Search > Results

You searched for: 2014 (Year of publication)

Showing 201 - 250 of 681

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Experiment number
  • Experiments differ in Sample type/Isolation method
Experiment number
  • Experiments differ in Sample type/Vesicle type
Experiment number
  • Experiments differ in Sample type/Vesicle type
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Sample type/Isolation method
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Sample type/Isolation method
Experiment number
  • Experiments differ in Sample type/Isolation method
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Sample type/Isolation method
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Sample type
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV140193 3/3 Homo sapiens Semen (d)(U)C
DG
Filtration
Madison MN 2014 29%

Study summary

Full title
All authors
Madison MN, Roller RJ, Okeoma CM
Journal
Retrovirology
Abstract
BACKGROUND: Exosomes are membranous nanovesicles secreted into the extracellular milieu by diverse c (show more...)BACKGROUND: Exosomes are membranous nanovesicles secreted into the extracellular milieu by diverse cell types. Exosomes facilitate intercellular communication, modulate cellular pheno/genotype, and regulate microbial pathogenesis. Although human semen contains exosomes, their role in regulating infection with viruses that are sexually transmitted remains unknown. In this study, we used semen exosomes purified from healthy human donors to evaluate the role of exosomes on the infectivity of different strains of HIV-1 in a variety of cell lines. RESULTS: We show that human semen contains a heterologous population of exosomes, enriched in mRNA encoding tetraspanin exosomal markers and various antiviral factors. Semen exosomes are internalized by recipient cells and upon internalization, inhibit replication of a broad array of HIV-1 strains. Remarkably, the anti-HIV-1 activity of semen exosomes is specific to retroviruses because semen exosomes blocked replication of the murine AIDS (mAIDS) virus complex (LP-BM5). However, exosomes from blood had no effect on HIV-1 or LP-BM5 replication. Additionally, semen and blood exosomes had no effect on replication of herpes simplex virus; types 1 and 2 (HSV1 and HSV2). Mechanistic studies indicate that semen exosomes exert a post-entry block on HIV-1 replication by orchestrating deleterious effects on particle-associated reverse transcriptase activity and infectivity. CONCLUSIONS: These illuminating findings i) improve our knowledge of the cargo of semen exosomes, ii) reveal that semen exosomes possess anti-retroviral activity, and iii) suggest that semen exosome-mediated inhibition of HIV-1 replication may provide novel opportunities for the development of new therapeutics for HIV-1. (hide)
EV-METRIC
29% (56th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Semen
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
Filtration
Adj. k-factor
255.8 (pelleting)
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Semen
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
SW41
Pelleting: adjusted k-factor
255.8
Density gradient
Lowest density fraction
0.25
Highest density fraction
2.5
Orientation
Bottom-up
Speed (g)
100000
Filtration steps
0.45µm > x > 0.22µm,
EV140268 5/6 Homo sapiens NAY (d)(U)C
Filtration
Lázaro-Ibáñez E 2014 29%

Study summary

Full title
All authors
Lázaro-Ibáñez E, Sanz-Garcia A, Visakorpi T, Escobedo-Lucea C, Siljander P, Ayuso-Sacido A, Yliperttula M
Journal
Prostate
Abstract
BACKGROUND: Extracellular vesicles (EVs) are cell-derived membrane vesicles. EVs contain several RNA (show more...)BACKGROUND: Extracellular vesicles (EVs) are cell-derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of their genomic DNA (gDNA) content. It is also unknown whether the DNA cargo is randomly sorted or if it is systematically packed into specific EV subpopulations. The aim of this study was to analyze whether different prostate cancer (PCa) cell-derived EV subpopulations (apoptotic bodies, microvesicles, and exosomes) carry different gDNA fragments. METHODS: EV subpopulations were isolated from three PCa cell lines (LNCaP, PC-3, and RC92a/hTERT) and the plasma of PCa patients and healthy donors, and characterized by transmission electron microscopy, nanoparticle tracking analysis and total protein content. gDNA fragments of different genes were detected by real time quantitative PCR and confirmed by DNA sequencing. RESULTS: We report that the concentration of EVs was higher in the cancer patients than in the healthy controls. EV subpopulations differed from each other in terms of total protein and DNA content. Analysis of gDNA fragments of MLH1, PTEN, and TP53 genes from the PCa cell-derived EV subpopulations showed that different EVs carried different gDNA content, which could even harbor specific mutations. Altogether, these results suggest that both nucleic acids and proteins are selectively and cell-dependently packed into the EV subtypes. CONCLUSIONS: EVs derived from PCa cell lines and human plasma samples contain double-stranded gDNA fragments which could be used to detect specific mutations, making EVs potential biomarkers for cancer diagnostics and prognostics. (hide)
EV-METRIC
29% (68th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes / microvesicles / extracellular vesicles / "Apo
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Adj. k-factor
142.9 (pelleting)
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
50.2Ti
Pelleting: adjusted k-factor
142.9
Filtration steps
0.22µm or 0.2µm
Characterization: Particle analysis
NTA
EM
EM-type
transmission EM
Image type
Close-up
EV140268 6/6 Homo sapiens Blood plasma (d)(U)C
Filtration
Lázaro-Ibáñez E 2014 29%

Study summary

Full title
All authors
Lázaro-Ibáñez E, Sanz-Garcia A, Visakorpi T, Escobedo-Lucea C, Siljander P, Ayuso-Sacido A, Yliperttula M
Journal
Prostate
Abstract
BACKGROUND: Extracellular vesicles (EVs) are cell-derived membrane vesicles. EVs contain several RNA (show more...)BACKGROUND: Extracellular vesicles (EVs) are cell-derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of their genomic DNA (gDNA) content. It is also unknown whether the DNA cargo is randomly sorted or if it is systematically packed into specific EV subpopulations. The aim of this study was to analyze whether different prostate cancer (PCa) cell-derived EV subpopulations (apoptotic bodies, microvesicles, and exosomes) carry different gDNA fragments. METHODS: EV subpopulations were isolated from three PCa cell lines (LNCaP, PC-3, and RC92a/hTERT) and the plasma of PCa patients and healthy donors, and characterized by transmission electron microscopy, nanoparticle tracking analysis and total protein content. gDNA fragments of different genes were detected by real time quantitative PCR and confirmed by DNA sequencing. RESULTS: We report that the concentration of EVs was higher in the cancer patients than in the healthy controls. EV subpopulations differed from each other in terms of total protein and DNA content. Analysis of gDNA fragments of MLH1, PTEN, and TP53 genes from the PCa cell-derived EV subpopulations showed that different EVs carried different gDNA content, which could even harbor specific mutations. Altogether, these results suggest that both nucleic acids and proteins are selectively and cell-dependently packed into the EV subtypes. CONCLUSIONS: EVs derived from PCa cell lines and human plasma samples contain double-stranded gDNA fragments which could be used to detect specific mutations, making EVs potential biomarkers for cancer diagnostics and prognostics. (hide)
EV-METRIC
29% (60th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
NAY
Focus vesicles
exosomes / microvesicles / extracellular vesicles / "Apo
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Adj. k-factor
142.9 (pelleting)
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
50.2Ti
Pelleting: adjusted k-factor
142.9
Filtration steps
0.22µm or 0.2µm
Characterization: Particle analysis
NTA
EM
EM-type
transmission EM
Image type
Wide-field
EV140275 1/2 Homo sapiens NAY (d)(U)C
Filtration
Jella KK 2014 29%

Study summary

Full title
All authors
Jella KK, Rani S, O'Driscoll L, McClean B, Byrne HJ, Lyng FM
Journal
Radiat Res
Abstract
There is much evidence supporting the existence of bystander effects in cells that were never expose (show more...)There is much evidence supporting the existence of bystander effects in cells that were never exposed to radiation. Directly irradiated cells and bystander cells can communicate with each other using gap junctional intercellular communication or by releasing soluble factors into the surrounding medium. Exosomes and microvesicles are also known to mediate communication between cells. The main aim of this study is to establish whether exosomes and microvesicles are involved in radiation induced bystander signaling. Human keratinocytes, HaCaT cells, were irradiated (0.005, 0.05 and 0.5 Gy) using ? rays produced from a cobalt 60 teletherapy unit. After irradiation, the cells were incubated for 1 h and the irradiated cell conditioned medium (ICCM) was harvested. Exosomes were isolated from the ICCM using ultracentrifugation. Exosomes were characterized using light scattering analysis (LSA) and scanning transmission electron microscopy (STEM). Cytotoxicity and reactive oxygen species assays and real time calcium imaging were performed either with ICCM from which exosomes and microvesicles were removed or with the exosome fraction resuspended in cell culture media. The characterization data showed a particle size distribution indicative of both exosomes (30-100 nm) and microvesicles (>100 nm) and the light scattering analysis showed increased concentration of both exosomes and microvesicles with increasing dose. Western blotting confirmed the presence of an exosomal protein marker, TSG 101. Treatment of unirradiated cells with ICCM in which exosomes and microvesicles were removed resulted in abrogation of ICCM induced effects such as reduction in viability, calcium influx and production of reactive oxygen species. Addition of exosomes to fresh media produced similar effects to complete ICCM. These results suggest a role for exosomes and microvesicles in radiation induced bystander signaling. (hide)
EV-METRIC
29% (68th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Adj. k-factor
126.8 (pelleting) / 126.8 (washing)
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
80Ti
Pelleting: adjusted k-factor
126.8
Wash: Rotor Type
80Ti
Wash: adjusted k-factor
126.8
Filtration steps
0.22µm or 0.2µm
Characterization: Particle analysis
NTA
EM
EM-type
transmission EM
Image type
Wide-field
EV140167 1/1 Mus musculus NAY (d)(U)C Hu L 2014 29%

Study summary

Full title
All authors
Hu L, Wickline SA, Hood JL
Journal
Magn Reson Med
Abstract
PURPOSE: Exosomes are cell derived extracellular nanovesicles that relay molecular signals pertinent (show more...)PURPOSE: Exosomes are cell derived extracellular nanovesicles that relay molecular signals pertinent to both normal physiologic and disease processes. The ability to modify and track exosomes in vivo is essential to understanding exosome pathogenesis, and for utilizing exosomes as effective diagnostic and therapeutic nanocarriers to treat diseases. METHODS: We recently reported a new electroporation method that allow exosomes to be loaded with superparamagnetic iron oxide nanoparticles for magnetic resonance tracking. RESULTS: Building on this approach, we now demonstrate for the first time using a C57BL/6 mouse model that melanoma exosomes can be imaged in vitro, and within lymph nodes in vivo with the use of standard MRI approaches. CONCLUSION: These findings demonstrate proof of principle that exosome biology can be followed in vivo and pave the way for the development of future diagnostic and therapeutic applications. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc. (hide)
EV-METRIC
29% (68th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Adj. k-factor
156.9 (pelleting)
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Technical
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
70Ti
Pelleting: adjusted k-factor
156.9
Characterization: Particle analysis
DLS
EM
EM-type
transmission EM
EV140266 5/6 Homo sapiens NAY (d)(U)C
Filtration
Chevillet JR 2014 29%

Study summary

Full title
All authors
Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, Cheng HH, Arroyo JD, Meredith EK, Gallichotte EN, Pogosova-Agadjanyan EL, Morrissey C, Stirewalt DL, Hladik F, Yu EY, Higano CS, Tewari M
Journal
Proc Natl Acad Sci U S A
Abstract
Exosomes have been proposed as vehicles for microRNA (miRNA) -based intercellular communication and (show more...)Exosomes have been proposed as vehicles for microRNA (miRNA) -based intercellular communication and a source of miRNA biomarkers in bodily fluids. Although exosome preparations contain miRNAs, a quantitative analysis of their abundance and stoichiometry is lacking. In the course of studying cancer-associated extracellular miRNAs in patient blood samples, we found that exosome fractions contained a small minority of the miRNA content of plasma. This low yield prompted us to perform a more quantitative assessment of the relationship between miRNAs and exosomes using a stoichiometric approach. We quantified both the number of exosomes and the number of miRNA molecules in replicate samples that were isolated from five diverse sources (i.e., plasma, seminal fluid, dendritic cells, mast cells, and ovarian cancer cells). Regardless of the source, on average, there was far less than one molecule of a given miRNA per exosome, even for the most abundant miRNAs in exosome preparations (mean ± SD across six exosome sources: 0.00825 ± 0.02 miRNA molecules/exosome). Thus, if miRNAs were distributed homogenously across the exosome population, on average, over 100 exosomes would need to be examined to observe one copy of a given abundant miRNA. This stoichiometry of miRNAs and exosomes suggests that most individual exosomes in standard preparations do not carry biologically significant numbers of miRNAs and are, therefore, individually unlikely to be functional as vehicles for miRNA-based communication. We propose revised models to reconcile the exosome-mediated, miRNA-based intercellular communication hypothesis with the observed stoichiometry of miRNAs associated with exosomes. (hide)
EV-METRIC
29% (68th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Adj. k-factor
115.5 (pelleting)
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW55
Pelleting: adjusted k-factor
115.5
Filtration steps
0.22µm or 0.2µm
Characterization: Particle analysis
NTA
EM
EM-type
transmission EM
Image type
Wide-field
EV140144 1/1 Sus scrofa Milk (d)(U)C Chen T 2014 29%

