Search > Results
You searched for: 2022 (Year of publication)
Showing 1 - 50 of 667
Showing 1 - 50 of 667
Details | EV-TRACK ID | Experiment nr. | Species | Sample type | Separation protocol | First author | Year | EV-METRIC |
---|---|---|---|---|---|---|---|---|
EV220127 | 1/2 | Homo sapiens | lung tissue |
(d)(U)C DG Filtration |
Liu, Bowen/ Jin, Yuan | 2022 | 100% | |
Study summaryFull title
All authors
Bowen Liu, Yuan Jin, Jingyi Yang, Yue Han, Hui Shan, Mantang Qiu, Xuyang Zhao, Anhang Liu, Yan Jin, Yuxin Yin
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) are single-membrane vesicles that play an essential role in long-range (show more...)
EV-METRIC
100% (80th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
lung tissue
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Density gradient Filtration Adj. k-factor
20553 (pelleting) / 17842 (washing)
Protein markers
EV: Alix/ CD9/ CD81
non-EV: Albumin/ Argonaute-2/ Calreticulin/ GM130/ PMP70/ Prohibitin/ Tamm-Horsfall protein Proteomics
yes
EV density (g/ml)
1.1
Show all info
Study aim
Function/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
lung tissue
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
110,000
Pelleting: adjusted k-factor
20553
Wash: volume per pellet (ml)
1.5
Wash: time (min)
70
Wash: Rotor Type
TLA-55
Wash: speed (g)
110,000
Wash: adjusted k-factor
17842
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
10
Lowest density fraction
0.25 M
Highest density fraction
2.5 M
Total gradient volume, incl. sample (mL)
4.5
Sample volume (mL)
0.45
Orientation
Bottom-up
Rotor type
MLS-50
Speed (g)
180,000
Duration (min)
780
Fraction volume (mL)
0.45
Fraction processing
Centrifugation
Pelleting: volume per fraction
1.5
Pelleting: speed (g)
110,000
Pelleting: adjusted k-factor
17842
Pelleting-wash: volume per pellet (mL)
1.5
Pelleting-wash: duration (min)
70
Pelleting-wash: speed (g)
TLA-55
Filtration steps
0.2 or 0.22 µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
0.8
Western Blot
Detected EV-associated proteins
Alix/ CD9/ CD81
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
131.7
Particle analysis: flow cytometry
Flow cytometer type
BD LSRFortessa
Hardware adjustment
use calibration beads
Calibration bead size
0.05/ 0.1/ 0.2/ 0.3/ 0.5
Report type
Size range/distribution
Reported size (nm)
100 - 200
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
|
||||||||
EV220127 | 2/2 | Mus musculus | lung tissue |
(d)(U)C DG Filtration |
Liu, Bowen/ Jin, Yuan | 2022 | 100% | |
Study summaryFull title
All authors
Bowen Liu, Yuan Jin, Jingyi Yang, Yue Han, Hui Shan, Mantang Qiu, Xuyang Zhao, Anhang Liu, Yan Jin, Yuxin Yin
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) are single-membrane vesicles that play an essential role in long-range (show more...)
