Search > Results

You searched for: EV140230 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV140230 1/1 Homo sapiens NAY (d)(U)C
ExoQuick
Wei JX 2014 25%

Study summary

Full title
All authors
Wei JX, Lv LH, Wan YL, Cao Y, Li GL, Lin HM, Zhou R, Shang CZ, Cao J, He H, Han QF, Liu PQ, Zhou G, Min J
Journal
Hepatology
Abstract
The deregulation of microRNAs (miRNAs) plays an important role in human hepatocarcinogenesis. In thi (show more...)The deregulation of microRNAs (miRNAs) plays an important role in human hepatocarcinogenesis. In this study, we highlight exosomes as mediators involved in modulating miRNA profiles in hepatocellular carcinoma (HCC) cells. First, we examined the different miRNA expression profiles in HCC cells and HCC cell-derived exosomes. Next, coculture experiments indicated that HCC cell-derived exosomes promoted the cell growth, migration, and invasion of HCC cells and had the ability to shuttle miRNAs to recipient cells. Further, our data showed that Vps4A, a key regulator of exosome biogenesis, was frequently down-regulated in HCC tissues. The reduction of Vps4A in HCC tissues was associated with tumor progression and metastasis. In vitro studies revealed that Vps4A repressed the growth, colony formation, migration, and invasion of HCC cells. We further investigated the role and involvement of Vps4A in suppressing the bioactivity of exosomes and characterized its ability to weaken the cell response to exosomes. By small RNA sequencing, we demonstrated that Vps4A facilitated the secretion of oncogenic miRNAs in exosomes as well as accumulation and uptake of tumor suppressor miRNAs in cells. A subset of Vps4A-associated miRNAs was identified. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that the phosphatidylinositol-3-kinase/Akt signaling pathway was the most likely candidate pathway for modulation by these miRNAs. Indeed, we proved that the phosphatidylinositol-3-kinase/Akt pathway was inactivated by Vps4A overexpression.CONCLUSION: Exosome-mediated miRNA transfer is an important mechanism of self-modulation of the miRNA expression profiles in HCC cells, and Vps4A may function as a tumor suppressor, which utilizes exosomes as mediators to regulate the secretion and uptake of miRNAs in hepatoma cells; these observations provide new insights into the development of HCC. (hide)
EV-METRIC
25% (64th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
ExoQuick
Protein markers
EV: Alix/ TSG101/ HSP60/ HSP90/ CD63
non-EV: GAPDH
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Commercial kit
ExoQuick
Other
Name other separation method
ExoQuick
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix/ CD63/ HSP90/ TSG101/ HSP60
Detected contaminants
GAPDH
ELISA
Antibody details provided?
No
Detected EV-associated proteins
HSP60
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
1 - 1 of 1
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV140230
species
Homo sapiens
sample type
Cell culture
cell type
NAY
condition
NAY
separation protocol
(d)(U)C
ExoQuick
Exp. nr.
1
EV-METRIC %
25