Search > Results

You searched for: EV231018 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV231018 1/2 Homo sapiens Wharton's jelly MSC (d)(U)C
qEVsingle Gen2
Tscherrig V 2023 78%

Study summary

Full title
All authors
Tscherrig V, Cottagnoud S, Haesler V, Renz P, Surbek D, Schoeberlein A, Joerger-Messerli MS
Journal
Stem Cell Rev Rep
Abstract
Preterm birth is the leading cause of childhood morbidity and mortality and can result in white matt (show more...)Preterm birth is the leading cause of childhood morbidity and mortality and can result in white matter injury (WMI), leading to long-term neurological disabilities with global health burden. Mesenchymal stromal cell-derived small extracellular vesicles (MSC-sEV) are a promising therapeutic agent for treating perinatal neurological injury. They carry microRNAs (miRNAs) predicted to be involved in the onset of premature WMI. We hypothesize that miRNAs have a key function in the beneficial effects of MSC-sEV. We isolated MSC from umbilical cord tissue, the Wharton's jelly (WJ), and purified small extracellular vesicles (sEV) from WJ-MSC culture supernatant by ultracentrifugation and size exclusion chromatography. The miRNA content was quantified by real-time polymerase chain reaction. A luciferase gene assay validated silencing of TP53 and TAOK1, which we previously identified as predicted target genes of MSC-sEV miRNAs by Next Generation Sequencing and pathway enrichment analysis. The impact of sEV miRNAs on oligodendroglial maturation and neuronal apoptosis was evaluated using an in vitro oxygen-glucose deprivation model (OGD/R) by knocking-down DROSHA in WJ-MSC, which initiates miRNA processing. WJ-MSC-sEV contained miRNAs involved in WMI, namely hsa-miR-22-3p, hsa-miR-21-5p, hsa-miR-27b-3p, and the hsa-let-7 family. The luciferase assay strongly indicated an inhibitory effect of sEV miRNAs on the gene expression of TP53 and TAOK1. Small EV initiated oligodendrocyte maturation and reduced OGD/R-mediated neuronal apoptosis. Knocking-down DROSHA in WJ-MSC reduced the expression of sEV miRNAs and led to the loss of their beneficial effects. Our in vitro study strongly indicates the key function of miRNAs in the therapeutic potential of WJ-MSC-sEV in premature WMI. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Commercial method
Protein markers
EV: CD63/ CD81/ Syntenin/ CD9
non-EV: GM130/ Calnexin
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Wharton's jelly MSC
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
TLA-100.3
Pelleting: speed (g)
110000
Wash: volume per pellet (ml)
1.5
Wash: time (min)
70
Wash: Rotor Type
TLA-100.3
Wash: speed (g)
110000
Commercial kit
qEVsingle Gen2
Characterization: Protein analysis
Protein Concentration Method
NanoView Spectrometry
Protein Yield (µg)
per microliter of recovered sample
Western Blot
Detected EV-associated proteins
CD63/ CD81/ Syntenin
Not detected contaminants
GM130/ Calnexin
Detected EV-associated proteins
CD9/ CD63/ CD81
Characterization: RNA analysis
RNA analysis
Type
(RT)-(q)PCR
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
148
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 4.00E+10
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV231018 2/2 Homo sapiens Wharton's jelly MSC (d)(U)C
qEVsingle Gen2
Tscherrig V 2023 78%

Study summary

Full title
All authors
Tscherrig V, Cottagnoud S, Haesler V, Renz P, Surbek D, Schoeberlein A, Joerger-Messerli MS
Journal
Stem Cell Rev Rep
Abstract
Preterm birth is the leading cause of childhood morbidity and mortality and can result in white matt (show more...)Preterm birth is the leading cause of childhood morbidity and mortality and can result in white matter injury (WMI), leading to long-term neurological disabilities with global health burden. Mesenchymal stromal cell-derived small extracellular vesicles (MSC-sEV) are a promising therapeutic agent for treating perinatal neurological injury. They carry microRNAs (miRNAs) predicted to be involved in the onset of premature WMI. We hypothesize that miRNAs have a key function in the beneficial effects of MSC-sEV. We isolated MSC from umbilical cord tissue, the Wharton's jelly (WJ), and purified small extracellular vesicles (sEV) from WJ-MSC culture supernatant by ultracentrifugation and size exclusion chromatography. The miRNA content was quantified by real-time polymerase chain reaction. A luciferase gene assay validated silencing of TP53 and TAOK1, which we previously identified as predicted target genes of MSC-sEV miRNAs by Next Generation Sequencing and pathway enrichment analysis. The impact of sEV miRNAs on oligodendroglial maturation and neuronal apoptosis was evaluated using an in vitro oxygen-glucose deprivation model (OGD/R) by knocking-down DROSHA in WJ-MSC, which initiates miRNA processing. WJ-MSC-sEV contained miRNAs involved in WMI, namely hsa-miR-22-3p, hsa-miR-21-5p, hsa-miR-27b-3p, and the hsa-let-7 family. The luciferase assay strongly indicated an inhibitory effect of sEV miRNAs on the gene expression of TP53 and TAOK1. Small EV initiated oligodendrocyte maturation and reduced OGD/R-mediated neuronal apoptosis. Knocking-down DROSHA in WJ-MSC reduced the expression of sEV miRNAs and led to the loss of their beneficial effects. Our in vitro study strongly indicates the key function of miRNAs in the therapeutic potential of WJ-MSC-sEV in premature WMI. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DROSHA siRNA modified
Focus vesicles
small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Commercial method
Protein markers
EV: CD63/ CD81/ Syntenin
non-EV: GM130/ Calnexin
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Wharton's jelly MSC
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
TLA-100.3
Pelleting: speed (g)
110000
Wash: volume per pellet (ml)
1.5
Wash: time (min)
70
Wash: Rotor Type
TLA-100.3
Wash: speed (g)
110000
Commercial kit
qEVsingle Gen2
Characterization: Protein analysis
Protein Concentration Method
NanoView Spectrometry
Protein Yield (µg)
per microliter of recovered sample
Western Blot
Detected EV-associated proteins
CD63/ CD81/ Syntenin
Not detected contaminants
GM130/ Calnexin
Characterization: RNA analysis
RNA analysis
Type
(RT)-(q)PCR
Proteinase treatment
Yes
Moment of Proteinase treatment
After
Proteinase type
Proteinase K
Proteinase concentration
2000
RNAse treatment
Yes
RNAse type
RNase A
RNAse concentration
0.02
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
148
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 4.00E+10
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV231018
species
Homo sapiens
sample type
Cell culture
cell type
Wharton's jelly MSC
condition
Control condition
DROSHA
siRNA modified
separation protocol
dUC/ qEVsingle Gen2
dUC/ qEVsingle Gen2
Exp. nr.
1
2
EV-METRIC %
78
78