EV-METRIC
100% (80th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
lung tissue
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Density gradient Filtration Adj. k-factor
20553 (pelleting) / 17842 (washing)
Protein markers
EV: Alix/ CD9/ Flotillin-1/ TSG101
non-EV: GM130/ Calnexin/ Albumin/ Argonaute-2/ Calreticulin/ PMP70/ Prohibitin/ Tamm-Horsfall protein Proteomics
yes
EV density (g/ml)
1.1
Show all info
Study aim
Function/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Mus musculus
Sample Type
lung tissue
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
110,000
Pelleting: adjusted k-factor
20553
Wash: volume per pellet (ml)
1.5
Wash: time (min)
70
Wash: Rotor Type
TLA-55
Wash: speed (g)
110,000
Wash: adjusted k-factor
17842
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
10
Lowest density fraction
0.25 M
Highest density fraction
2.5 M
Total gradient volume, incl. sample (mL)
4.5
Sample volume (mL)
0.45
Orientation
Bottom-up
Rotor type
MLS-50
Speed (g)
180,000
Duration (min)
780
Fraction volume (mL)
0.45
Fraction processing
Centrifugation
Pelleting: volume per fraction
1.5
Pelleting: speed (g)
110,000
Pelleting: adjusted k-factor
17842
Pelleting-wash: volume per pellet (mL)
1.5
Pelleting-wash: duration (min)
70
Pelleting-wash: speed (g)
TLA-55
Filtration steps
0.2 or 0.22 µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
0.7
Western Blot
Detected EV-associated proteins
Alix/ CD9/ Flotillin-1/ TSG101
Not detected contaminants
GM130/ Calnexin
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
124.9
Particle analysis: flow cytometry
Flow cytometer type
BD LSRFortessa
Hardware adjustment
use calibration beads
Calibration bead size
0.05/ 0.1/ 0.2/ 0.3/ 0.5
Report type
Size range/distribution
Reported size (nm)
100 - 200
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
|
||||||||
EV210154 | 1/2 | Homo sapiens | human invasive proliferative extravillous cytotrophoblast (HIPEC) |
DG (d)(U)C |
Bergamelli M | 2022 | 100% | |
Study summaryFull title
All authors
Bergamelli M, Martin H, Aubert Y, Mansuy JM, Marcellin M, Burlet-Schiltz O, Hurbain I, Raposo G, Izopet J, Fournier T, Benchoua A, Bénard M, Groussolles M, Cartron G, Tanguy Le Gac Y, Moinard N, D'Angelo G, Malnou CE
Journal
Viruses
Abstract
Although placental small extracellular vesicles (sEVs) are extensively studied in the context of pre (show more...)
EV-METRIC
100% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Other/ small extracellular vesicles
Separation protocol
Separation protocol
Density gradient
(Differential) (ultra)centrifugation Protein markers
EV: TSG101/ Alix/ CD63/ CD9/ CD81
non-EV: calnexin/ TOM20 Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
human invasive proliferative extravillous cytotrophoblast (HIPEC)
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell count
1,00E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
30
Wash: time (min)
60
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
3
Lowest density fraction
10%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
10
Sample volume (mL)
1
Orientation
Bottom-up
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1,7
Fraction processing
Centrifugation
Pelleting: volume per fraction
30
Pelleting: duration (min)
60
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Pelleting-wash: volume per pellet (mL)
30
Pelleting-wash: duration (min)
60
Pelleting-wash: speed (g)
SW 32 Ti
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ Alix/ CD81
Not detected EV-associated proteins
CD63
Not detected contaminants
calnexin/ TOM20
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
160
EV concentration
Yes
Particle yield
as number of particles per million cells: 1,00E+06
Particle analysis: flow cytometry
Flow cytometer type
Mascquant VYB Myltenyi
Hardware adjustment
Mascquant VYB Myltenyi set up fluorescent beads SSC Megamix, with calibration on gates of 160nm 200nm 250nm and 500nm
Calibration bead size
0.16/ 0.2/ 0.25/ 0.5
EV concentration
Yes
Particle yield
as number of particles per million cells: 1,00E+06
EM
EM-type
Immuno-EM/ Transmission-EM
EM protein
CD9/ CD81/ CD63
Image type
Close-up, Wide-field
Report size (nm)
120
|
||||||||
EV210154 | 2/2 | Homo sapiens | human invasive proliferative extravillous cytotrophoblast (HIPEC) |
DG (d)(U)C |
Bergamelli M | 2022 | 100% | |
Study summaryFull title
All authors
Bergamelli M, Martin H, Aubert Y, Mansuy JM, Marcellin M, Burlet-Schiltz O, Hurbain I, Raposo G, Izopet J, Fournier T, Benchoua A, Bénard M, Groussolles M, Cartron G, Tanguy Le Gac Y, Moinard N, D'Angelo G, Malnou CE
Journal
Viruses
Abstract
Although placental small extracellular vesicles (sEVs) are extensively studied in the context of pre (show more...)
