Search > Results

You searched for: EV210215 (EV-TRACK ID)

Showing 1 - 4 of 4

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV210215 3/4 Homo sapiens PBS spiked with recombinant EV (gag-EGFP HEK293T) DG Van Dorpe S 2023 88%

Study summary

Full title
All authors
Van Dorpe S, Lippens L, Boiy R, Pinheiro C, Vergauwen G, Rappu P, Miinalainen I, Tummers P, Denys H, De Wever O, Hendrix A
Journal
J Nanobiotechnology
Abstract
Extracellular vesicles (EV) are extensively studied in human body fluids as potential biomarkers for (show more...)Extracellular vesicles (EV) are extensively studied in human body fluids as potential biomarkers for numerous diseases. Major impediments of EV-based biomarker discovery include the specificity and reproducibility of EV sample preparation as well as intensive manual labor. We present an automated liquid handling workstation for the density-based separation of EV from human body fluids and compare its performance to manual handling by (in)experienced researchers. (hide)
EV-METRIC
88% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
PBS spiked with recombinant EV (gag-EGFP HEK293T)
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
Protein markers
EV: TSG101/ CD81/ Alix/ p24/ CD9/ syntenin-1
non-EV: None
Proteomics
no
EV density (g/ml)
1.086-1.119
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
PBS spiked with recombinant EV (gag-EGFP HEK293T)
Separation Method
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5
Highest density fraction
40
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
1
Orientation
Top-down
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Size-exclusion chromatography
Resin type
Characterization: Protein analysis
Protein Concentration Method
Not determined
Protein Yield (µg)
as percentage of spiked rEV
ELISA
Detected EV-associated proteins
p24
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
140
EV concentration
Yes
Particle yield
as percentage of spiked rEV
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
Not reported
EV210215 4/4 Homo sapiens PBS spiked with recombinant EV (gag-EGFP HEK293T) DG Van Dorpe S 2023 88%

Study summary

Full title
All authors
Van Dorpe S, Lippens L, Boiy R, Pinheiro C, Vergauwen G, Rappu P, Miinalainen I, Tummers P, Denys H, De Wever O, Hendrix A
Journal
J Nanobiotechnology
Abstract
Extracellular vesicles (EV) are extensively studied in human body fluids as potential biomarkers for (show more...)Extracellular vesicles (EV) are extensively studied in human body fluids as potential biomarkers for numerous diseases. Major impediments of EV-based biomarker discovery include the specificity and reproducibility of EV sample preparation as well as intensive manual labor. We present an automated liquid handling workstation for the density-based separation of EV from human body fluids and compare its performance to manual handling by (in)experienced researchers. (hide)
EV-METRIC
88% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
PBS spiked with recombinant EV (gag-EGFP HEK293T)
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
Protein markers
EV: TSG101/ CD81/ Alix/ p24/ CD9/ syntenin-1
non-EV: None
Proteomics
no
EV density (g/ml)
1.086-1.119
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
PBS spiked with recombinant EV (gag-EGFP HEK293T)
Separation Method
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5
Highest density fraction
40
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
1
Orientation
Bottom-up
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
0.8
Fraction processing
None
Characterization: Protein analysis
Protein Concentration Method
Not determined
ELISA
Detected EV-associated proteins
p24
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
140
EV concentration
Yes
Particle yield
as percentage of spiked rEV
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
Not reported
EV210215 1/4 Homo sapiens Blood plasma (d)(U)C
DG
UF
SEC (non-commercial)
Van Dorpe S 2023 86%

Study summary

Full title
All authors
Van Dorpe S, Lippens L, Boiy R, Pinheiro C, Vergauwen G, Rappu P, Miinalainen I, Tummers P, Denys H, De Wever O, Hendrix A
Journal
J Nanobiotechnology
Abstract
Extracellular vesicles (EV) are extensively studied in human body fluids as potential biomarkers for (show more...)Extracellular vesicles (EV) are extensively studied in human body fluids as potential biomarkers for numerous diseases. Major impediments of EV-based biomarker discovery include the specificity and reproducibility of EV sample preparation as well as intensive manual labor. We present an automated liquid handling workstation for the density-based separation of EV from human body fluids and compare its performance to manual handling by (in)experienced researchers. (hide)
EV-METRIC
86% (98th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Breast cancer
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Ultrafiltration
Size-exclusion chromatography (non-commercial)
Protein markers
EV: None
non-EV: Albumin/ ApoA1/ ApoB
Proteomics
yes
EV density (g/ml)
1.086-1.119
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
No
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5
Highest density fraction
40
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
1
Orientation
Top-down
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
15
Pelleting: speed (g)
100000
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
12
Sample volume/column (mL)
2
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay
Proteomics database
ProteomeXchange Consortium
Detected contaminants
Albumin/ ApoA1/ ApoB
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
30-150
EV210215 2/4 Homo sapiens urine (d)(U)C
DG
UF
Van Dorpe S 2023 86%

Study summary

Full title
All authors
Van Dorpe S, Lippens L, Boiy R, Pinheiro C, Vergauwen G, Rappu P, Miinalainen I, Tummers P, Denys H, De Wever O, Hendrix A
Journal
J Nanobiotechnology
Abstract
Extracellular vesicles (EV) are extensively studied in human body fluids as potential biomarkers for (show more...)Extracellular vesicles (EV) are extensively studied in human body fluids as potential biomarkers for numerous diseases. Major impediments of EV-based biomarker discovery include the specificity and reproducibility of EV sample preparation as well as intensive manual labor. We present an automated liquid handling workstation for the density-based separation of EV from human body fluids and compare its performance to manual handling by (in)experienced researchers. (hide)
EV-METRIC
86% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
urine
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Ultrafiltration
Protein markers
EV: None
non-EV: Albumin/ Tamm-Horsfall protein
Proteomics
yes
EV density (g/ml)
1.086-1.119
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5
Highest density fraction
40
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
1
Orientation
Bottom-up
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
15
Pelleting: speed (g)
100000
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
12
Sample volume/column (mL)
2
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay
Proteomics database
ProteomeXchange Consortium
Detected contaminants
Albumin/ Tamm-Horsfall protein
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
30-150
1 - 4 of 4
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV210215
species
Homo sapiens
sample type
PBS spiked
with
recombinant EV
(gag-EGFP HEK293T)
PBS spiked
with
recombinant EV
(gag-EGFP HEK293T)
Blood plasma
urine
condition
Control condition
Control condition
Breast cancer
Control condition
separation protocol
Density gradient
Density gradient
dUC/ Density
gradient/ Ultrafiltration/
Size-exclusion chromatography
(non-commercial)
dUC/
Density gradient/ Ultrafiltration
Exp. nr.
3
4
1
2
EV-METRIC %
88
88
86
86