Study summary

Full title
All authors
Chen T, Xi QY, Ye RS, Cheng X, Qi QE, Wang SB, Shu G, Wang LN, Zhu XT, Jiang QY, Zhang YL
Journal
BMC Genomics
Abstract
BACKGROUND: Breast milk contains complex nutrients and facilitates the maturation of various biologi (show more...)BACKGROUND: Breast milk contains complex nutrients and facilitates the maturation of various biological systems in infants. Exosomes, membranous vesicles of endocytic origin found in different body fluids such as milk, can mediate intercellular communication. We hypothesized that microRNAs (miRNAs), a class of non-coding small RNAs of 18-25 nt which are known to be packaged in exosomes of human, bovine and porcine milk, may play important roles in the development of piglets. RESULTS: In this study, exosomes of approximately 100 nm in diameter were isolated from porcine milk through serial centrifugation and ultracentrifugation procedures. Total RNA was extracted from exosomes, and 5S ribosomal RNA was found to be the major RNA component. Solexa sequencing showed a total of 491 miRNAs, including 176 known miRNAs and 315 novel mature miRNAs (representing 366 pre-miRNAs), which were distributed among 30 clusters and 35 families, and two predicted novel miRNAs were verified targeting 3'UTR of IGF-1R by luciferase assay. Interestingly, we observed that three miRNAs (ssc-let-7e, ssc-miR-27a, and ssc-miR-30a) could be generated from miRNA-offset RNAs (moRNAs). The top 10 miRNAs accounted for 74.5% (67,154 counts) of total counts, which were predicted to target 2,333 genes by RNAhybrid software. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses using DAVID bioinformatics resources indicated that the identified miRNAs targeted genes enriched in transcription, immunity and metabolism processes, and 14 of the top 20 miRNAs possibly participate in regulation of the IgA immune network. CONCLUSIONS: Our findings suggest that porcine milk exosomes contain a large number of miRNAs, which potentially play an important role in information transfer from sow milk to piglets. The predicted miRNAs of porcine milk exosomes in this study provide a basis for future biochemical and biophysical function studies. (hide)
EV-METRIC
29% (37th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Milk
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Adj. k-factor
232.5 (pelleting)
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Omics
Sample
Species
Sus scrofa
Sample Type
Milk
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
SW41
Pelleting: adjusted k-factor
232.5
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up, Wide-field
EV140141 1/1 Homo sapiens
Canis familiaris
Urine (d)(U)C
DG
Chacon-Heszele MF 2014 29%

Study summary

Full title
All authors
Chacon-Heszele MF, Choi SY, Zuo X, Baek JI, Ward C, Lipschutz JH
Journal
Physiol Rep
Abstract
Cilia, organelles that function as cellular antennae, are central to the pathogenesis of ciliopathie (show more...)Cilia, organelles that function as cellular antennae, are central to the pathogenesis of ciliopathies, including various forms of polycystic kidney disease (PKD). To date, however, the molecular mechanisms controlling ciliogenesis and ciliary function remain incompletely understood. A recently proposed model of cell-cell communication, called urocrine signaling, hypothesizes that a subset of membrane bound vesicles that are secreted into the urinary stream (termed exosome-like vesicles, or ELVs), carry cilia-specific proteins as cargo, interact with primary cilia, and affect downstream cellular functions. This study was undertaken to determine the role of the exocyst, a highly conserved eight-protein trafficking complex, in the secretion and/or retrieval of ELVs. We used Madin-Darby canine kidney (MDCK) cells expressing either Sec10-myc (a central component of the exocyst complex) or Smoothened-YFP (a ciliary protein found in ELVs) in experiments utilizing electron gold microscopy and live fluorescent microscopy, respectively. Additionally, human urinary exosomes were isolated via ultracentrifugation and subjected to mass-spectrometry-based proteomics analysis to determine the composition of ELVs. We found, as determined by EM, that the exocyst localizes to primary cilia, and is present in vesicles attached to the cilium. Furthermore, the entire exocyst complex, as well as most of its known regulatory GTPases, are present in human urinary ELVs. Finally, in living MDCK cells, ELVs appear to interact with primary cilia using spinning disc confocal microscopy. These data suggest that the exocyst complex, in addition to its role in ciliogenesis, is centrally involved in the secretion and/or retrieval of urinary ELVs. (hide)
EV-METRIC
29% (60th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
Protein markers
EV:
non-EV:
Proteomics
yes
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Homo sapiens / Canis familiaris
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Density gradient
Lowest density fraction
5
Highest density fraction
30
Orientation
Top-down
Speed (g)
150000
Characterization: Protein analysis
Characterization: Particle analysis
None
EV140308 1/1 Mus musculus NAY (d)(U)C Burke MC 2014 29%

Study summary

Full title
All authors
Burke MC, Oei MS, Edwards NJ, Ostrand-Rosenberg S, Fenselau C
Journal
J Proteome Res
Abstract
We provide evidence at the molecular level that ubiquitinated proteins are present in exosomes shed (show more...)We provide evidence at the molecular level that ubiquitinated proteins are present in exosomes shed by myeloid-derived suppressor cells (MDSC). Ubiquitin was selected as a post-translational modification of interest because it is known to play a determinant role in the endosomal trafficking that culminates in exosome release. Enrichment was achieved by two immunoprecipitations, first at the protein level and subsequently at the peptide level. Fifty ubiquitinated proteins were identified by tandem mass spectrometry filtering at a 5% spectral false discovery rate and using the conservative requirement that glycinylglycine-modified lysine residues were observed in tryptic peptides. Thirty five of these proteins have not previously been reported to be ubiquitinated. The ubiquitinated cohort spans a range of protein sizes and favors basic pI values and hydrophobicity. Five proteins associated with endosomal trafficking were identified as ubiquitinated, along with pro-inflammatory high mobility group protein B1 and proinflammatory histones. (hide)
EV-METRIC
29% (68th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Adj. k-factor
276.6 (pelleting)
Protein markers
EV:
non-EV:
Proteomics
yes
Show all info
Study aim
Omics
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
1200
Pelleting: rotor type
SW40
Pelleting: adjusted k-factor
276.6
Characterization: Protein analysis
Characterization: Particle analysis
None
EV140307 1/1 Heligmosomoides polygyrus Nematode culture (d)(U)C
Filtration
Buck AH 2014 29%

Study summary

Full title
All authors
Buck AH, Coakley G, Simbari F, McSorley HJ, Quintana JF, Le Bihan T, Kumar S, Abreu-Goodger C, Lear M, Harcus Y, Ceroni A, Babayan SA, Blaxter M, Ivens A, Maizels RM
Journal
Nat Commun
Abstract
In mammalian systems RNA can move between cells via vesicles. Here we demonstrate that the gastroint (show more...)In mammalian systems RNA can move between cells via vesicles. Here we demonstrate that the gastrointestinal nematode Heligmosomoides polygyrus, which infects mice, secretes vesicles containing microRNAs (miRNAs) and Y RNAs as well as a nematode Argonaute protein. These vesicles are of intestinal origin and are enriched for homologues of mammalian exosome proteins. Administration of the nematode exosomes to mice suppresses Type 2 innate responses and eosinophilia induced by the allergen Alternaria. Microarray analysis of mouse cells incubated with nematode exosomes in vitro identifies Il33r and Dusp1 as suppressed genes, and Dusp1 can be repressed by nematode miRNAs based on a reporter assay. We further identify miRNAs from the filarial nematode Litomosoides sigmodontis in the serum of infected mice, suggesting that miRNA secretion into host tissues is conserved among parasitic nematodes. These results reveal exosomes as another mechanism by which helminths manipulate their hosts and provide a mechanistic framework for RNA transfer between animal species. (hide)
EV-METRIC
29% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Nematode culture
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Adj. k-factor
276.6 (pelleting)
Protein markers
EV:
non-EV:
Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Heligmosomoides polygyrus
Sample Type
Nematode culture
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
SW40
Pelleting: adjusted k-factor
276.6
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV140136 1/1 Homo sapiens NAY (d)(U)C Bhattacharya S 2014 29%

Study summary

Full title
All authors
Bhattacharya S, Pal K, Sharma AK, Dutta SK, Lau JS, Yan IK, Wang E, Elkhanany A, Alkharfy KM, Sanyal A, Patel TC, Chari ST, Spaller MR, Mukhopadhyay D
Journal
PLoS One
Abstract
GAIP interacting protein C terminus (GIPC) is known to play an important role in a variety of physio (show more...)GAIP interacting protein C terminus (GIPC) is known to play an important role in a variety of physiological and disease states. In the present study, we have identified a novel role for GIPC as a master regulator of autophagy and the exocytotic pathways in cancer. We show that depletion of GIPC-induced autophagy in pancreatic cancer cells, as evident from the upregulation of the autophagy marker LC3II. We further report that GIPC regulates cellular trafficking pathways by modulating the secretion, biogenesis, and molecular composition of exosomes. We also identified the involvement of GIPC on metabolic stress pathways regulating autophagy and microvesicular shedding, and observed that GIPC status determines the loading of cellular cargo in the exosome. Furthermore, we have shown the overexpression of the drug resistance gene ABCG2 in exosomes from GIPC-depleted pancreatic cancer cells. We also demonstrated that depletion of GIPC from cancer cells sensitized them to gemcitabine treatment, an avenue that can be explored as a potential therapeutic strategy to overcome drug resistance in cancer. (hide)
EV-METRIC
29% (68th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV:
non-EV:
Proteomics
yes
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Characterization: Protein analysis
Characterization: Particle analysis
NTA
EM
EM-type
transmission EM
Image type
Wide-field
EV140267 3/3 Homo sapiens NAY (d)(U)C
Filtration
Basu S 2014 29%

Study summary

Full title
All authors
Basu S, Bhattacharyya SN
Journal
Nucleic Acids Res
Abstract
miRNAs are 20-22 nt long post-transcriptional regulators in metazoan cells that repress protein expr (show more...)miRNAs are 20-22 nt long post-transcriptional regulators in metazoan cells that repress protein expression from their target mRNAs. These tiny regulatory RNAs follow tissue and cell-type specific expression pattern, aberrations of which are associated with various diseases. miR-122 is a liver-specific anti-proliferative miRNA that, we found, can be transferred via exosomes between human hepatoma cells, Huh7 and HepG2, grown in co-culture. Exosomal miR-122, expressed and released by Huh7 cells and taken by miR-122 deficient HepG2 cells, was found to be effective in repression of target mRNAs and to reduce growth and proliferation of recipient HepG2 cells. Interestingly, in a reciprocal process, HepG2 secretes Insulin-like Growth Factor 1 (IGF1) that decreases miR-122 expression in Huh7 cells. Our observations suggest existence of a reciprocal interaction between two different hepatic cells with distinct miR-122 expression profiles. This interaction is mediated via intercellular exosome-mediated miR-122 transfer and countered by a reciprocal IGF1-dependent anti-miR-122 signal. According to our data, human hepatoma cells use IGF1 to prevent intercellular exosomal transfer of miR-122 to ensure its own proliferation by preventing expression of growth retarding miR-122 in neighbouring cells. (hide)
EV-METRIC
29% (68th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Filtration steps
0.22µm or 0.2µm
Characterization: Particle analysis
DLS
NTA
EM
EM-type
transmission EM/ scanning EM/ atomic force EM
Image type
Close-up, Wide-field
Report size (nm)
Not reported
EV140058 1/1 Mus musculus NAY (d)(U)C
Filtration
Banizs AB 2014 29%

Study summary

Full title
All authors
Banizs AB, Huang T, Dryden K, Berr SS, Stone JR, Nakamoto RK, Shi W, He J
Journal
Int J Nanomedicine
Abstract
Exosomes, one subpopulation of nanosize extracellular vesicles derived from multivesicular bodies, r (show more...)Exosomes, one subpopulation of nanosize extracellular vesicles derived from multivesicular bodies, ranging from 30 to 150 nm in size, emerged as promising carriers for small interfering ribonucleic acid (siRNA) delivery, as they are capable of transmitting molecular messages between cells through carried small noncoding RNAs, messenger RNAs, deoxyribonucleic acids, and proteins. Endothelial cells are involved in a number of important biological processes, and are a major source of circulating exosomes. In this study, we prepared exosomes from endothelial cells and evaluated their capacity to deliver siRNA into primary endothelial cells. Exosomes were isolated and purified by sequential centrifugation and ultracentrifugation from cultured mouse aortic endothelial cells. Similar to exosome particles from other cell sources, endothelial exosomes are nanometer-size vesicles, examined by both the NanoSight instrument and transmission electron microscopy. Enzyme-linked immunosorbent assay analysis confirmed the expression of two exosome markers: CD9 and CD63. Flow cytometry and fluorescence microscopy studies demonstrated that endothelial exosomes were heterogeneously distributed within cells. In a gene-silencing study with luciferase-expressing endothelial cells, exosomes loaded with siRNA inhibited luciferase expression by more than 40%. In contrast, siRNA alone and control siRNA only suppressed luciferase expression by less than 15%. In conclusion, we demonstrated that endothelial exosomes have the capability to accommodate and deliver short foreign nucleic acids into endothelial cells. (hide)
EV-METRIC
29% (68th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: CD63/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
No
Filtration steps
0.45µm > x > 0.22µm, 0.22µm or 0.2µm
Characterization: Protein analysis
ELISA
Antibody details provided?
No
Detected EV-associated proteins
CD63/ CD9
Characterization: Particle analysis
NTA
EM
EM-type
transmission EM/ cryo EM
Image type
Close-up, Wide-field
EV210087 1/2 Equus caballus Adipose-derived stem cells PureExo (101Bio) Marędziak, Monika 2014 25%

