Search > Results

You searched for: EV220369 (EV-TRACK ID)

Showing 1 - 5 of 5

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV220369 1/5 Homo sapiens Blood plasma (d)(U)C Lapin M 2023 78%

Study summary

Full title
All authors
Lapin M, Tjensvoll K, Nedrebø K, Taksdal E, Janssen H, Gilje B, Nordgård O
Journal
PLoS One
Abstract
Tumor-derived extracellular vesicles (EVs) are reported to contain nucleic acids, including DNA. Sev (show more...)Tumor-derived extracellular vesicles (EVs) are reported to contain nucleic acids, including DNA. Several studies have highlighted the potential of EV-derived DNA (evDNA) as a circulating biomarker, even demonstrating that evDNA can outperform cell-free DNA (cfDNA) in terms of sensitivity. Here, we evaluated EVs as a potential source of tumor-derived DNA in patients with advanced pancreatic cancer. evDNA from both DNase-treated and untreated EV samples was analyzed to determine whether the DNA was primarily located internally or outside (surface-bound) the EVs. To assess whether methodology affected the results, we isolated EVs using four different methods for small EV isolation and differential centrifugation for isolating large EVs. Our results indicated that the DNA content of EVs was significantly less than the cfDNA content isolated from the same plasma volume (p < 0.001). Most of the detected evDNA was also located on the outside of the vesicles. Furthermore, the fraction of tumor-derived DNA in EVs was similar to that found in cfDNA. In conclusion, our results suggest that quantification of evDNA, as a source of tumor-derived DNA, does not add information to that obtained with cfDNA, at least not in patients with advanced pancreatic cancer. (hide)
EV-METRIC
78% (98th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: CD9/ CD63/ CD81/ TSG101
non-EV: ApoA1
Proteomics
no
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
20
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
per milliliter of starting sample
Western Blot
Detected EV-associated proteins
CD9/ CD63/ CD81/ TSG101
Detected contaminants
ApoA1
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Size range/distribution
Reported size (nm)
1-10000
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
Equal or larger than 200nm
EV220369 2/5 Homo sapiens Blood plasma (d)(U)C
Filtration
qEV
UF
Lapin M 2023 78%

Study summary

Full title
All authors
Lapin M, Tjensvoll K, Nedrebø K, Taksdal E, Janssen H, Gilje B, Nordgård O
Journal
PLoS One
Abstract
Tumor-derived extracellular vesicles (EVs) are reported to contain nucleic acids, including DNA. Sev (show more...)Tumor-derived extracellular vesicles (EVs) are reported to contain nucleic acids, including DNA. Several studies have highlighted the potential of EV-derived DNA (evDNA) as a circulating biomarker, even demonstrating that evDNA can outperform cell-free DNA (cfDNA) in terms of sensitivity. Here, we evaluated EVs as a potential source of tumor-derived DNA in patients with advanced pancreatic cancer. evDNA from both DNase-treated and untreated EV samples was analyzed to determine whether the DNA was primarily located internally or outside (surface-bound) the EVs. To assess whether methodology affected the results, we isolated EVs using four different methods for small EV isolation and differential centrifugation for isolating large EVs. Our results indicated that the DNA content of EVs was significantly less than the cfDNA content isolated from the same plasma volume (p < 0.001). Most of the detected evDNA was also located on the outside of the vesicles. Furthermore, the fraction of tumor-derived DNA in EVs was similar to that found in cfDNA. In conclusion, our results suggest that quantification of evDNA, as a source of tumor-derived DNA, does not add information to that obtained with cfDNA, at least not in patients with advanced pancreatic cancer. (hide)
EV-METRIC
78% (98th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Commercial method
Ultrafiltration
Protein markers
EV: CD9/ CD63/ CD81/ TSG101
non-EV: ApoA1
Proteomics
no
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Filtration steps
Larger than 0.45 µm
Ultra filtration
Cut-off size (kDa)
100 kDa
Membrane type
Regenerated cellulose
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
per milliliter of starting sample
Western Blot
Detected EV-associated proteins
CD9/ CD63/ CD81/ TSG101
Detected contaminants
ApoA1
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Size range/distribution
Reported size (nm)
1-10000
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
Below or equal to 200nm
EV220369 3/5 Homo sapiens Blood plasma (d)(U)C
Filtration
ExoEasy
Lapin M 2023 78%