EV-METRIC
100% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
infected by Human Cytomegalovirus / clinical strain VHL/E
Focus vesicles
Other/ small extracellular vesicles
Separation protocol
Separation protocol
Density gradient
(Differential) (ultra)centrifugation Protein markers
EV: TSG101/ Alix/ CD63/ CD9/ CD81
non-EV: calnexin/ TOM20 Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
human invasive proliferative extravillous cytotrophoblast (HIPEC)
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell count
1,00E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
30
Wash: time (min)
60
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
3
Lowest density fraction
10%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
10
Sample volume (mL)
1
Orientation
Bottom-up
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1,7
Fraction processing
Centrifugation
Pelleting: volume per fraction
30
Pelleting: duration (min)
60
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Pelleting-wash: volume per pellet (mL)
30
Pelleting-wash: duration (min)
60
Pelleting-wash: speed (g)
SW 32 Ti
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD9/ CD63/ TSG101/ Alix/ CD81
Not detected contaminants
calnexin/ TOM20
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
150
EV concentration
Yes
Particle yield
as number of particles per million cells: 1,00E+06
Particle analysis: flow cytometry
Flow cytometer type
Macsquant VYB Myltenyi
Hardware adjustment
Mascquant VYB Myltenyi set up fluorescent beads SSC Megamix, with calibration on gates of 160nm 200nm 250nm and 500nm
Calibration bead size
0.16/ 0.2/ 0.25/ 0.5
Report type
Mean
Reported size (nm)
160
EV concentration
Yes
Particle yield
as number of particles per million cells: 1,00E+06
EM
EM-type
Immuno-EM/ Transmission-EM
EM protein
CD9/ CD81/ CD63
Image type
Close-up, Wide-field
Report size (nm)
110
|
||||||||
EV210151 | 1/8 | Homo sapiens | hiPSC (IMR90)-4 |
DG (d)(U)C Filtration |
Louro, Ana Filipa | 2022 | 100% | |
Study summaryFull title
All authors
Ana F Louro, Marta A Paiva, Marta R Oliveira, Katharina A Kasper, Paula M Alves, Patrícia Gomes-Alves, Margarida Serra
Journal
Advanced Science
Abstract
Extracellular vesicles (EV) are an attractive therapy to boost cardiac regeneration. Nevertheless, i (show more...)
EV-METRIC
100% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
(d)(U)C Filtration Protein markers
EV: TSG101/ CD63/ Flotillin2
non-EV: Argonaute2 Proteomics
no
EV density (g/ml)
1.08
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
hiPSC (IMR90)-4
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
180
Pelleting: rotor type
SW 28
Pelleting: speed (g)
110000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
0.8
Orientation
Bottom-up
Rotor type
SW 28.1
Speed (g)
110000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63/ Flotillin2
Not detected EV-associated proteins
TSG101
Not detected contaminants
Argonaute2
Characterization: RNA analysis
RNA analysis
Type
RNA sequencing
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-250
EV concentration
Yes
Particle yield
number of particles per million cell per 24h;Yes, other: 2.23E7 +- 1.35E7
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210151 | 2/8 | Homo sapiens | CPC (IMR90)-4 |
DG (d)(U)C Filtration |
Louro, Ana Filipa | 2022 | 100% | |
Study summaryFull title
All authors
Ana F Louro, Marta A Paiva, Marta R Oliveira, Katharina A Kasper, Paula M Alves, Patrícia Gomes-Alves, Margarida Serra
Journal
Advanced Science
Abstract
Extracellular vesicles (EV) are an attractive therapy to boost cardiac regeneration. Nevertheless, i (show more...)
EV-METRIC
100% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
(d)(U)C Filtration Protein markers
EV: TSG101/ CD63/ Flotillin2
non-EV: Argonaute2 Proteomics
no
EV density (g/ml)
1.08
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
CPC (IMR90)-4
EV-harvesting Medium
Serum free medium
Cell viability (%)
85
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
180
Pelleting: rotor type
SW 28
Pelleting: speed (g)
110000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
0.8
Orientation
Bottom-up
Rotor type
SW 28.1
Speed (g)
110000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63/ Flotillin2/ TSG101
Not detected contaminants
Argonaute2
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-250
EV concentration
Yes
Particle yield
number of particles per million cell per 24h;Yes, other: 8.27E6 +- 3.53E6
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210151 | 3/8 | Homo sapiens | CMi (IMR90)-4 |
DG (d)(U)C Filtration |
Louro, Ana Filipa | 2022 | 100% | |
Study summaryFull title
All authors
Ana F Louro, Marta A Paiva, Marta R Oliveira, Katharina A Kasper, Paula M Alves, Patrícia Gomes-Alves, Margarida Serra
Journal
Advanced Science
Abstract
Extracellular vesicles (EV) are an attractive therapy to boost cardiac regeneration. Nevertheless, i (show more...)