Study summary

Full title
All authors
Monika Marędziak, Krzysztof Marycz, Daniel Lewandowski, Anna Siudzińska, Agnieszka Śmieszek
Journal
In Vitro Cell Dev Biol Anim.
Abstract
The aim of this work study was to evaluate the cytophysiological activity of equine adipose-derived (show more...)The aim of this work study was to evaluate the cytophysiological activity of equine adipose-derived stem cells (ASCs) cultured under conditions of static magnetic field. Investigated cells were exposed to a static magnetic field (MF) with the intensity of 0.5 T. In order to investigate the effects of magnetic field on stem cell signaling, the localization and density and content of microvesicles (MVs) as well as morphology, ultrastructure, and proliferation rate of equine ASCs were evaluated. Results showed that potential of equine adipose-derived mesenchymal stem cells was accelerated when magnetic field was applied. Resazurin-based assay indicated that the cells cultured in the magnetic field reached the population doubling time earlier and colony-forming potential of equine ASCs was higher when cells were cultured under magnetic field conditions. Morphological and ultrastructural examination of equine ASCs showed that the exposure to magnetic field did not cause any significant changes in cell morphology whereas the polarity of the cells was observed under the magnetic field conditions in ultrastructural examinations. Exposition to MF resulted in a considerable increase in the number of secreted MVs-we have clearly observed the differences between the numbers of MVs shed from the cells cultured under MF in comparison to the control culture and were rich in growth factors. Microvesicles derived from ASCs cultured in the MF condition might be utilized in the stem cell-based treatment of equine musculoskeletal disorders and tendon injuries. (hide)
EV-METRIC
25% (64th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
(shedding) microvesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
PureExo (101Bio)
Protein markers
EV: BMP2/ TNF-/ p53/ VEGF
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Equus caballus
Sample Type
Cell culture supernatant
EV-producing cells
Adipose-derived stem cells
EV-harvesting Medium
Not specified
Separation Method
Commercial kit
PureExo (101Bio)
Other
Name other separation method
PureExo (101Bio)
Characterization: Protein analysis
Protein Concentration Method
Bradford
ELISA
Antibody details provided?
No
Detected EV-associated proteins
BMP2/ TNF-/ p53/ VEGF
Characterization: Lipid analysis
No
EM
EM-type
Scanning-EM
Image type
Close-up, Wide-field
EV concentration
Yes
EV210087 2/2 Equus caballus Adipose-derived stem cells PureExo (101Bio) Marędziak, Monika 2014 25%

Study summary

Full title
All authors
Monika Marędziak, Krzysztof Marycz, Daniel Lewandowski, Anna Siudzińska, Agnieszka Śmieszek
Journal
In Vitro Cell Dev Biol Anim.
Abstract
The aim of this work study was to evaluate the cytophysiological activity of equine adipose-derived (show more...)The aim of this work study was to evaluate the cytophysiological activity of equine adipose-derived stem cells (ASCs) cultured under conditions of static magnetic field. Investigated cells were exposed to a static magnetic field (MF) with the intensity of 0.5 T. In order to investigate the effects of magnetic field on stem cell signaling, the localization and density and content of microvesicles (MVs) as well as morphology, ultrastructure, and proliferation rate of equine ASCs were evaluated. Results showed that potential of equine adipose-derived mesenchymal stem cells was accelerated when magnetic field was applied. Resazurin-based assay indicated that the cells cultured in the magnetic field reached the population doubling time earlier and colony-forming potential of equine ASCs was higher when cells were cultured under magnetic field conditions. Morphological and ultrastructural examination of equine ASCs showed that the exposure to magnetic field did not cause any significant changes in cell morphology whereas the polarity of the cells was observed under the magnetic field conditions in ultrastructural examinations. Exposition to MF resulted in a considerable increase in the number of secreted MVs-we have clearly observed the differences between the numbers of MVs shed from the cells cultured under MF in comparison to the control culture and were rich in growth factors. Microvesicles derived from ASCs cultured in the MF condition might be utilized in the stem cell-based treatment of equine musculoskeletal disorders and tendon injuries. (hide)
EV-METRIC
25% (64th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Static magnetic field
Focus vesicles
(shedding) microvesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
PureExo (101Bio)
Protein markers
EV: BMP2/ TNF-/ p53/ VEGF
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Equus caballus
Sample Type
Cell culture supernatant
EV-producing cells
Adipose-derived stem cells
EV-harvesting Medium
Not specified
Separation Method
Commercial kit
PureExo (101Bio)
Other
Name other separation method
PureExo (101Bio)
Characterization: Protein analysis
Protein Concentration Method
Bradford
ELISA
Antibody details provided?
No
Detected EV-associated proteins
BMP2/ TNF-/ p53/ VEGF
Characterization: Lipid analysis
No
EM
EM-type
Scanning-EM
Image type
Close-up, Wide-field
EV concentration
Yes
EV140114 1/1 Homo sapiens NAY (d)(U)C
DG
UF
Jung JH 2014 25%

Study summary

Full title
All authors
Jung JH, Lee MY, Choi DY, Lee JW, You S, Lee KY, Kim J, Kim KP
Journal
Proteomics
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) such as gefitinib are one (show more...)Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) such as gefitinib are one of gold standard treatment options for nonsmall-cell lung cancer (NSCLC) patients, which eventually fail due to the acquired resistance and relapse because of the development of secondary activating mutations such as T790M in EGFR. Predicting chemo-responsiveness of cancer patients provides a major challenge in chemotherapy. The goal of the present study is to determine whether phospholipid signatures of tumor extracellular vesicles (EV) are associated with gefitinib-resistance of NSCLC. A sophisticated MS-based shotgun lipidomic assays were performed for in-depth analysis of the lipidomes of gefitinib-resistant (PC9R) and responsive (PC9) NSCLC cells and their shed EV from these cell lines (PC9EV or PC9REV). Lipid MALDI-MS analysis showed that EV phospholipid composition was significantly distinct in PC9R, compared to PC9 cells. Following statistical analyses has identified 35 (20 positive and 15 negative ion mode) differentially regulated lipids, which are significantly over- or underexpressed in PC9R EV, compared to PC9 EV (p value < 0.01, fold change > 1.5). Our phospholipid signatures suggest that EV associates with drug sensitivity, which is worthy of additional investigation to assess chemoresistance in patients with NSCLC treated with anti-EGFR TKIs. (hide)
EV-METRIC
25% (64th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
UF
Protein markers
EV: CD81/ CD63/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Pelleting performed
No
Density gradient
Lowest density fraction
5
Highest density fraction
30
Orientation
Top-down
Speed (g)
100000
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ CD81/ CD9
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV140120 2/7 Homo sapiens NAY (d)(U)C
DC
Filtration
Ghosh A 2014 25%

Study summary

Full title
All authors
Ghosh A, Davey M, Chute IC, Griffiths SG, Lewis S, Chacko S, Barnett D, Crapoulet N, Fournier S, Joy A, Caissie MC, Ferguson AD, Daigle M, Meli MV, Lewis SM, Ouellette RJ
Journal
PLoS One
Abstract
Recent studies indicate that extracellular vesicles are an important source material for many clinic (show more...)Recent studies indicate that extracellular vesicles are an important source material for many clinical applications, including minimally-invasive disease diagnosis. However, challenges for rapid and simple extracellular vesicle collection have hindered their application. We have developed and validated a novel class of peptides (which we named venceremin, or Vn) that exhibit nucleotide-independent specific affinity for canonical heat shock proteins. The Vn peptides were validated to specifically and efficiently capture HSP-containing extracellular vesicles from cell culture growth media, plasma, and urine by electron microscopy, atomic force microscopy, sequencing of nucleic acid cargo, proteomic profiling, immunoblotting, and nanoparticle tracking analysis. All of these analyses confirmed the material captured by the Vn peptides was comparable to those purified by the standard ultracentrifugation method. We show that the Vn peptides are a useful tool for the rapid isolation of extracellular vesicles using standard laboratory equipment. Moreover, the Vn peptides are adaptable to diverse platforms and therefore represent an excellent solution to the challenge of extracellular vesicle isolation for research and clinical applications. (hide)
EV-METRIC
25% (64th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DC
Filtration
Protein markers
EV: HSP70/ HSP90/ GAPDH
non-EV:
Proteomics
yes
Show all info
Study aim
Technical
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
HSP90/ HSP70/ GAPDH
ELISA
Antibody details provided?
No
Detected EV-associated proteins
GAPDH
Characterization: Particle analysis
NTA
EV140120 3/7 Homo sapiens Urine (d)(U)C
DC
Filtration
Ghosh A 2014 25%

Study summary

Full title
All authors
Ghosh A, Davey M, Chute IC, Griffiths SG, Lewis S, Chacko S, Barnett D, Crapoulet N, Fournier S, Joy A, Caissie MC, Ferguson AD, Daigle M, Meli MV, Lewis SM, Ouellette RJ
Journal
PLoS One
Abstract
Recent studies indicate that extracellular vesicles are an important source material for many clinic (show more...)Recent studies indicate that extracellular vesicles are an important source material for many clinical applications, including minimally-invasive disease diagnosis. However, challenges for rapid and simple extracellular vesicle collection have hindered their application. We have developed and validated a novel class of peptides (which we named venceremin, or Vn) that exhibit nucleotide-independent specific affinity for canonical heat shock proteins. The Vn peptides were validated to specifically and efficiently capture HSP-containing extracellular vesicles from cell culture growth media, plasma, and urine by electron microscopy, atomic force microscopy, sequencing of nucleic acid cargo, proteomic profiling, immunoblotting, and nanoparticle tracking analysis. All of these analyses confirmed the material captured by the Vn peptides was comparable to those purified by the standard ultracentrifugation method. We show that the Vn peptides are a useful tool for the rapid isolation of extracellular vesicles using standard laboratory equipment. Moreover, the Vn peptides are adaptable to diverse platforms and therefore represent an excellent solution to the challenge of extracellular vesicle isolation for research and clinical applications. (hide)
EV-METRIC
25% (56th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DC
Filtration
Protein markers
EV: CD63/ PSMA/ CD24/ Alix/ HSP70/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Technical
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix/ CD63/ CD9/ HSP70/ CD24/ PSMA
ELISA
Antibody details provided?
No
Detected EV-associated proteins
CD24/ PSMA
Characterization: Particle analysis
NTA
EV140109 1/1 Homo sapiens NAY (d)(U)C
DG
UF
Choi DY 2014 25%

Study summary

Full title
All authors
Choi DY, You S, Jung JH, Lee JC, Rho JK, Lee KY, Freeman MR, Kim KP, Kim J
Journal
Proteomics
Abstract
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs), including gefitinib, are (show more...)Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs), including gefitinib, are the first-line treatment of choice for nonsmall cell lung cancer patients who harbor activating EGFR mutations, however, acquired resistance to EGFR-TKIs is inevitable. The main objective of this study was to identify informative protein signatures of extracellular vesicles (EV) derived from gefitinib-resistant nonsmall cell lung cancer cells using proteomics analysis. Nano-LC-MS/MS analysis identified with high confidence (false discovery rate < 0.05, fold change ?2) 664 EV proteins enriched in PC9R cells, which are resistant to gefitinib due to EGFR T790M mutation. Computational analyses suggested components of several signal transduction mechanisms including the AKT (also PKB, protein kinase B)/mTOR (mechanistic target of rapamycin) pathway are overrepresented in EV from PC9R cells. Treatment of recipient cells with EV harvested from PC9R cells increased phosphorylation of signaling molecules, and enhanced proliferation, invasion, and drug resistance to gefitinib-induced apoptosis. Dose- and time-dependent pharmaceutical inhibition of AKT/mTOR pathway overcame drug resistance of PC9R cells and those of H1975 exhibiting EGFR T790M mutation. Our findings provide new insight into an oncogenic EV protein signature regulating tumor microenvironment, and will aid in the development of novel diagnostic strategies for prediction and assessment of gefitinib resistance. (hide)
EV-METRIC
25% (64th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
UF
Protein markers
EV: CD81/ CD63/ CD9
non-EV:
Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Pelleting performed
No
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ CD81/ CD9
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV140107 1/1 Homo sapiens Platelet supernatant (d)(U)C Böing AN 2014 25%

Study summary

Full title
All authors
Böing AN, van der Pol E, Grootemaat AE, Coumans FA, Sturk A, Nieuwland R
Journal
J Extracell Vesicles
Abstract
BACKGROUND: Isolation of extracellular vesicles from plasma is a challenge due to the presence of pr (show more...)BACKGROUND: Isolation of extracellular vesicles from plasma is a challenge due to the presence of proteins and lipoproteins. Isolation of vesicles using differential centrifugation or density-gradient ultracentrifugation results in co-isolation of contaminants such as protein aggregates and incomplete separation of vesicles from lipoproteins, respectively. AIM: To develop a single-step protocol to isolate vesicles from human body fluids. METHODS: Platelet-free supernatant, derived from platelet concentrates, was loaded on a sepharose CL-2B column to perform size-exclusion chromatography (SEC; n=3). Fractions were collected and analysed by nanoparticle tracking analysis, resistive pulse sensing, flow cytometry and transmission electron microscopy. The concentrations of high-density lipoprotein cholesterol (HDL) and protein were measured in each fraction. RESULTS: Fractions 9-12 contained the highest concentrations of particles larger than 70 nm and platelet-derived vesicles (46%±6 and 61%±2 of totals present in all collected fractions, respectively), but less than 5% of HDL and less than 1% of protein (4.8%±1 and 0.65%±0.3, respectively). HDL was present mainly in fractions 18-20 (32%±2 of total), and protein in fractions 19-21 (36%±2 of total). Compared to the starting material, recovery of platelet-derived vesicles was 43%±23 in fractions 9-12, with an 8-fold and 70-fold enrichment compared to HDL and protein. CONCLUSIONS: SEC efficiently isolates extracellular vesicles with a diameter larger than 70 nm from platelet-free supernatant of platelet concentrates. Application SEC will improve studies on the dimensional, structural and functional properties of extracellular vesicles. (hide)
EV-METRIC
25% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Platelet supernatant
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: CD63/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Technical
Sample
Species
Homo sapiens
Sample Type
Platelet supernatant
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Pelleting performed
No
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ CD9
Characterization: Particle analysis
NTA
TRPS
EM
EM-type
transmission EM
Image type
Wide-field
EV140245 2/3 Homo sapiens Urine DC
ExoQuick
Zubiri I 2014 25%