Study summary

Full title
All authors
Lapin M, Tjensvoll K, Nedrebø K, Taksdal E, Janssen H, Gilje B, Nordgård O
Journal
PLoS One
Abstract
Tumor-derived extracellular vesicles (EVs) are reported to contain nucleic acids, including DNA. Sev (show more...)Tumor-derived extracellular vesicles (EVs) are reported to contain nucleic acids, including DNA. Several studies have highlighted the potential of EV-derived DNA (evDNA) as a circulating biomarker, even demonstrating that evDNA can outperform cell-free DNA (cfDNA) in terms of sensitivity. Here, we evaluated EVs as a potential source of tumor-derived DNA in patients with advanced pancreatic cancer. evDNA from both DNase-treated and untreated EV samples was analyzed to determine whether the DNA was primarily located internally or outside (surface-bound) the EVs. To assess whether methodology affected the results, we isolated EVs using four different methods for small EV isolation and differential centrifugation for isolating large EVs. Our results indicated that the DNA content of EVs was significantly less than the cfDNA content isolated from the same plasma volume (p < 0.001). Most of the detected evDNA was also located on the outside of the vesicles. Furthermore, the fraction of tumor-derived DNA in EVs was similar to that found in cfDNA. In conclusion, our results suggest that quantification of evDNA, as a source of tumor-derived DNA, does not add information to that obtained with cfDNA, at least not in patients with advanced pancreatic cancer. (hide)
EV-METRIC
78% (98th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Commercial method
Protein markers
EV: CD9/ CD63/ CD81/ TSG101
non-EV: ApoA1
Proteomics
no
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Filtration steps
Larger than 0.45 µm
Commercial kit
ExoEasy
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
per milliliter of starting sample
Western Blot
Detected EV-associated proteins
CD9/ CD63/ CD81/ TSG101
Detected contaminants
ApoA1
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Size range/distribution
Reported size (nm)
1-10000
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
Below or equal to 200nm
EV220369 5/5 Homo sapiens Blood plasma (d)(U)C
Filtration
Lapin M 2023 78%

Study summary

Full title
All authors
Lapin M, Tjensvoll K, Nedrebø K, Taksdal E, Janssen H, Gilje B, Nordgård O
Journal
PLoS One
Abstract
Tumor-derived extracellular vesicles (EVs) are reported to contain nucleic acids, including DNA. Sev (show more...)Tumor-derived extracellular vesicles (EVs) are reported to contain nucleic acids, including DNA. Several studies have highlighted the potential of EV-derived DNA (evDNA) as a circulating biomarker, even demonstrating that evDNA can outperform cell-free DNA (cfDNA) in terms of sensitivity. Here, we evaluated EVs as a potential source of tumor-derived DNA in patients with advanced pancreatic cancer. evDNA from both DNase-treated and untreated EV samples was analyzed to determine whether the DNA was primarily located internally or outside (surface-bound) the EVs. To assess whether methodology affected the results, we isolated EVs using four different methods for small EV isolation and differential centrifugation for isolating large EVs. Our results indicated that the DNA content of EVs was significantly less than the cfDNA content isolated from the same plasma volume (p < 0.001). Most of the detected evDNA was also located on the outside of the vesicles. Furthermore, the fraction of tumor-derived DNA in EVs was similar to that found in cfDNA. In conclusion, our results suggest that quantification of evDNA, as a source of tumor-derived DNA, does not add information to that obtained with cfDNA, at least not in patients with advanced pancreatic cancer. (hide)
EV-METRIC
78% (98th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Pancreatic Cancer
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100,000
Wash: volume per pellet (ml)
32
Wash: time (min)
70
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100,000
Filtration steps
Larger than 0.45 µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD9/ CD63/ CD81/ TSG101
Detected contaminants
ApoA1
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Size range/distribution
Reported size (nm)
1-10000
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
Below or equal to 200nm
EV220369 4/5 Homo sapiens Blood plasma (d)(U)C
Filtration
Total Exosome Isolation
Lapin M 2023 56%

Study summary

Full title
All authors
Lapin M, Tjensvoll K, Nedrebø K, Taksdal E, Janssen H, Gilje B, Nordgård O
Journal
PLoS One
Abstract
Tumor-derived extracellular vesicles (EVs) are reported to contain nucleic acids, including DNA. Sev (show more...)Tumor-derived extracellular vesicles (EVs) are reported to contain nucleic acids, including DNA. Several studies have highlighted the potential of EV-derived DNA (evDNA) as a circulating biomarker, even demonstrating that evDNA can outperform cell-free DNA (cfDNA) in terms of sensitivity. Here, we evaluated EVs as a potential source of tumor-derived DNA in patients with advanced pancreatic cancer. evDNA from both DNase-treated and untreated EV samples was analyzed to determine whether the DNA was primarily located internally or outside (surface-bound) the EVs. To assess whether methodology affected the results, we isolated EVs using four different methods for small EV isolation and differential centrifugation for isolating large EVs. Our results indicated that the DNA content of EVs was significantly less than the cfDNA content isolated from the same plasma volume (p < 0.001). Most of the detected evDNA was also located on the outside of the vesicles. Furthermore, the fraction of tumor-derived DNA in EVs was similar to that found in cfDNA. In conclusion, our results suggest that quantification of evDNA, as a source of tumor-derived DNA, does not add information to that obtained with cfDNA, at least not in patients with advanced pancreatic cancer. (hide)
EV-METRIC
56% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Commercial method
Protein markers
EV: CD9/ CD63/ CD81/ TSG101
non-EV: ApoA1
Proteomics
no
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Filtration steps
Larger than 0.45 µm
Commercial kit
Total Exosome Isolation
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
per milliliter of starting sample
Western Blot
Detected EV-associated proteins
CD9/ CD63/ CD81/ TSG101
Detected contaminants
ApoA1
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Size range/distribution
Reported size (nm)
1-10000
1 - 5 of 5
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV220369
species
Homo sapiens
sample type
Blood plasma
condition
Control condition
Control condition
Control condition
Pancreatic Cancer
Control condition
separation protocol
dUC
dUC/
Filtration/ qEV/ Ultrafiltration
dUC/
Filtration/ ExoEasy
dUC/ Filtration
dUC/
Filtration/ Total
Exosome Isolation
Exp. nr.
1
2
3
5
4
EV-METRIC %
78
78
78
78
56