EV-METRIC
100% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
(d)(U)C Filtration Protein markers
EV: TSG101/ CD63/ Flotillin2
non-EV: Argonaute2 Proteomics
no
EV density (g/ml)
1.08
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
CMi (IMR90)-4
EV-harvesting Medium
Serum free medium
Cell viability (%)
85
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
180
Pelleting: rotor type
SW 28
Pelleting: speed (g)
110000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
0.8
Orientation
Bottom-up
Rotor type
SW 28.1
Speed (g)
110000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63/ Flotillin2/ TSG101
Not detected contaminants
Argonaute2
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-250
EV concentration
Yes
Particle yield
number of particles per million cell per 24h;Yes, other: 2.95E7 +- 1.19E7
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210151 | 4/8 | Homo sapiens | CMm (IMR90)-4 |
DG (d)(U)C Filtration |
Louro, Ana Filipa | 2022 | 100% | |
Study summaryFull title
All authors
Ana F Louro, Marta A Paiva, Marta R Oliveira, Katharina A Kasper, Paula M Alves, Patrícia Gomes-Alves, Margarida Serra
Journal
Advanced Science
Abstract
Extracellular vesicles (EV) are an attractive therapy to boost cardiac regeneration. Nevertheless, i (show more...)
EV-METRIC
100% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
(d)(U)C Filtration Protein markers
EV: TSG101/ CD63/ Flotillin2
non-EV: Argonaute2 Proteomics
no
EV density (g/ml)
1.08
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
CMm (IMR90)-4
EV-harvesting Medium
Serum free medium
Cell viability (%)
85
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
180
Pelleting: rotor type
SW 28
Pelleting: speed (g)
110000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
0.8
Orientation
Bottom-up
Rotor type
SW 28.1
Speed (g)
110000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63/ Flotillin2
Not detected EV-associated proteins
TSG101
Not detected contaminants
Argonaute2
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-250 nm
EV concentration
Yes
Particle yield
number of particles per million cell per 24h;Yes, other: 4.10E7 +- 9.75E6
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV200030 | 1/2 | Homo sapiens | oral mucosa lamina propria progenitor cells |
(d)(U)C Other/ ExoSpin UF Filtration DG |
Knight R | 2022 | 100% | |
Study summaryFull title
All authors
Knight R, Board-Davies E, Brown H, Clayton A, Davis T, Karatas B, Burston J, Tabi Z, Falcon-Perez JM, Paisey S, Stephens P
Journal
Stem Cells Transl Med
Abstract
Scar formation during wound repair can be devastating for affected individuals. Our group previously (show more...)
EV-METRIC
100% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Other/ small extracellular vesicles
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Commercial method Ultrafiltration Filtration Density gradient Protein markers
EV: CD81/ CD63/ CD9
non-EV: CD105/ CD90/ CD166 Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
oral mucosa lamina propria progenitor cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Pelleting performed
No
Density gradient
Only used for validation of main results
Yes
Type
Continuous
Lowest density fraction
0.2M
Highest density fraction
2.5M
Total gradient volume, incl. sample (mL)
5
Sample volume (mL)
0.2
Orientation
Bottom-up
Rotor type
MLS-50
Speed (g)
200000
Duration (min)
16
Fraction volume (mL)
0.3
Fraction processing
None
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Polyethersulfone (PES)
Commercial kit
Other/ ExoSpin
Characterization: Protein analysis
Protein Concentration Method
microBCA
Flow cytometry aspecific beads
Detected EV-associated proteins
CD9/ CD63/ CD81
Not detected contaminants
CD90/ CD105/ CD166
Flow cytometry specific beads
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
94
EV concentration
Yes
Particle yield
as number of particles per milliliter of starting sample: 7.7E+12
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
|
||||||||
EV200030 | 2/2 | Homo sapiens | bone marrow derived mesenchymal stromal cells |
(d)(U)C Other/ ExoSpin UF Filtration DG |
Knight R | 2022 | 100% | |
Study summaryFull title
All authors
Knight R, Board-Davies E, Brown H, Clayton A, Davis T, Karatas B, Burston J, Tabi Z, Falcon-Perez JM, Paisey S, Stephens P
Journal
Stem Cells Transl Med
Abstract
Scar formation during wound repair can be devastating for affected individuals. Our group previously (show more...)