Study summary

Full title
All authors
Zubiri I, Posada-Ayala M, Sanz-Maroto A, Calvo E, Martin-Lorenzo M, Gonzalez-Calero L, de la Cuesta F, Lopez JA, Fernandez-Fernandez B, Ortiz A, Vivanco F, Alvarez-Llamas G
Journal
J Proteomics
Abstract
Diabetic nephropathy (DN) is a major complication of diabetes mellitus (DM), the most frequent cause (show more...)Diabetic nephropathy (DN) is a major complication of diabetes mellitus (DM), the most frequent cause of end-stage renal disease (ESRD). Exosomes isolated from urine are considered a rich non-invasive source of markers for renal events. Proteinuria associated with DN patients at advanced stages may result in contamination of exosomal fraction by co-precipitation of high abundance urine proteins, making it enormously difficult to obtain a reliable comparison of healthy individuals and DN patients and to detect minor proteins. We evaluated different protocols for urinary exosome isolation (ultracentrifugation-based and Exoquick® reagent-based) in combination with an easy and quick depletion procedure of contaminating high abundance proteins (albumin). The optimal methodology was then applied to investigate the proteome of human urinary exosomes in DN and controls using spectral counting LC-MS/MS analysis followed by selected reaction monitoring (SRM) confirmation. A panel of 3 proteins (AMBP, MLL3, and VDAC1) is differentially present in urinary exosomes from DN patients, opening a new field of research focused on improving diagnosis and follow-up of this pathology.BIOLOGICAL SIGNIFICANCE: Diabetic nephropathy (DN) is a progressive proteinuric kidney disease, a major complication of diabetes mellitus, and the most frequent cause of end-stage renal disease. Current markers of disease (i.e. creatinine and urinary albumin excretion) have proven limitations (i.e. some patients regress to normoalbuminuria, kidney damage may be already present in recently diagnoses microalbuminuric patients and renal function may decrease in the absence of significant albuminuria). We show here the first study on human DN proteome of urinary exosomes. Proteinuria associated to DN patients resulting in contamination of exosomal fraction and the associated difficulty to reliably compare healthy and disease conditions, are here overcome. A combined methodology pointed to increase exosomal proteome recovery and depletion of high-abundance proteome was here set-up. A total of 352 proteins were here identified for the first time associated to human urinary exosomes. Label-free quantitative comparison of DN urinary exosomes vs control group and SRM further validation, resulted in the discovery of a panel of three proteins (AMBP, MLL3 and VDAC1) which changes in DN, opening a new field of research focused to improve diagnosis and follow-up of this pathology. (hide)
EV-METRIC
25% (56th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DC
ExoQuick
Protein markers
EV: Alix/ TSG101
non-EV: Albumin/ Cell organelle protein
Proteomics
yes
Show all info
Study aim
Technical
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
Commercial kit
ExoQuick
Other
Name other separation method
ExoQuick
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix/ TSG101
Detected contaminants
Cell organelle protein/ Albumin
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV140230 1/1 Homo sapiens NAY (d)(U)C
ExoQuick
Wei JX 2014 25%

Study summary

Full title
All authors
Wei JX, Lv LH, Wan YL, Cao Y, Li GL, Lin HM, Zhou R, Shang CZ, Cao J, He H, Han QF, Liu PQ, Zhou G, Min J
Journal
Hepatology
Abstract
The deregulation of microRNAs (miRNAs) plays an important role in human hepatocarcinogenesis. In thi (show more...)The deregulation of microRNAs (miRNAs) plays an important role in human hepatocarcinogenesis. In this study, we highlight exosomes as mediators involved in modulating miRNA profiles in hepatocellular carcinoma (HCC) cells. First, we examined the different miRNA expression profiles in HCC cells and HCC cell-derived exosomes. Next, coculture experiments indicated that HCC cell-derived exosomes promoted the cell growth, migration, and invasion of HCC cells and had the ability to shuttle miRNAs to recipient cells. Further, our data showed that Vps4A, a key regulator of exosome biogenesis, was frequently down-regulated in HCC tissues. The reduction of Vps4A in HCC tissues was associated with tumor progression and metastasis. In vitro studies revealed that Vps4A repressed the growth, colony formation, migration, and invasion of HCC cells. We further investigated the role and involvement of Vps4A in suppressing the bioactivity of exosomes and characterized its ability to weaken the cell response to exosomes. By small RNA sequencing, we demonstrated that Vps4A facilitated the secretion of oncogenic miRNAs in exosomes as well as accumulation and uptake of tumor suppressor miRNAs in cells. A subset of Vps4A-associated miRNAs was identified. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that the phosphatidylinositol-3-kinase/Akt signaling pathway was the most likely candidate pathway for modulation by these miRNAs. Indeed, we proved that the phosphatidylinositol-3-kinase/Akt pathway was inactivated by Vps4A overexpression.CONCLUSION: Exosome-mediated miRNA transfer is an important mechanism of self-modulation of the miRNA expression profiles in HCC cells, and Vps4A may function as a tumor suppressor, which utilizes exosomes as mediators to regulate the secretion and uptake of miRNAs in hepatoma cells; these observations provide new insights into the development of HCC. (hide)
EV-METRIC
25% (64th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
ExoQuick
Protein markers
EV: Alix/ TSG101/ HSP60/ HSP90/ CD63
non-EV: GAPDH
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Commercial kit
ExoQuick
Other
Name other separation method
ExoQuick
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix/ CD63/ HSP90/ TSG101/ HSP60
Detected contaminants
GAPDH
ELISA
Antibody details provided?
No
Detected EV-associated proteins
HSP60
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV140226 2/2 Homo sapiens NAY (d)(U)C
ExoQuick
Filtration
Umezu T 2014 25%

Study summary

Full title
All authors
Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K, Ohyashiki JH
Journal
Blood
Abstract
Exosomes are small endosome-derived vesicles containing a wide range of functional proteins, mRNA, a (show more...)Exosomes are small endosome-derived vesicles containing a wide range of functional proteins, mRNA, and miRNA. Exosomal miRNA from cancer cells helps modulate the microenvironment. In multiple myeloma (MM), the massive proliferation of malignant plasma cells causes hypoxia. To date, the majority of in vitro hypoxia studies of cancer cells have used acute hypoxic exposure (3-24 hours). Thus, we attempted to clarify the role of MM-derived exosomes in hypoxic bone marrow by using MM cells grown continuously in vitro under chronic hypoxia (hypoxia-resistant MM [HR-MM] cells). The HR-MM cells produced more exosomes than the parental cells under normoxia or acute hypoxia conditions, and miR-135b was significantly upregulated in exosomes from HR-MM cells. Exosomal miR-135b directly suppressed its target factor-inhibiting hypoxia-inducible factor 1 (FIH-1) in endothelial cells. Finally, exosomal miR-135b from HR-MM cells enhanced endothelial tube formation under hypoxia via the HIF-FIH signaling pathway. This in vitro HR myeloma cell model will be useful for investigating MM cell-endothelial cell interactions under hypoxic conditions, which may mimic the in vivo bone marrow microenvironment. Although tumor angiogenesis is regulated by various factors, exosomal miR-135b may be a target for controlling MM angiogenesis. (hide)
EV-METRIC
25% (64th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
ExoQuick
Filtration
Protein markers
EV: CD81/ CD63
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Commercial kit
ExoQuick
Other
Name other separation method
ExoQuick
Characterization: Protein analysis
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
CD63/ CD81
Characterization: Particle analysis
NTA
EM
EM-type
transmission EM
Image type
Close-up
EV140215 1/1 Homo sapiens Follicular fluid (d)(U)C
Filtration
Santonocito M 2014 25%

Study summary

Full title
All authors
Santonocito M, Vento M, Guglielmino MR, Battaglia R, Wahlgren J, Ragusa M, Barbagallo D, Borzì P, Rizzari S, Maugeri M, Scollo P, Tatone C, Valadi H, Purrello M, Di Pietro C
Journal
Fertil Steril
Abstract
OBJECTIVE: To characterize well-represented microRNAs in human follicular fluid (FF) and to ascertai (show more...)OBJECTIVE: To characterize well-represented microRNAs in human follicular fluid (FF) and to ascertain whether they are cargo of FF exosomes and whether they are involved in the regulation of follicle maturation. DESIGN: FF exosomes were characterized by nanosight, flow cytometry, and exosome-specific surface markers. Expression microRNA profiles from total and exosomal FF were compared with those from plasma of the same women. SETTING: University laboratory and an IVF center. PATIENT(S): Fifteen healthy women who had undergone intracytoplasmic sperm injection. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): TaqMan low-density array to investigate the expression profile of 384 microRNAs; DataAssist and geNorm for endogenous control identification; significance analysis of microarrays to identify differentially expressed microRNAs; nanosight, flow-cytometry, and bioanalyzer for exosome characterization; bioinformatic tools for microRNAs target prediction, gene ontology, and pathway analysis. RESULT(S): We identified 37 microRNAs upregulated in FF as compared with plasma from the same women. Thirty-two were carried by microvesicles that showed the well-characterized exosomal markers CD63 and CD81. These FF microRNAs are involved in critically important pathways for follicle growth and oocyte maturation. Specifically, nine of them target and negatively regulate mRNAs expressed in the follicular microenvironment encoding inhibitors of follicle maturation and meiosis resumption. CONCLUSION(S): This study identified a series of exosomal microRNAs that are highly represented in human FF and are involved in follicular maturation. They could represent noninvasive biomarkers of oocyte quality in assisted reproductive technology. (hide)
EV-METRIC
25% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Follicular fluid
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Adj. k-factor
130.7 (pelleting)
Protein markers
EV: CD81/ CD63/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Omics
Sample
Species
Homo sapiens
Sample Type
Follicular fluid
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
70Ti
Pelleting: adjusted k-factor
130.7
Filtration steps
0.22µm or 0.2µm
Characterization: Particle analysis
NTA
EV140093 1/1 Equus caballus Uterine luminal fluid ExoQuick
UF
Ruiz-González I 2014 25%

Study summary

Full title
All authors
Ruiz-González I, Xu J, Wang X, Burghardt RC, Dunlap KA, Bazer FW
Journal
Reproduction
Abstract
Conceptus-endometrial communication during the peri-implantation period of pregnancy ensures establi (show more...)Conceptus-endometrial communication during the peri-implantation period of pregnancy ensures establishment of pregnancy. We hypothesized that this dialog involves exosomes, ovine endogenous jaagsiekte retroviruses (enJSRV) and toll-like receptors (TLR) which regulate the secretion of interferon tau (IFNT), the pregnancy recognition signal in ruminants. First, exosomes isolated from uterine flushings from cyclic and pregnant ewes were analyzed for exosomal content and uterine expression of heat shock protein 70 (HSC70). Then, conceptus trophectoderm cells (oTr1) treated with different doses of exosomes were analyzed for the expression of genes involved in TLR-mediated cell signaling. The results revealed that exosomes contain mRNAs for enJSRV-ENV, HSC70, interleukins, and interferon (IFN)-regulatory factors. Exosomal content of enJSRV-ENV mRNA and protein decreased from days 10 and 12 to day 16 of gestation, and uterine expression of HSC70 increased in pregnant ewes compared with cyclic ewes. The oTr1 cells proliferated and secreted IFNT in a dose-dependent manner in response to exosomes from cyclic ewes. The expression of CD14, CD68, IRAK1, TRAF6, IRF6, and IRF7 mRNAs that are key to TLR-mediated expression of type 1 IFNs was significantly influenced by day of pregnancy. This study demonstrated that exosomes are liberated into the uterine lumen during the estrous cycle and early pregnancy; however, in pregnant ewes, exosomes stimulate trophectoderm cells to proliferate and secrete IFNT coordinately with regulation of TLR-mediated cell signaling. These results support our hypothesis that free and/or exosomal enJSRV act on the trophectoderm via TLR to induce the secretion of IFNT in a manner similar to that for innate immune responses of macrophages and plasmacytoid dendritic cells to viral pathogens. (hide)
EV-METRIC
25% (62nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Uterine luminal fluid
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
ExoQuick
UF
Protein markers
EV: HSP70
non-EV: Cell organelle protein
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Equus caballus
Sample Type
Uterine luminal fluid
Separation Method
Commercial kit
ExoQuick
Other
Name other separation method
ExoQuick
Characterization: Protein analysis
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
HSP70
Detected contaminants
Cell organelle protein
Characterization: Particle analysis
EM
EM-type
transmission EM
EV140199 1/2 Homo sapiens Milk (d)(U)C
DG
Filtration
Näslund TI 2014 25%

