Search > Results

You searched for: EV140128 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV140128 2/2 Homo sapiens Urine (d)(U)C
Filtration
IAF
Dimuccio V 2014 22%

Study summary

Full title
All authors
Dimuccio V, Ranghino A, Praticò Barbato L, Fop F, Biancone L, Camussi G, Bussolati B
Journal
PLoS One
Abstract
Extracellular vesicles (EVs) present in the urine are mainly released from cells of the nephron and (show more...)Extracellular vesicles (EVs) present in the urine are mainly released from cells of the nephron and can therefore provide information on kidney function. We here evaluated the presence of vesicles expressing the progenitor marker CD133 in the urine of normal subjects and of patients undergoing renal transplant. We found that EV expressing CD133 were present in the urine of normal subjects, but not of patients with end stage renal disease. The first day after transplant, urinary CD133+ EVs were present at low levels, to increase thereafter (at day 7). Urinary CD133(+) EVs significantly increased in patients with slow graft function in respect to those with early graft function. In patients with a severe pre-transplant vascular damage of the graft, CD133(+) EVs did not increase at day 7. At variance, the levels of EVs expressing the renal exosomal marker CD24 did not vary in the urine of patients with end stage renal disease or in transplanted patients in respect to controls. Sorted CD133(+) EVs were found to express glomerular and proximal tubular markers. These data indicate that urinary CD133(+) EVs are continuously released during the homeostatic turnover of the nephron and may provide information on its function or regenerative potential. (hide)
EV-METRIC
22% (49th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
IAF
Protein markers
EV: CD63/ AQP2 / AQP1/ CD81/ Rab5/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Filtration steps
> 0.45 µm,
Immunoaffinity capture
Selected surface protein(s)
CD133
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ CD81/ CD9/ "AQP1/ AQP2 / Rab5"
ELISA
Antibody details provided?
No
Detected EV-associated proteins
"AQP1/ AQP2 / Rab5"
Characterization: Particle analysis
NTA
EV140128 1/2 Homo sapiens Urine (d)(U)C
Filtration
IAF
Dimuccio V 2014 13%

Study summary

Full title
All authors
Dimuccio V, Ranghino A, Praticò Barbato L, Fop F, Biancone L, Camussi G, Bussolati B
Journal
PLoS One
Abstract
Extracellular vesicles (EVs) present in the urine are mainly released from cells of the nephron and (show more...)Extracellular vesicles (EVs) present in the urine are mainly released from cells of the nephron and can therefore provide information on kidney function. We here evaluated the presence of vesicles expressing the progenitor marker CD133 in the urine of normal subjects and of patients undergoing renal transplant. We found that EV expressing CD133 were present in the urine of normal subjects, but not of patients with end stage renal disease. The first day after transplant, urinary CD133+ EVs were present at low levels, to increase thereafter (at day 7). Urinary CD133(+) EVs significantly increased in patients with slow graft function in respect to those with early graft function. In patients with a severe pre-transplant vascular damage of the graft, CD133(+) EVs did not increase at day 7. At variance, the levels of EVs expressing the renal exosomal marker CD24 did not vary in the urine of patients with end stage renal disease or in transplanted patients in respect to controls. Sorted CD133(+) EVs were found to express glomerular and proximal tubular markers. These data indicate that urinary CD133(+) EVs are continuously released during the homeostatic turnover of the nephron and may provide information on its function or regenerative potential. (hide)
EV-METRIC
13% (35th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
IAF
Protein markers
EV: CD81/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Filtration steps
> 0.45 µm,
Immunoaffinity capture
Selected surface protein(s)
CD133, CD24
Characterization: Particle analysis
NTA
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV140128
species
Homo sapiens
sample type
Urine
condition
NAY
separation protocol
(d)(U)C
Filtration
IAF
(d)(U)C
Filtration
IAF
Exp. nr.
2
1
EV-METRIC %
22
13