EV-METRIC
100% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Other/ small extracellular vesicles
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Commercial method Ultrafiltration Filtration Density gradient Protein markers
EV: CD81/ CD63/ CD9
non-EV: None Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
bone marrow derived mesenchymal stromal cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Pelleting performed
No
Density gradient
Only used for validation of main results
Yes
Type
Continuous
Lowest density fraction
0.2M
Highest density fraction
2.5M
Total gradient volume, incl. sample (mL)
5
Sample volume (mL)
0.2
Orientation
Bottom-up
Rotor type
MLS-50
Speed (g)
200000
Duration (min)
16
Fraction volume (mL)
0.3
Fraction processing
None
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Polyethersulfone (PES)
Commercial kit
Other/ ExoSpin
Characterization: Protein analysis
Protein Concentration Method
microBCA
Flow cytometry aspecific beads
Detected EV-associated proteins
CD9/ CD63/ CD81
Not detected contaminants
CD90/ CD105/ CD166
Flow cytometry specific beads
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
99.5
EV concentration
Yes
Particle yield
as number of particles per milliliter of starting sample: 4.27E+12
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
|
||||||||
EV200110 | 1/3 | Homo sapiens | NCI-H1975 |
(d)(U)C DG |
Van Hoof R | 2022 | 89% | |
Study summaryFull title
All authors
Van Hoof R, Deville S, Hollanders K, Berckmans P, Wagner P, Hooyberghs J, Nelissen I
Journal
Int J Mol Sci
Abstract
Extracellular vesicles (EVs) are cell-derived structures surrounded by a lipid bilayer that carry RN (show more...)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Density gradient Protein markers
EV: CD81/ HSP70/ CD63/ CD9
non-EV: Calnexin/ Ribosomal protein S6 Proteomics
no
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
NCI-H1975
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: rotor type
SW 32.1 Ti
Pelleting: speed (g)
100000
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
10%
Highest density fraction
60%
Total gradient volume, incl. sample (mL)
4.7
Sample volume (mL)
0.3
Orientation
Bottom-up
Rotor type
SW 55 Ti
Speed (g)
366613
Duration (min)
960
Fraction volume (mL)
0.48
Fraction processing
None
Characterization: Protein analysis
Protein Concentration Method
Lowry-based assay
Western Blot
Detected EV-associated proteins
HSP70/ CD81
Detected contaminants
Ribosomal protein S6
Not detected contaminants
Calnexin
Flow cytometry
Type of Flow cytometry
BD Influx flow cytometer
Hardware adaptation to ~100nm EV's
EV samples were analyzed using a BD Influx flow cytometer (BD Biosciences, Franklin Lakes, New Jersey, USA) equipped with a 488 nm high power laser (200 mW) and a small-particle detector as previously described by van der Vlist et al. (2012).
Calibration bead size
0.1/ 0.2
Detected EV-associated proteins
CD63/ CD9/ CD81
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR/ Capillary electrophoresis (e.g. Bioanalyzer)/ Other
Database
Yes
Proteinase treatment
No
RNAse treatment
Yes
Moment of RNAse treatment
After
RNAse type
Other/ RNase A/T1 mix
RNAse concentration
RNase A: 0.02 mg/ml - RNase T1: 50 U/ml
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
202
EV concentration
Yes
Particle yield
as number of particles per mililiter in the final EV fraction (500 l)/ other:: 5.00E+10
Particle analysis: flow cytometry
Flow cytometer type
BD Influx flow cytometer
Hardware adjustment
EV samples were analyzed using a BD Influx flow cytometer (BD Biosciences, Franklin Lakes, New Jersey, USA) equipped with a 488 nm high power laser (200 mW) and a small-particle detector as previously described by van der Vlist et al. (2012).