Study summary

Full title
All authors
Näslund TI, Paquin-Proulx D, Paredes PT, Vallhov H, Sandberg JK, Gabrielsson S
Journal
AIDS
Abstract
OBJECTIVE: To investigate whether exosomes derived from human breast milk or plasma confer protectio (show more...)OBJECTIVE: To investigate whether exosomes derived from human breast milk or plasma confer protection against HIV-1 infection of monocyte-derived dendritic cells (MDDCs) and subsequent viral transfer to CD4 T cells. DESIGN: MDDCs were generated and milk and plasma-derived exosomes were isolated from healthy donors. To determine the capacity of exosomes to inhibit HIV-1 infection, MDDCs were preincubated with exosomes before exposure to HIV-1BaL. To investigate transfer of HIV-1 from MDDCs to CD4 T cells, MDDCs preincubated with exosomes and HIV-1BaL were cocultured with allogeneic CD4 T cells. To explore receptors used by MDDCs for binding of exosomes, blocking experiments were performed. METHODS: Productive HIV-1 infection was analysed in MDDCs and CD4 T cells by determining p24 expression by flow cytometry. Confocal microscopy and flow cytometry was used to investigate uptake of fluorescently labelled exosomes by MDDCs. RESULTS: Milk exosomes, but not plasma exosomes, bind MDDCs via DC-SIGN inhibiting HIV-1 infection of MDDCs and subsequent viral transfer to CD4 T cells. CONCLUSION: We propose that milk exosomes act as a novel protective factor against vertical transmission of HIV-1 by competing with HIV-1 for binding to DC-SIGN on MDDCs. (hide)
EV-METRIC
25% (31st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Milk
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
Filtration
Protein markers
EV: MUC1
non-EV:
Proteomics
no
EV density (g/ml)
1.11-1.2
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Milk
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
80
Density gradient
Only used for validation of main results
Yes
Lowest density fraction
0.25
Highest density fraction
2
Orientation
Top-down
Filtration steps
> 0.45 µm, 0.45µm > x > 0.22µm, 0.22µm or 0.2µm
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
MUC1
ELISA
Antibody details provided?
No
Detected EV-associated proteins
MUC1
Characterization: Particle analysis
None
EV140199 2/2 Homo sapiens Blood plasma (d)(U)C
DG
Filtration
Näslund TI 2014 25%

Study summary

Full title
All authors
Näslund TI, Paquin-Proulx D, Paredes PT, Vallhov H, Sandberg JK, Gabrielsson S
Journal
AIDS
Abstract
OBJECTIVE: To investigate whether exosomes derived from human breast milk or plasma confer protectio (show more...)OBJECTIVE: To investigate whether exosomes derived from human breast milk or plasma confer protection against HIV-1 infection of monocyte-derived dendritic cells (MDDCs) and subsequent viral transfer to CD4 T cells. DESIGN: MDDCs were generated and milk and plasma-derived exosomes were isolated from healthy donors. To determine the capacity of exosomes to inhibit HIV-1 infection, MDDCs were preincubated with exosomes before exposure to HIV-1BaL. To investigate transfer of HIV-1 from MDDCs to CD4 T cells, MDDCs preincubated with exosomes and HIV-1BaL were cocultured with allogeneic CD4 T cells. To explore receptors used by MDDCs for binding of exosomes, blocking experiments were performed. METHODS: Productive HIV-1 infection was analysed in MDDCs and CD4 T cells by determining p24 expression by flow cytometry. Confocal microscopy and flow cytometry was used to investigate uptake of fluorescently labelled exosomes by MDDCs. RESULTS: Milk exosomes, but not plasma exosomes, bind MDDCs via DC-SIGN inhibiting HIV-1 infection of MDDCs and subsequent viral transfer to CD4 T cells. CONCLUSION: We propose that milk exosomes act as a novel protective factor against vertical transmission of HIV-1 by competing with HIV-1 for binding to DC-SIGN on MDDCs. (hide)
EV-METRIC
25% (55th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
Filtration
Protein markers
EV: MUC1
non-EV:
Proteomics
no
EV density (g/ml)
1.11-1.2
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Density gradient
Only used for validation of main results
Yes
Lowest density fraction
0.25
Highest density fraction
2
Orientation
Top-down
Filtration steps
0.22µm or 0.2µm
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
MUC1
ELISA
Antibody details provided?
No
Detected EV-associated proteins
MUC1
Characterization: Particle analysis
None
EV140189 1/1 Homo sapiens Urine (d)(U)C
UF
Liu X 2014 25%

Study summary

Full title
All authors
Liu X, Chinello C, Musante L, Cazzaniga M, Tataruch D, Calzaferri G, James Smith A, De Sio G, Magni F, Zou H, Holthofer H
Journal
Proteomics Clin Appl
Abstract
PURPOSE: Urinary extracellular vesicles (UEVs) are a novel source for disease biomarker discovery. H (show more...)PURPOSE: Urinary extracellular vesicles (UEVs) are a novel source for disease biomarker discovery. However, Tamm-Horsfall protein (THP) is still a challenge for proteomic analysis since it can inhibit detection of low-abundance proteins. Here, we introduce a new approach that does not involve an ultracentrifugation step to enrich vesicles and that reduces the amount of THP to manageable levels. EXPERIMENTAL DESIGN: UEVs were dialyzed and ultrafiltered after reduction and alkylation. The retained fraction was digested with trypsin to reduce the remaining THP and incubated with deoxycholate (DOC). The internal peptidome and internal proteome were analyzed by LC-ESI-MS. RESULTS: A total of 942 different proteins and 3115 unique endogenous peptide fragments deriving from 973 different protein isoforms were identified. Around 82% of the key endosomal sorting complex required for transport components of UEVs generation could be detected from the intraluminal content. CONCLUSIONS AND CLINICAL RELEVANCE: Our UEVs preparation protocol provides a simplified way to investigate the intraluminal proteome and peptidome, in particular the subpopulation of UEVs of the trypsin-resistant class of exosomes (positive for tumor susceptibility gene101) and eliminates the majority of interfering proteins such as THP. This method allows the possibility to study endoproteome and endopeptidome of UEVs, thus greatly facilitating biomarker discovery. (hide)
EV-METRIC
25% (56th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
UF
Protein markers
EV: TSG101
non-EV: Tamm-Horsfall glycoprotein
Proteomics
yes
Show all info
Study aim
Omics
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
TSG101
Detected contaminants
Tamm-Horsfall glycoprotein
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV140172 2/2 Homo sapiens Blood plasma SEC Jiang ZG 2014 25%

Study summary

Full title
All authors
Jiang ZG, Wu Y, Csizmadia E, Feldbrügge L, Enjyoji K, Tigges J, Toxavidis V, Stephan H, Müller CE, McKnight CJ, Moss A, Robson SC
Journal
Purinergic Signal
Abstract
Phosphohydrolysis of extracellular ATP and ADP is an essential step in purinergic signaling that reg (show more...)Phosphohydrolysis of extracellular ATP and ADP is an essential step in purinergic signaling that regulates key pathophysiological processes, such as those linked to inflammation. Classically, this reaction has been known to occur in the pericellular milieu catalyzed by membrane bound cellular ecto-nucleotidases, which can be released in the form of both soluble ecto-enzymes as well as being associated with exosomes. Circulating ecto-nucleoside triphosphate diphosphohydrolase 1 (NTPDase 1/CD39) and adenylate kinase 1 (AK1) activities have been shown to be present in plasma. However, other ecto-nucleotidases have not been characterized in depth. An in vitro ADPase assay was developed to probe the ecto-enzymes responsible for the ecto-nucleotidase activity in human platelet-free plasma, in combination with various specific biochemical inhibitors. Identities of ecto-nucleotidases were further characterized by chromatography, immunoblotting, and flow cytometry of circulating exosomes. We noted that microparticle-bound E-NTPDases and soluble AK1 constitute the highest levels of ecto-nucleotidase activity in human plasma. All four cell membrane expressed E-NTPDases are also found in circulating microparticles in human plasma, inclusive of: CD39, NTPDase 2 (CD39L1), NTPDase 3 (CD39L3), and NTPDase 8. CD39 family members and other ecto-nucleotidases are found on distinct microparticle populations. A significant proportion of the microparticle-associated ecto-nucleotidase activity is sensitive to POM6, inferring the presence of NTPDases, either -2 or/and -3. We have refined ADPase assays of human plasma from healthy volunteers and have found that CD39, NTPDases 2, 3, and 8 to be associated with circulating microparticles, whereas soluble AK1 is present in human plasma. These ecto-enzymes constitute the bulk circulating ADPase activity, suggesting a broader implication of CD39 family and other ecto-enzymes in the regulation of extracellular nucleotide metabolism. (hide)
EV-METRIC
25% (55th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
NAY
Focus vesicles
microparticles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
SEC
Protein markers
EV:
non-EV: NTPD8/ CD39/ NTPD2/ NTPD3/
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected contaminants
"CD39/ NTPD2/ NTPD3/ NTPD8/ "
Characterization: Particle analysis
None
EV140079 1/1 Homo sapiens Urine (d)(U)C
UF
Ho DH 2014 25%

Study summary

Full title
All authors
Ho DH, Yi S, Seo H, Son I, Seol W
Journal
Biomed Res Int
Abstract
Parkinson's disease (PD) is a difficult disease to diagnose although it is the second most common ne (show more...)Parkinson's disease (PD) is a difficult disease to diagnose although it is the second most common neurodegenerative disease. Recent studies show that exosome isolated from urine contains LRRK2 or DJ-1, proteins whose mutations cause PD. To investigate a potential use for urine exosomes as a tool for PD diagnosis, we compared levels of LRRK2, ?-synuclein, and DJ-1 in urine exosomes isolated from Korean PD patients and non-PD controls. LRRK2 and DJ-1, but not ?-synuclein, were detected in the urine exosome samples, as reported previously. We initially could not detect any significant difference in these protein levels between the patient and the control groups. However, when age, disease duration, L-dopa daily dose, and gender were considered as analytical parameters, LRRK2 and DJ-1 protein levels showed clear gender-dependent differences. In addition, DJ-1 level was significantly higher (1.7-fold) in male patients with PD than that in male non-PD controls and increased in an age-dependent manner in male patients with PD. Our observation might provide a clue to lead to a novel biomarker for PD diagnosis, at least in males. (hide)
EV-METRIC
25% (56th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
UF
Protein markers
EV: TSG101
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
No
Characterization: Protein analysis
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
TSG101
Characterization: Particle analysis
None
EV140070 1/1 Homo sapiens
Rattus norvegicus/rattus
"Cerebrospinal fluid" (d)(U)C
ExoQuick
Feliciano DM 2014 25%

Study summary

Full title
All authors
Feliciano DM, Zhang S, Nasrallah CM, Lisgo SN, Bordey A
Journal
PLoS One
Abstract
During brain development, neural stem cells (NSCs) receive on-or-off signals important for regulatin (show more...)During brain development, neural stem cells (NSCs) receive on-or-off signals important for regulating their amplification and reaching adequate neuron density. However, how a coordinated regulation of intracellular pathways and genetic programs is achieved has remained elusive. Here, we found that the embryonic (e) CSF contains 10¹² nanoparticles/ml (77 nm diameter), some of which were identified as exosome nanovesicles that contain evolutionarily conserved molecules important for coordinating intracellular pathways. eCSF nanovesicles collected from rodent and human embryos encapsulate protein and microRNA components of the insulin-like growth factor (IGF) signaling pathway. Supplementation of eCSF nanovesicles to a mixed culture containing eNSCs activated the IGF-mammalian target of rapamycin complex 1 (mTORC1) pathway in eNSCs and expanded the pool of proliferative eNSCs. These data show that the eCSF serves as a medium for the distribution of nanovesicles, including exosomes, and the coordinated transfer of evolutionary conserved molecules that regulate eNSC amplification during corticogenesis. (hide)
EV-METRIC
25% (65th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
"Cerebrospinal fluid"
Sample origin
NAY
Focus vesicles
Nano(-sized) vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
ExoQuick
Protein markers
EV: PKM2/ CD63/ CD81/ PTEN/ HSP70/ Phospholipase D1
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens / Rattus norvegicus/rattus
Sample Type
"Cerebrospinal fluid"
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Commercial kit
ExoQuick
Other
Name other separation method
ExoQuick
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ CD81/ HSP70/ "PKM2/ PTEN/ Phospholipase D1"
ELISA
Antibody details provided?
No
Detected EV-associated proteins
"PKM2/ PTEN/ Phospholipase D1"
Characterization: Particle analysis
NTA
EM
EM-type
transmission EM
Image type
Close-up
EV140150 2/3 Homo sapiens Blood plasma ExoQuick Cui H 2014 25%

