belinda J. | 2023 | 50% | |
Study summaryFull title
All authors
Belinda J. Hernandez, Nikolai P. Skiba, Karolina Plössl, Madison Strain, Yutao Liu, Daniel Grigsby, Una Kelly, Martha A. Cady, Vikram Manocha, Arvydas Maminishkis, TeddiJo Watkins, Sheldon S. Miller, Allison Ashley-Koch, W. Daniel Stamer, Bernhard H. F. Weber, Catherine Bowes Rickman, Mikael Klingeborn
Journal
J Extracell Biol
Abstract
The retinal pigmented epithelium (RPE) constitutes the outer blood-retinal barrier, enables photorec (show more...)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
High genetic disease (Age-related macular degeneration) risk cell lines
Focus vesicles
small extracellular vesicle
Separation protocol
Separation protocol
Density cushion
Density gradient (Differential) (ultra)centrifugation Ultrafiltration Protein markers
EV: None
non-EV: None Proteomics
yes
EV density (g/ml)
1.07-1.11
Show all info
Study aim
Biogenesis/cargo sorting/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
iPSC-derived retinal pigmented epithelial cells
EV-harvesting Medium
Serum free medium
Cell viability (%)
99
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
3
Orientation
Bottom-up
Speed (g)
200,000
Duration (min)
240
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
12
Pelleting: speed (g)
100,000
Density cushion
Density medium
Iodixanol
Sample volume
36
Cushion volume
2
Density of the cushion
60%
Centrifugation time
180
Centrifugation speed
100,000
Characterization: Protein analysis
Protein Concentration Method
Pierce 660 nm assay
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
|
||||||||
EV230370 | 4/8 | Homo sapiens | Primary fetal retinal pigmented epithelial cells | (d)(U)C | Hernandez, Belinda J. | 2023 | 14% | |
Study summaryFull title
All authors
Belinda J. Hernandez, Nikolai P. Skiba, Karolina Plössl, Madison Strain, Yutao Liu, Daniel Grigsby, Una Kelly, Martha A. Cady, Vikram Manocha, Arvydas Maminishkis, TeddiJo Watkins, Sheldon S. Miller, Allison Ashley-Koch, W. Daniel Stamer, Bernhard H. F. Weber, Catherine Bowes Rickman, Mikael Klingeborn
Journal
J Extracell Biol
Abstract
The retinal pigmented epithelium (RPE) constitutes the outer blood-retinal barrier, enables photorec (show more...)
EV-METRIC
14% (43rd percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
small extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: None
non-EV: None Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Primary fetal retinal pigmented epithelial cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
99
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: rotor type
SW 28
Pelleting: speed (g)
100,000
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Protein Yield (µg)
particles per milliliter of starting sample: 2.50E+06
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
125
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 2.50E+06
|
||||||||
EV230370 | 5/8 | Homo sapiens | Primary fetal retinal pigmented epithelial cells | (d)(U)C | Hernandez, Belinda J. | 2023 | 14% | |
Study summaryFull title
All authors
Belinda J. Hernandez, Nikolai P. Skiba, Karolina Plössl, Madison Strain, Yutao Liu, Daniel Grigsby, Una Kelly, Martha A. Cady, Vikram Manocha, Arvydas Maminishkis, TeddiJo Watkins, Sheldon S. Miller, Allison Ashley-Koch, W. Daniel Stamer, Bernhard H. F. Weber, Catherine Bowes Rickman, Mikael Klingeborn
Journal
J Extracell Biol
Abstract
The retinal pigmented epithelium (RPE) constitutes the outer blood-retinal barrier, enables photorec (show more...)
EV-METRIC
14% (43rd percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
4 uM GW4869 treatment
Focus vesicles
small extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: None
non-EV: None Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Primary fetal retinal pigmented epithelial cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
99
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: rotor type
SW 28
Pelleting: speed (g)
100,000
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Protein Yield (µg)
particles per milliliter of starting sample: 1.20E+06
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
119.5
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 1.20E+06
|
||||||||
EV230370 | 6/8 | Homo sapiens | Primary fetal retinal pigmented epithelial cells | (d)(U)C | Hernandez, Belinda J. | 2023 | 14% | |
Study summaryFull title
All authors
Belinda J. Hernandez, Nikolai P. Skiba, Karolina Plössl, Madison Strain, Yutao Liu, Daniel Grigsby, Una Kelly, Martha A. Cady, Vikram Manocha, Arvydas Maminishkis, TeddiJo Watkins, Sheldon S. Miller, Allison Ashley-Koch, W. Daniel Stamer, Bernhard H. F. Weber, Catherine Bowes Rickman, Mikael Klingeborn
Journal
J Extracell Biol
Abstract
The retinal pigmented epithelium (RPE) constitutes the outer blood-retinal barrier, enables photorec (show more...)
EV-METRIC
14% (43rd percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
20 uM GW4869 treatment
Focus vesicles
small extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: None
non-EV: None Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Primary fetal retinal pigmented epithelial cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
99
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: rotor type
SW 28
Pelleting: speed (g)
100,000
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Protein Yield (µg)
particles per milliliter of starting sample: 6.00E+05
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
113.2
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 6.00E+05
|
||||||||
1 - 8 of 8 |
EV-TRACK ID | EV230370 | |||||||
---|---|---|---|---|---|---|---|---|
species | Sus scrofa | Sus scrofa | Homo sapiens | Homo sapiens | Homo sapiens | Homo sapiens | Homo sapiens | Homo sapiens |
sample type | Cell culture | Cell culture | Cell culture | Cell culture | Cell culture | Cell culture | Cell culture | Cell culture |
cell type | Primary retinal pigmented epithelial cells | Primary retinal pigmented epithelial cells | iPSC-derived retinal pigmented epithelial cells | iPSC-derived retinal pigmented epithelial cells | iPSC-derived retinal pigmented epithelial cells | Primary fetal retinal pigmented epithelial cells | Primary fetal retinal pigmented epithelial cells | Primary fetal retinal pigmented epithelial cells |
medium | EV-depleted medium | EV-depleted medium | Serum free medium | Serum free medium | Serum free medium | EV-depleted medium | EV-depleted medium | EV-depleted medium |
condition | Control condition | 0.2mM H2O2 | Control condition | Low genetic disease (Age-related macular degeneration) risk cell lines | High genetic disease (Age-related macular degeneration) risk cell lines | Control condition | 4 uM GW4869 treatment | 20 uM GW4869 treatment |
separation protocol | DC/ Density gradient/ dUC/ Ultrafiltration | DC/ Density gradient/ dUC/ Ultrafiltration | DC/ Density gradient/ dUC/ Ultrafiltration | DC/ Density gradient/ dUC/ Ultrafiltration | DC/ Density gradient/ dUC/ Ultrafiltration | dUC | dUC | dUC |
Exp. nr. | 7 | 8 | 1 | 2 | 3 | 4 | 5 | 6 |
EV-METRIC % | 75 | 75 | 50 | 50 | 50 | 14 | 14 | 14 |