Calibration bead size
1
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210151 | 5/8 | Homo sapiens | hiPSC (DF19-9-11T.H) |
DG (d)(U)C Filtration |
Louro, Ana Filipa | 2022 | 89% | |
Study summaryFull title
All authors
Ana F Louro, Marta A Paiva, Marta R Oliveira, Katharina A Kasper, Paula M Alves, Patrícia Gomes-Alves, Margarida Serra
Journal
Advanced Science
Abstract
Extracellular vesicles (EV) are an attractive therapy to boost cardiac regeneration. Nevertheless, i (show more...)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
(d)(U)C Filtration Protein markers
EV: TSG101
non-EV: Argonaute2 Proteomics
no
EV density (g/ml)
1.083
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
hiPSC (DF19-9-11T.H)
EV-harvesting Medium
Serum free medium
Cell viability (%)
90
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
180
Pelleting: rotor type
SW 28
Pelleting: speed (g)
110000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5
Highest density fraction
40
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
0.8
Orientation
Bottom-up
Rotor type
SW 28.1
Speed (g)
110000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
TSG101
Not detected contaminants
Argonaute2
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-250
EV concentration
Yes
Particle yield
number of particles per million cells per 24h;Yes, other: 1.99E7 +- 1.99E6
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210151 | 6/8 | Homo sapiens | CPC (DF19-9-11T.H) |
DG (d)(U)C Filtration |
Louro, Ana Filipa | 2022 | 89% | |
Study summaryFull title
All authors
Ana F Louro, Marta A Paiva, Marta R Oliveira, Katharina A Kasper, Paula M Alves, Patrícia Gomes-Alves, Margarida Serra
Journal
Advanced Science
Abstract
Extracellular vesicles (EV) are an attractive therapy to boost cardiac regeneration. Nevertheless, i (show more...)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
(d)(U)C Filtration Protein markers
EV: TSG101
non-EV: Argonaute2 Proteomics
no
EV density (g/ml)
1.083
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
CPC (DF19-9-11T.H)
EV-harvesting Medium
Serum free medium
Cell viability (%)
85
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
180
Pelleting: rotor type
SW 28
Pelleting: speed (g)
110000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5
Highest density fraction
40
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
0.8
Orientation
Bottom-up
Rotor type
SW 28.1
Speed (g)
110000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
TSG101
Not detected contaminants
Argonaute2
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-250
EV concentration
Yes
Particle yield
number of particles per million cells per 24h;Yes, other: 6.43E06 +- 5.40E05
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210151 | 7/8 | Homo sapiens | CMi (DF19-9-11T.H) |
DG (d)(U)C Filtration |
Louro, Ana Filipa | 2022 | 89% | |
Study summaryFull title
All authors
Ana F Louro, Marta A Paiva, Marta R Oliveira, Katharina A Kasper, Paula M Alves, Patrícia Gomes-Alves, Margarida Serra
Journal
Advanced Science
Abstract
Extracellular vesicles (EV) are an attractive therapy to boost cardiac regeneration. Nevertheless, i (show more...)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
(d)(U)C Filtration Protein markers
EV: TSG101
non-EV: Argonaute2 Proteomics
no
EV density (g/ml)
1.083
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
CMi (DF19-9-11T.H)
EV-harvesting Medium
Serum free medium
Cell viability (%)
85
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
180
Pelleting: rotor type
SW 28
Pelleting: speed (g)
110000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5
Highest density fraction
40
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
0.8
Orientation
Bottom-up
Rotor type
SW 28.1
Speed (g)
110000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
TSG101
Not detected contaminants
Argonaute2
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-250
EV concentration
Yes
Particle yield
number of particles per million cells per 24h;Yes, other: 3.49E07 +- 2.85E06
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210151 | 8/8 | Homo sapiens | CMm (DF19-9-11T.H) |
DG (d)(U)C Filtration |
Louro, Ana Filipa | 2022 | 89% | |
Study summaryFull title
All authors
Ana F Louro, Marta A Paiva, Marta R Oliveira, Katharina A Kasper, Paula M Alves, Patrícia Gomes-Alves, Margarida Serra
Journal
Advanced Science
Abstract
Extracellular vesicles (EV) are an attractive therapy to boost cardiac regeneration. Nevertheless, i (show more...)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