Study summary

Full title
All authors
Cui H, Seubert B, Stahl E, Dietz H, Reuning U, Moreno-Leon L, Ilie M, Hofman P, Nagase H, Mari B, Krüger A
Journal
Oncogene
Abstract
Tissue inhibitor of metalloproteinases-1 (TIMP-1) recently emerged as a pro-metastatic factor highly (show more...)Tissue inhibitor of metalloproteinases-1 (TIMP-1) recently emerged as a pro-metastatic factor highly associated with poor prognosis in a number of cancers. This correlation seemed paradox as TIMP-1 is best described as an inhibitor of pro-tumourigenic matrix metalloproteinases. Only recently, TIMP-1 has been revealed as a signalling molecule that can regulate cancer progression independent of its inhibitory properties. In the present study, we demonstrate that an increase of both exogenous and endogenous TIMP-1 led to the upregulation of miR-210 in a CD63/PI3K/AKT/HIF-1-dependent pathway in lung adenocarcinoma cells. TIMP-1 induced P110/P85 PI3K-signalling and AKT phosphorylation. It also led to increase of HIF-1? protein levels positively correlating with HIF-1-regulated mRNA expression and upregulation of the microRNA miR-210. Downstream targets of miR-210, namely FGFRL1, E2F3, VMP-1, RAD52 and SDHD, were decreased in the presence of TIMP-1. Upon the overexpression of TIMP-1 in tumour cells, miR-210 was accumulated in exosomes in vitro and in vivo. These exosomes promoted tube formation activity in human umbilical vein endothelial cell (HUVECs), which was reflected in increased angiogenesis in A549L-derived tumour xenografts. Activation and elevation of PI3K, AKT, HIF-1A and miR-210 in tumours additionally confirmed our in vitro data. This new pro-tumourigenic signalling function of TIMP-1 may explain why elevated TIMP-1 levels in lung cancer patients are highly correlated with poor prognosis. (hide)
EV-METRIC
25% (55th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
ExoQuick
Protein markers
EV: TSG101/ CD63/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Commercial kit
ExoQuick
Other
Name other separation method
ExoQuick
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ CD9/ TSG101
Characterization: Particle analysis
DLS
EM
EM-type
transmission EM
Image type
Close-up
EV140064 2/2 Homo sapiens Serum (d)(U)C
ExoQuick
Caradec J 2014 25%

Study summary

Full title
All authors
Caradec J, Kharmate G, Hosseini-Beheshti E, Adomat H, Gleave M, Guns E
Journal
Clin Biochem
Abstract
OBJECTIVES: Exosomes are emerging as a source of biomarkers with putative prognostic and diagnostic (show more...)OBJECTIVES: Exosomes are emerging as a source of biomarkers with putative prognostic and diagnostic value. However, little is known about the efficiency, reproducibility and reliability of the protocols routinely used to quantify exosomes in the human serum. DESIGN AND METHODS: We used increasing amounts of the same serum sample to isolate exosomes using two different methods: ultracentrifugation onto a sucrose cushion and ExoQuick™. Quantitative analysis of serum-derived exosomes was performed by determining protein concentration (BCA assay) and the number of nanoparticles (Nanosight™ technology). Exosome quality was assessed by Coomassie staining and Western blotting for CD9, LAMP2 exosomal markers and a negative marker Grp94. RESULTS: Correlation between serum volume and the number of isolated exosomes is significant for both methods when exosomes are quantified using protein concentration. However, when the number of nanoparticles is used to quantify exosomes, ExoQuick™ is the only reproducible and efficient method. CD9, LAMP2 and Grp94 exosomal markers are equivalently expressed in both methods. However, exosomes isolated using ultracentrifuge method are strongly contaminated with albumin and IgG. CONCLUSION: ExoQuick™ is an efficient and reproducible method to isolate exosomes for quantitative studies, whereas ultracentrifugation is not. Moreover, high albumin contamination of ultracentrifuged-derived exosomes impairs the use of protein concentration as a mean to quantify serum-derived exosomes. (hide)
EV-METRIC
25% (67th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
ExoQuick
Protein markers
EV: LAMP2/ CD9
non-EV: Albumin/ HSP90B1/ Cell organelle protein
Proteomics
no
Show all info
Study aim
Technical
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
Commercial kit
ExoQuick
Other
Name other separation method
ExoQuick
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ LAMP2
Detected contaminants
Cell organelle protein/ Albumin/ HSP90B1
ELISA
Antibody details provided?
No
Detected EV-associated proteins
LAMP2
Characterization: Particle analysis
NTA
EM
EM-type
transmission EM
Image type
Close-up
EV140291 3/4 Homo sapiens NAY (d)(U)C
ExoQuick
Filtration
IAF
UF
Bukong TN 2014 25%

Study summary

Full title
All authors
Bukong TN, Momen-Heravi F, Kodys K, Bala S, Szabo G
Journal
PLoS Pathog
Abstract
Antibodies targeting receptor-mediated entry of HCV into hepatocytes confer limited therapeutic bene (show more...)Antibodies targeting receptor-mediated entry of HCV into hepatocytes confer limited therapeutic benefits. Evidence suggests that exosomes can transfer genetic materials between cells; however, their role in HCV infection remains obscure. Here, we show that exosomes isolated from sera of chronic HCV infected patients or supernatants of J6/JFH1-HCV-infected Huh7.5 cells contained HCV RNA. These exosomes could mediate viral receptor-independent transmission of HCV to hepatocytes. Negative sense HCV RNA, indicative of replication competent viral RNA, was present in exosomes of all HCV infected treatment non-responders and some treatment-naïve individuals. Remarkably, HCV RNA was associated with Ago2, HSP90 and miR-122 in exosomes isolated from HCV-infected individuals or HCV-infected Huh7.5 cell supernatants. Exosome-loading with a miR-122 inhibitor, or inhibition of HSP90, vacuolar H+-ATPases, and proton pumps, significantly suppressed exosome-mediated HCV transmission to naïve cells. Our findings provide mechanistic evidence for HCV transmission by blood-derived exosomes and highlight potential therapeutic strategies. (hide)
EV-METRIC
25% (64th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
ExoQuick
Filtration
IAF
UF
Protein markers
EV: HSP90/ CD63/ Ago2
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Commercial kit
ExoQuick
Immunoaffinity capture
Selected surface protein(s)
CD63
Other
Name other separation method
ExoQuick
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ HSP90/ Ago2
ELISA
Antibody details provided?
No
Detected EV-associated proteins
CD63/ HSP90/ Ago2
Characterization: Particle analysis
NTA
EM
EM-type
transmission EM
Image type
Wide-field
EV140137 2/2 Homo sapiens NAY (d)(U)C
Salting
Brownlee Z 2014 25%

Study summary

Full title
All authors
Brownlee Z, Lynn KD, Thorpe PE, Schroit AJ
Journal
J Immunol Methods
Abstract
The last decade has seen an exponential growth in the number of exosome-related publications. Althou (show more...)The last decade has seen an exponential growth in the number of exosome-related publications. Although many of these studies have used exosomes from biological fluids (blood, and ascites or pleural effusions) the vast majority employed vesicles isolated from large volumes of tissue culture supernatants. While several techniques are available for their isolation, all require a significant reduction in volume to obtain sufficient concentrations for study. One approach is to concentrate the medium before proceeding with their isolation, however, these procedures are very time consuming and require specialized laboratory equipment. Here we provide a new and effective method for the isolation of tumor-derived exosomes based on charge neutralization with acetate. We show that titration of tissue culture supernatants with 0.1M acetate to pH4.75 results in immediate precipitation of virtually all the exosomes. The precipitated exosomes can be washed to remove residual media and are readily resolubilized upon resuspension in acetate-free buffer at neutral pH. This simple cost effective method significantly increases the yield of exosomes from an unlimited quantity of culture supernatants. Exosomes isolated by this technique are indistinguishable from exosomes recovered by direct ultracentrifugation. (hide)
EV-METRIC
25% (64th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Salting
Protein markers
EV: Alix/ HSP70/ Annexin5
non-EV:
Proteomics
no
Show all info
Study aim
Technical
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Other
Name other separation method
Salting
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix/ HSP70/ Annexin5
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Annexin5
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV140059 2/3 Homo sapiens NAY (d)(U)C
Exospin
Filtration
Barile L 2014 25%

Study summary

Full title
All authors
Barile L, Lionetti V, Cervio E, Matteucci M, Gherghiceanu M, Popescu LM, Torre T, Siclari F, Moccetti T, Vassalli G
Journal
Cardiovasc Res
Abstract
AIMS: Recent evidence suggests that cardiac progenitor cells (CPCs) may improve cardiac function aft (show more...)AIMS: Recent evidence suggests that cardiac progenitor cells (CPCs) may improve cardiac function after injury. The underlying mechanisms are indirect, but their mediators remain unidentified. Exosomes and other secreted membrane vesicles, hereafter collectively referred to as extracellular vesicles (EVs), act as paracrine signalling mediators. Here, we report that EVs secreted by human CPCs are crucial cardioprotective agents. METHODS AND RESULTS: CPCs were derived from atrial appendage explants from patients who underwent heart valve surgery. CPC-conditioned medium (CM) inhibited apoptosis in mouse HL-1 cardiomyocytic cells, while enhancing tube formation in human umbilical vein endothelial cells. These effects were abrogated by depleting CM of EVs. They were reproduced by EVs secreted by CPCs, but not by those secreted by human dermal fibroblasts. Transmission electron microscopy and nanoparticle tracking analysis showed most EVs to be 30-90 nm in diameter, the size of exosomes, although smaller and larger vesicles were also present. MicroRNAs most highly enriched in EVs secreted by CPCs compared with fibroblasts included miR-210, miR-132, and miR-146a-3p. miR-210 down-regulated its known targets, ephrin A3 and PTP1b, inhibiting apoptosis in cardiomyocytic cells. miR-132 down-regulated its target, RasGAP-p120, enhancing tube formation in endothelial cells. Infarcted hearts injected with EVs from CPCs, but not from fibroblasts, exhibited less cardiomyocyte apoptosis, enhanced angiogenesis, and improved LV ejection fraction (0.8 ± 6.8 vs. -21.3 ± 4.5%; P < 0.05) compared with those injected with control medium. CONCLUSION: EVs are the active component of the paracrine secretion by human CPCs. As a cell-free approach, EVs could circumvent many of the limitations of cell transplantation. (hide)
EV-METRIC
25% (64th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Exospin
Filtration
Protein markers
EV: CD81/ CD63
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Commercial kit
Exospin
Other
Name other separation method
Exospin
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ CD81
Characterization: Particle analysis
NTA
EV140133 1/1 Homo sapiens NAY (d)(U)C
DG
Filtration
Arenaccio C 2014 25%

Study summary

Full title
All authors
Arenaccio C, Chiozzini C, Columba-Cabezas S, Manfredi F, Affabris E, Baur A, Federico M
Journal
J Virol
Abstract
Resting CD4+ T lymphocytes resist human immunodeficiency virus (HIV) infection. Here, we provide evi (show more...)Resting CD4+ T lymphocytes resist human immunodeficiency virus (HIV) infection. Here, we provide evidence that exosomes from HIV-1-infected cells render resting human primary CD4+ T lymphocytes permissive to HIV-1 replication. These results were obtained with transwell cocultures of HIV-1-infected cells with quiescent CD4+ T lymphocytes in the presence of inhibitors of exosome release and were confirmed using exosomes purified from supernatants of HIV-1-infected primary CD4+ T lymphocytes. We found that the expression of HIV-1 Nef in exosome-producing cells is both necessary and sufficient for cell activation as well as HIV-1 replication in target CD4+ T lymphocytes. We also identified a Nef domain important for the effects we observed, i.e., the 62EEEE65 acidic cluster domain. In addition, we observed that ADAM17, i.e., a disintegrin and metalloprotease converting pro-tumor necrosis factor alpha (TNF-?) in its mature form, associates with exosomes from HIV-1-infected cells, and plays a key role in the HIV-1 replication in quiescent CD4+ T lymphocytes. Treatment with an inhibitor of ADAM17 abolished both activation and HIV-1 replication in resting CD4+ T lymphocytes. TNF-? is the downstream effector of ADAM17 since the treatment of resting lymphocytes with anti-TNF-? antibodies blocked the HIV-1 replication. The data presented here are consistent with a model where Nef induces intercellular communication through exosomes to activate bystander quiescent CD4+ T lymphocytes, thus stimulating viral spread.IMPORTANCE: Overall, our findings support the idea that HIV evolved to usurp the exosome-based intercellular communication network to favor its spread in infected hosts. (hide)
EV-METRIC
25% (64th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
Filtration
Protein markers
EV: AChE/ CD63/ ICAM1
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Density gradient
Only used for validation of main results
Yes
Lowest density fraction
6
Highest density fraction
18
Orientation
Top-down
Filtration steps
0.22µm or 0.2µm
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
AChE/ ICAM1
ELISA
Antibody details provided?
No
Detected EV-associated proteins
AChE/ ICAM1
Characterization: Particle analysis
None
EV140263 2/2 Homo sapiens NAY (d)(U)C
Filtration
Yoshioka Y 2014 22%

Study summary

Full title
All authors
Yoshioka Y, Kosaka N, Konishi Y, Ohta H, Okamoto H, Sonoda H, Nonaka R, Yamamoto H, Ishii H, Mori M, Furuta K, Nakajima T, Hayashi H, Sugisaki H, Higashimoto H, Kato T, Takeshita F, Ochiya T
Journal
Nat Commun
Abstract
Cancer cells secrete small membranous extracellular vesicles (EVs) into their microenvironment and c (show more...)Cancer cells secrete small membranous extracellular vesicles (EVs) into their microenvironment and circulation. Although their potential as cancer biomarkers has been promising, the identification and quantification of EVs in clinical samples remains challenging. Here we describe a sensitive and rapid analytical technique for profiling circulating EVs directly from blood samples of patients with colorectal cancer. EVs are captured by two types of antibodies and are detected by photosensitizer-beads, which enables us to detect cancer-derived EVs without a purification step. We also show that circulating EVs can be used for detection of colorectal cancer using the antigen CD147, which is embedded in cancer-linked EVs. This work describes a new liquid biopsy technique to sensitively detect disease-specific circulating EVs and provides perspectives in translational medicine from the standpoint of diagnosis and therapy. (hide)
EV-METRIC
22% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: CD147/ CD63/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Technical
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Wash: volume per pellet (ml)
11
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
CD63/ CD9/ CD147
ELISA
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
CD63/ CD9/ CD147
Characterization: Particle analysis
None
EV140290 3/3 Homo sapiens Blood plasma (d)(U)C van der Mijn JC 2014 22%

Study summary

Full title
All authors
van der Mijn JC, Sol N, Mellema W, Jimenez CR, Piersma SR, Dekker H, Schutte LM, Smit EF, Broxterman HJ, Skog J, Tannous BA, Wurdinger T, Verheul HM
Journal
J Extracell Vesicles
Abstract
BACKGROUND: Extracellular vesicles (EVs) are small nanometre-sized vesicles that are circulating in (show more...)BACKGROUND: Extracellular vesicles (EVs) are small nanometre-sized vesicles that are circulating in blood. They are released by multiple cells, including tumour cells. We hypothesized that circulating EVs contain protein kinases that may be assessed as biomarkers during treatment with tyrosine kinase inhibitors. METHODS: EVs released by U87 glioma cells, H3255 and H1650 non-small-cell lung cancer (NSCLC) cells were profiled by tandem mass spectrometry. Total AKT/protein kinase B and extracellular signal regulated kinase 1/2 (ERK1/2) levels as well as their relative phosphorylation were measured by western blot in isogenic U87 cells with or without mutant epidermal growth factor receptor (EGFRvIII) and their corresponding EVs. To assess biomarker potential, plasma samples from 24 healthy volunteers and 42 patients with cancer were used. RESULTS: In total, 130 different protein kinases were found to be released in EVs including multiple drug targets, such as mammalian target of rapamycin (mTOR), AKT, ERK1/2, AXL and EGFR. Overexpression of EGFRvIII in U87 cells results in increased phosphorylation of EGFR, AKT and ERK1/2 in cells and EVs, whereas a decreased phosphorylation was noted upon treatment with the EGFR inhibitor erlotinib. EV samples derived from patients with cancer contained significantly more protein (p=0.0067) compared to healthy donors. Phosphorylation of AKT and ERK1/2 in plasma EVs from both healthy donors and patients with cancer was relatively low compared to levels in cancer cells. Preliminary analysis of total AKT and ERK1/2 levels in plasma EVs from patients with NSCLC before and after sorafenib/metformin treatment (n=12) shows a significant decrease in AKT levels among patients with a favourable treatment response (p<0.005). CONCLUSION: Phosphorylation of protein kinases in EVs reflects their phosphorylation in tumour cells. Total AKT protein levels may allow monitoring of kinase inhibitor responses in patients with cancer. (hide)
EV-METRIC
22% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Adj. k-factor
256 (pelleting)
Protein markers
EV: GAPDH
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
SW32
Pelleting: adjusted k-factor
256.0
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
GAPDH
ELISA
Antibody details provided?
No
Detected EV-associated proteins
GAPDH
Characterization: Particle analysis
None
EV140287 2/2 Drosophila melanogaster NAY (d)(U)C
DG
Matusek T 2014 22%

Study summary

Full title
All authors
Matusek T, Wendler F, Polès S, Pizette S, D'Angelo G, Fürthauer M, Thérond PP
Journal
Nature
Abstract
The conserved family of Hedgehog (Hh) proteins acts as short- and long-range secreted morphogens, co (show more...)The conserved family of Hedgehog (Hh) proteins acts as short- and long-range secreted morphogens, controlling tissue patterning and differentiation during embryonic development. Mature Hh carries hydrophobic palmitic acid and cholesterol modifications essential for its extracellular spreading. Various extracellular transportation mechanisms for Hh have been suggested, but the pathways actually used for Hh secretion and transport in vivo remain unclear. Here we show that Hh secretion in Drosophila wing imaginal discs is dependent on the endosomal sorting complex required for transport (ESCRT). In vivo the reduction of ESCRT activity in cells producing Hh leads to a retention of Hh at the external cell surface. Furthermore, we show that ESCRT activity in Hh-producing cells is required for long-range signalling. We also provide evidence that pools of Hh and ESCRT proteins are secreted together into the extracellular space in vivo and can subsequently be detected together at the surface of receiving cells. These findings uncover a new function for ESCRT proteins in controlling morphogen activity and reveal a new mechanism for the transport of secreted Hh across the tissue by extracellular vesicles, which is necessary for long-range target induction. (hide)
EV-METRIC
22% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
Protein markers
EV: Hh
non-EV:
Proteomics
no
EV density (g/ml)
1.18-1.2
Show all info
Study aim
Function
Sample
Species
Drosophila melanogaster
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Density gradient
Only used for validation of main results
Yes
Lowest density fraction
10
Highest density fraction
45
Orientation
Top-down
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Hh
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Hh
Characterization: Particle analysis
EM
EM-type
immune EM
EM protein
Hh
Image type
Wide-field
EV140254 1/1 Mus musculus NAY (d)(U)C
UF
Madison RD 2014 22%

Study summary

Full title
All authors
Madison RD, McGee C, Rawson R, Robinson GA
Journal
J Extracell Vesicles
Abstract
INTRODUCTION: There is renewed interest in extracellular vesicles over the past decade or 2 after in (show more...)INTRODUCTION: There is renewed interest in extracellular vesicles over the past decade or 2 after initially being thought of as simple cellular garbage cans to rid cells of unwanted components. Although there has been intense research into the role of extracellular vesicles in the fields of tumour and stem cell biology, the possible role of extracellular vesicles in nerve regeneration is just in its infancy. BACKGROUND: When a peripheral nerve is damaged, the communication between spinal cord motor neurons and their target muscles is disrupted and the result can be the loss of coordinated muscle movement. Despite state-of-the-art surgical procedures only approximately 10% of adults will recover full function after peripheral nerve repair. To improve upon such results will require a better understanding of the basic mechanisms that influence axon outgrowth and the interplay between the parent motor neuron and the distal end organ of muscle. It has previously been shown that extracellular vesicles are immunologically tolerated, display targeting ligands on their surface, and can be delivered in vivo to selected cell populations. All of these characteristics suggest that extracellular vesicles could play a significant role in nerve regeneration. METHODS: We have carried out studies using 2 very well characterized cell lines, the C2C12 muscle cell line and the motor neuron cell line NSC-34 to ask the question: Do extracellular vesicles from muscle influence cell survival and/or neurite outgrowth of motor neurons? CONCLUSION: Our results show striking effects of extracellular vesicles derived from the muscle cell line on the motor neuron cell line in terms of neurite outgrowth and survival. (hide)
EV-METRIC
22% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
UF
Adj. k-factor
213.2 (pelleting)
Protein markers
EV: CD63
non-EV: Cell organelle protein
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW41
Pelleting: adjusted k-factor
213.2
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63
Detected contaminants
Cell organelle protein
Characterization: Particle analysis
NTA
EV140436 1/2 Mus musculus NAY (d)(U)C Le MT 2014 22%

Study summary

Full title
All authors
Le MT, Hamar P, Guo C, Basar E, Perdigão-Henriques R, Balaj L, Lieberman J
Journal
J Clin Invest
Abstract
Metastasis is associated with poor prognosis in breast cancer patients. Not all cancer cells within (show more...)Metastasis is associated with poor prognosis in breast cancer patients. Not all cancer cells within a tumor are capable of metastasizing. The microRNA-200 (miR-200) family, which regulates the mesenchymal-to-epithelial transition, is enriched in the serum of patients with metastatic cancers. Ectopic expression of miR-200 can confer metastatic ability to poorly metastatic tumor cells in some settings. Here, we investigated whether metastatic capability could be transferred between metastatic and nonmetastatic cancer cells via extracellular vesicles. miR-200 was secreted in extracellular vesicles from metastatic murine and human breast cancer cell lines, and miR-200 levels were increased in sera of mice bearing metastatic tumors. In culture, murine and human metastatic breast cancer cell extracellular vesicles transferred miR-200 microRNAs to nonmetastatic cells, altering gene expression and promoting mesenchymal-to-epithelial transition. In murine cancer and human xenograft models, miR-200-expressing tumors and extracellular vesicles from these tumors promoted metastasis of otherwise weakly metastatic cells either nearby or at distant sites and conferred to these cells the ability to colonize distant tissues in a miR-200-dependent manner. Together, our results demonstrate that metastatic capability can be transferred by the uptake of extracellular vesicles. (hide)
EV-METRIC
22% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Adj. k-factor
253.9 (pelleting)
Protein markers
EV: Alix/ TSG101/ Actin/ AGO2
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
SW28
Pelleting: adjusted k-factor
253.9
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix/ TSG101/ AGO2/ Actin
ELISA
Antibody details provided?
No
Detected EV-associated proteins
AGO2/ Actin
Characterization: Particle analysis
NTA
EV140249 1/1 Homo sapiens NAY (d)(U)C Figliolini F 2014 22%

Study summary

Full title
All authors
Figliolini F, Cantaluppi V, De Lena M, Beltramo S, Romagnoli R, Salizzoni M, Melzi R, Nano R, Piemonti L, Tetta C, Biancone L, Camussi G
Journal
PLoS One
Abstract
The cross-talk between beta cells and endothelium plays a key role in islet physiopathology and in t (show more...)The cross-talk between beta cells and endothelium plays a key role in islet physiopathology and in the revascularization process after islet transplantation. However, the molecular mechanisms involved in this cross-talk are not fully elucidated. Extracellular vesicles (EVs) are secreted membrane nanoparticles involved in inter-cellular communication through the transfer of proteins and nucleic acids. The aims of this study were: 1) isolation and characterization of EVs from human islets; 2) evaluation of the pro-angiogenic effect of islet-derived EVs on human islet endothelial cells (IECs). EVs were isolated by ultracentrifugation from conditioned medium of human islets and characterized by nanotrack analysis (Nanosight), FACS, western blot, bioanalyzer, mRNA/microRNA RT-PCR array. On IECs, we evaluated EV-induced insulin mRNA transfer, proliferation, resistance to apoptosis, in vitro angiogenesis, migration, gene and protein profiling. EVs sized 236±54 nm, expressed different surface molecules and islet-specific proteins (insulin, C-peptide, GLP1R) and carried several mRNAs (VEGFa, eNOS) and microRNAs (miR-27b, miR-126, miR-130 and miR-296) involved in beta cell function, insulin secretion and angiogenesis. Purified EVs were internalized into IECs inducing insulin mRNA expression, protection from apoptosis and enhancement of angiogenesis. Human islets release biologically active EVs able to shuttle specific mRNAs and microRNAs (miRNAs) into target endothelial cells. These results suggest a putative role for islet-derived EVs in beta cell-endothelium cross-talk and in the neoangiogenesis process which is critical for engraftment of transplanted islets. (hide)
EV-METRIC
22% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: Beta-actin/ CD63/ Ago2
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ Ago2/ Beta-actin
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Ago2/ Beta-actin
Characterization: Particle analysis
NTA
EV140128 2/2 Homo sapiens Urine (d)(U)C
Filtration
IAF
Dimuccio V 2014 22%

Study summary

Full title
All authors
Dimuccio V, Ranghino A, Praticò Barbato L, Fop F, Biancone L, Camussi G, Bussolati B
Journal
PLoS One
Abstract
Extracellular vesicles (EVs) present in the urine are mainly released from cells of the nephron and (show more...)Extracellular vesicles (EVs) present in the urine are mainly released from cells of the nephron and can therefore provide information on kidney function. We here evaluated the presence of vesicles expressing the progenitor marker CD133 in the urine of normal subjects and of patients undergoing renal transplant. We found that EV expressing CD133 were present in the urine of normal subjects, but not of patients with end stage renal disease. The first day after transplant, urinary CD133+ EVs were present at low levels, to increase thereafter (at day 7). Urinary CD133(+) EVs significantly increased in patients with slow graft function in respect to those with early graft function. In patients with a severe pre-transplant vascular damage of the graft, CD133(+) EVs did not increase at day 7. At variance, the levels of EVs expressing the renal exosomal marker CD24 did not vary in the urine of patients with end stage renal disease or in transplanted patients in respect to controls. Sorted CD133(+) EVs were found to express glomerular and proximal tubular markers. These data indicate that urinary CD133(+) EVs are continuously released during the homeostatic turnover of the nephron and may provide information on its function or regenerative potential. (hide)
EV-METRIC
22% (49th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
IAF
Protein markers
EV: CD63/ AQP2 / AQP1/ CD81/ Rab5/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Filtration steps
> 0.45 µm,
Immunoaffinity capture
Selected surface protein(s)
CD133
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ CD81/ CD9/ "AQP1/ AQP2 / Rab5"
ELISA
Antibody details provided?
No
Detected EV-associated proteins
"AQP1/ AQP2 / Rab5"
Characterization: Particle analysis
NTA
EV140245 1/3 Homo sapiens Urine (d)(U)C
DC
Zubiri I 2014 22%

Study summary

Full title
All authors
Zubiri I, Posada-Ayala M, Sanz-Maroto A, Calvo E, Martin-Lorenzo M, Gonzalez-Calero L, de la Cuesta F, Lopez JA, Fernandez-Fernandez B, Ortiz A, Vivanco F, Alvarez-Llamas G
Journal
J Proteomics
Abstract
Diabetic nephropathy (DN) is a major complication of diabetes mellitus (DM), the most frequent cause (show more...)Diabetic nephropathy (DN) is a major complication of diabetes mellitus (DM), the most frequent cause of end-stage renal disease (ESRD). Exosomes isolated from urine are considered a rich non-invasive source of markers for renal events. Proteinuria associated with DN patients at advanced stages may result in contamination of exosomal fraction by co-precipitation of high abundance urine proteins, making it enormously difficult to obtain a reliable comparison of healthy individuals and DN patients and to detect minor proteins. We evaluated different protocols for urinary exosome isolation (ultracentrifugation-based and Exoquick® reagent-based) in combination with an easy and quick depletion procedure of contaminating high abundance proteins (albumin). The optimal methodology was then applied to investigate the proteome of human urinary exosomes in DN and controls using spectral counting LC-MS/MS analysis followed by selected reaction monitoring (SRM) confirmation. A panel of 3 proteins (AMBP, MLL3, and VDAC1) is differentially present in urinary exosomes from DN patients, opening a new field of research focused on improving diagnosis and follow-up of this pathology.BIOLOGICAL SIGNIFICANCE: Diabetic nephropathy (DN) is a progressive proteinuric kidney disease, a major complication of diabetes mellitus, and the most frequent cause of end-stage renal disease. Current markers of disease (i.e. creatinine and urinary albumin excretion) have proven limitations (i.e. some patients regress to normoalbuminuria, kidney damage may be already present in recently diagnoses microalbuminuric patients and renal function may decrease in the absence of significant albuminuria). We show here the first study on human DN proteome of urinary exosomes. Proteinuria associated to DN patients resulting in contamination of exosomal fraction and the associated difficulty to reliably compare healthy and disease conditions, are here overcome. A combined methodology pointed to increase exosomal proteome recovery and depletion of high-abundance proteome was here set-up. A total of 352 proteins were here identified for the first time associated to human urinary exosomes. Label-free quantitative comparison of DN urinary exosomes vs control group and SRM further validation, resulted in the discovery of a panel of three proteins (AMBP, MLL3 and VDAC1) which changes in DN, opening a new field of research focused to improve diagnosis and follow-up of this pathology. (hide)
EV-METRIC
22% (49th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DC
Protein markers
EV: Alix/ TSG101
non-EV: Albumin/ Cell organelle protein
Proteomics
yes
Show all info
Study aim
Technical
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix/ TSG101
Detected contaminants
Cell organelle protein/ Albumin
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV140245 3/3 Homo sapiens Urine (d)(U)C
DC
DDT
Zubiri I 2014 22%

Study summary

Full title
All authors
Zubiri I, Posada-Ayala M, Sanz-Maroto A, Calvo E, Martin-Lorenzo M, Gonzalez-Calero L, de la Cuesta F, Lopez JA, Fernandez-Fernandez B, Ortiz A, Vivanco F, Alvarez-Llamas G
Journal
J Proteomics
Abstract
Diabetic nephropathy (DN) is a major complication of diabetes mellitus (DM), the most frequent cause (show more...)Diabetic nephropathy (DN) is a major complication of diabetes mellitus (DM), the most frequent cause of end-stage renal disease (ESRD). Exosomes isolated from urine are considered a rich non-invasive source of markers for renal events. Proteinuria associated with DN patients at advanced stages may result in contamination of exosomal fraction by co-precipitation of high abundance urine proteins, making it enormously difficult to obtain a reliable comparison of healthy individuals and DN patients and to detect minor proteins. We evaluated different protocols for urinary exosome isolation (ultracentrifugation-based and Exoquick® reagent-based) in combination with an easy and quick depletion procedure of contaminating high abundance proteins (albumin). The optimal methodology was then applied to investigate the proteome of human urinary exosomes in DN and controls using spectral counting LC-MS/MS analysis followed by selected reaction monitoring (SRM) confirmation. A panel of 3 proteins (AMBP, MLL3, and VDAC1) is differentially present in urinary exosomes from DN patients, opening a new field of research focused on improving diagnosis and follow-up of this pathology.BIOLOGICAL SIGNIFICANCE: Diabetic nephropathy (DN) is a progressive proteinuric kidney disease, a major complication of diabetes mellitus, and the most frequent cause of end-stage renal disease. Current markers of disease (i.e. creatinine and urinary albumin excretion) have proven limitations (i.e. some patients regress to normoalbuminuria, kidney damage may be already present in recently diagnoses microalbuminuric patients and renal function may decrease in the absence of significant albuminuria). We show here the first study on human DN proteome of urinary exosomes. Proteinuria associated to DN patients resulting in contamination of exosomal fraction and the associated difficulty to reliably compare healthy and disease conditions, are here overcome. A combined methodology pointed to increase exosomal proteome recovery and depletion of high-abundance proteome was here set-up. A total of 352 proteins were here identified for the first time associated to human urinary exosomes. Label-free quantitative comparison of DN urinary exosomes vs control group and SRM further validation, resulted in the discovery of a panel of three proteins (AMBP, MLL3 and VDAC1) which changes in DN, opening a new field of research focused to improve diagnosis and follow-up of this pathology. (hide)
EV-METRIC
22% (49th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DC
DDT
Protein markers
EV: Alix/ TSG101
non-EV: Albumin/ Cell organelle protein
Proteomics
yes
Show all info
Study aim
Technical
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Wash: volume per pellet (ml)
10
Other
Name other separation method
DDT
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix/ TSG101
Detected contaminants
Cell organelle protein/ Albumin
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV140241 1/1 Mus musculus NAY (d)(U)C
Filtration
Zhao Y 2014 22%

Study summary

Full title
All authors
Zhao Y, Haney MJ, Gupta R, Bohnsack JP, He Z, Kabanov AV, Batrakova EV
Journal
PLoS One
Abstract
The pathobiology of Parkinson's disease (PD) is associated with the loss of dopaminergic neurons in (show more...)The pathobiology of Parkinson's disease (PD) is associated with the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) projecting to the striatum. Currently, there are no treatments that can halt or reverse the course of PD; only palliative therapies, such as replacement strategies for missing neurotransmitters, exist. Thus, the successful brain delivery of neurotrophic factors that promote neuronal survival and reverse the disease progression is crucial. We demonstrated earlier systemically administered autologous macrophages can deliver nanoformulated antioxidant, catalase, to the SNpc providing potent anti-inflammatory effects in PD mouse models. Here we evaluated genetically-modified macrophages for active targeted brain delivery of glial cell-line derived neurotropic factor (GDNF). To capitalize on the beneficial properties afforded by alternatively activated macrophages, transfected with GDNF-encoded pDNA cells were further differentiated toward regenerative M2 phenotype. A systemic administration of GDNF-expressing macrophages significantly ameliorated neurodegeneration and neuroinflammation in PD mice. Behavioral studies confirmed neuroprotective effects of the macrophage-based drug delivery system. One of the suggested mechanisms of therapeutic effects is the release of exosomes containing the expressed neurotropic factor followed by the efficient GDNF transfer to target neurons. Such formulations can serve as a new technology based on cell-mediated active delivery of therapeutic proteins that attenuate and reverse progression of PD, and ultimately provide hope for those patients who are already significantly disabled by the disease. (hide)
EV-METRIC
22% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: TSG101
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
TSG101
Characterization: Particle analysis
None
EV140237 1/1 Rattus norvegicus/rattus NAY (d)(U)C
DG
Yue S 2014 22%

Study summary

Full title
All authors
Yue S, Mu W, Erb U, Zöller M
Journal
Oncotarget
Abstract
Tspan8 and CD151 are metastasis-promoting tetraspanins and a knockdown (kd) of Tspan8 or CD151 and m (show more...)Tspan8 and CD151 are metastasis-promoting tetraspanins and a knockdown (kd) of Tspan8 or CD151 and most pronounced of both tetraspanins affects the metastatic potential of the rat pancreatic adenocarcinoma line ASML. Approaching to elaborate the underlying mechanism, we compared ASMLwt, -CD151kd and/or Tspan8kd clones. We focused on tumor exosomes, as exosomes play a major role in tumor progression and tetraspanins are suggested to be engaged in exosome targeting. ASML-CD151/Tspan8kd cells poorly metastasize, but regain metastatic capacity, when rats are pretreated with ASMLwt, but not ASML-CD151kd and/or -Tspan8kd exosomes. Both exosomal CD151 and Tspan8 contribute to host matrix remodelling due to exosomal tetraspanin-integrin and tetraspanin-protease associations. ASMLwt exosomes also support stroma cell activation with upregulation of cytokines, cytokine receptors and proteases and promote inflammatory cytokine expression in hematopoietic cells. Finally, CD151-/Tspan8-competent exosomes support EMT gene expression in poorly-metastatic ASML-CD151/Tspan8kd cells. These effects are not seen or are weakened using ASML-CD151kd or -Tspan8kd exosomes, which is at least partly due to reduced binding/uptake of CD151- and/or Tspan8-deficient exosomes. Thus, CD151- and Tspan8-competent tumor exosomes support matrix degradation, reprogram stroma and hematopoietic cells and drive non-metastatic ASML-CD151/Tspan8kd cells towards a motile phenotype. (hide)
EV-METRIC
22% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
Protein markers
EV: CD81/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Rattus norvegicus/rattus
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Density gradient
Lowest density fraction
0.25
Highest density fraction
2.5
Orientation
Bottom-up
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD81/ CD9
Characterization: Particle analysis
None
EV140053 2/2 Homo sapiens Blood plasma Filtration Ye SB 2014 22%

Study summary

Full title
All authors
Ye SB, Li ZL, Luo DH, Huang BJ, Chen YS, Zhang XS, Cui J, Zeng YX, Li J
Journal
Oncotarget
Abstract
Tumor-derived exosomes contain biologically active proteins and messenger and microRNAs (miRNAs). Th (show more...)Tumor-derived exosomes contain biologically active proteins and messenger and microRNAs (miRNAs). These particles serve as vehicles of intercellular communication and are emerging mediators of tumorigenesis and immune escape. Here, we isolated 30-100 nm exosomes from the serum of patients with nasopharyngeal carcinoma (NPC) or the supernatant of TW03 cells. Increased circulating exosome concentrations were correlated with advanced lymphoid node stage and poor prognosis in NPC patients (P< 0.05). TW03-derived exosomes impaired T-cell function by inhibiting T-cell proliferation and Th1 and Th17 differentiation and promoting Treg induction by NPC cells in vitro. These results are associated with decreases in ERK, STAT1, and STAT3 phosphorylation and increases in STAT5 phosphorylation in exosome-stimulated T-cells. TW03-derived exosomes increased the proinflammatory cytokines IL-1?, IL-6, and IL-10 but decreased IFN?, IL-2, and IL-17 release from CD4+ or CD8+ T-cells. Furthermore, five commonly over-expressed miRNAs were identified in the exosomes from patient sera or NPC cells: hsa-miR-24-3p, hsa-miR-891a, hsa-miR-106a-5p, hsa-miR-20a-5p, and hsa-miR-1908. These over-expressed miRNA clusters down-regulated the MARK1 signaling pathway to alter cell proliferation and differentiation. Overall, these observations reveal the clinical relevance and prognostic value of tumor-derived exosomes and identify a unique intercellular mechanism mediated by tumor-derived exosomes to modulate T-cell function in NPC. (hide)
EV-METRIC
22% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Filtration
Protein markers
EV: HSP70/ CD63/ LAMP1/ MHC1
non-EV: Cell organelle protein
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ HSP70/ MHC1/ LAMP1
Detected contaminants
Cell organelle protein
ELISA
Antibody details provided?
No
Detected EV-associated proteins
MHC1/ LAMP1
Characterization: Particle analysis
None
EV140102 1/1 Homo sapiens NAY (d)(U)C
DC
Yao Y 2014 22%

Study summary

Full title
All authors
Yao Y, Wang C, Wei W, Shen C, Deng X, Chen L, Ma L, Hao S
Journal
PLoS One
Abstract
Dendritic cells (DCs) and tumor cell-derived exosomes have been used to develop antitumor vaccines. (show more...)Dendritic cells (DCs) and tumor cell-derived exosomes have been used to develop antitumor vaccines. However, the biological properties and antileukemic effects of leukemia cell-derived exosomes (LEXs) are not well described. In this study, the biological properties and induction of antileukemic immunity of LEXs were investigated using transmission electron microscopy, western blot analysis, cytotoxicity assays, and animal studies. Similar to other tumor cells, leukemia cells release exosomes. Exosomes derived from K562 leukemia cells (LEXK562) are membrane-bound vesicles with diameters of approximately 50-100 ?m and harbor adhesion molecules (e.g., intercellular adhesion molecule-1) and immunologically associated molecules (e.g., heat shock protein 70). In cytotoxicity assays and animal studies, LEXs-pulsed DCs induced an antileukemic cytotoxic T-lymphocyte immune response and antileukemic immunity more effectively than did LEXs and non-pulsed DCs (P<0.05). Therefore, LEXs may harbor antigens and immunological molecules associated with leukemia cells. As such, LEX-based vaccines may be a promising strategy for prolonging disease-free survival in patients with leukemia after chemotherapy or hematopoietic stem cell transplantation. (hide)
EV-METRIC
22% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DC
Protein markers
EV: HSP70
non-EV: Cell organelle protein
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
HSP70
Detected contaminants
Cell organelle protein
Characterization: Particle analysis
EM
EM-type
transmission EM/ immune EM
EM protein
HSP70
Image type
Wide-field
201 - 250 of 681 keyboard_arrow_leftkeyboard_arrow_right