(d)(U)C Filtration Protein markers
EV: TSG101
non-EV: Argonaute2 Proteomics
no
EV density (g/ml)
1.083
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
CMm (DF19-9-11T.H)
EV-harvesting Medium
Serum free medium
Cell viability (%)
85
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
180
Pelleting: rotor type
SW 28
Pelleting: speed (g)
110000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5
Highest density fraction
40
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
0.8
Orientation
Bottom-up
Rotor type
SW 28.1
Speed (g)
110000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
TSG101
Not detected contaminants
Argonaute2
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-250
EV concentration
Yes
Particle yield
number of particles per million cells per 24h;Yes, other: 2.13E07 +- 2.25E06
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV21008 | 1/2 | Homo sapiens | Blood plasma |
DG (d)(U)C |
Annalisa Radeghieri | 2022 | 89% | |
Study summaryFull title
All authors
Annalisa Radeghieri, Silvia Alacqua, Andrea Zendrini, Vanessa Previcini, Francesca Todaro, Giuliana Martini, Doris Ricotta, Paolo Bergese
Journal
Journal of Extracellular Biology
Abstract
Antithrombin (AT) is a glycoprotein produced by the liver and a principal antagonist of active clott (show more...)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Blood plasma
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
(d)(U)C Protein markers
EV: TSG101/ CD63/ CD81/ Adam 10/ Alix/ Antithrombin 3
non-EV: Argonaute2/ Apo A1/ GM130 Proteomics
no
EV density (g/ml)
1.11-1.22
Show all info
Study aim
Function/Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
TLA-55
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
10
Lowest density fraction
8%
Highest density fraction
75%
Total gradient volume, incl. sample (mL)
4,8
Sample volume (mL)
1
Orientation
Top-down
Rotor type
MLS-50
Speed (g)
100000
Duration (min)
960
Fraction volume (mL)
0,4
Fraction processing
Centrifugation
Pelleting: volume per fraction
1
Pelleting: duration (min)
120
Pelleting: rotor type
TLA-55
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63/ Adam 10/ TSG101/ Alix/ CD81
Not detected contaminants
Apo A1/ GM130
Detected EV-associated proteins
CD63/ TSG101
Detected contaminants
Argonaute2
Detected EV-associated proteins
Antithrombin 3
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Atomic force-EM
Image type
Close-up, Wide-field
Report size (nm)
50
|
||||||||
EV210024 | 3/12 | Homo sapiens | Glioblastoma Stem-like cells (GSC) |
(d)(U)C DG |
André-Grégoire, Gwennan | 2022 | 89% | |
Study summaryFull title
All authors
Gwennan André-Grégoire, Clément Maghe, Tiphaine Douanne, Sara, Rosińska, Fiorella Spinelli, An Thys, Kilian Trillet, Kathryn A.Jacobs, Cyndie Ballu, Aurélien Dupont, Anne-Marie Lyne, Florence M.G.Cavalli, Ignacio Busnelli, Vincent Hyenne, Jacky G.Goetz, Nicolas Bidère, Julie Gavard
Journal
iScience
Abstract
Extracellular vesicles (EVs) are lipid-based nanosized particles that convey biological material fro (show more...)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Density gradient Protein markers
EV: Alix/ CD63
non-EV: GM130 Proteomics
yes
Show all info
Study aim
Biogenesis/cargo sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Glioblastoma Stem-like cells (GSC)
EV-harvesting Medium
Serum free medium
Cell count
5.00E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
11
Wash: time (min)
120
Wash: Rotor Type
SW 41 Ti
Wash: speed (g)
100000
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40
Total gradient volume, incl. sample (mL)
11.5
Sample volume (mL)
0.5
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
960
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
11
Pelleting: duration (min)
120
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63/ Alix
Not detected contaminants
GM130
ELISA
Detected EV-associated proteins
CD63
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Mean
Reported size (nm)
100
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
50
|
||||||||
EV200110 | 2/3 | Homo sapiens | NCI-H1975 |
(d)(U)C UF qEV DG |
Van Hoof R | 2022 | 88% | |
Study summaryFull title
All authors
Van Hoof R, Deville S, Hollanders K, Berckmans P, Wagner P, Hooyberghs J, Nelissen I
Journal
Int J Mol Sci
Abstract
Extracellular vesicles (EVs) are cell-derived structures surrounded by a lipid bilayer that carry RN (show more...)
EV-METRIC
88% (98th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Ultrafiltration Commercial method Density gradient Protein markers
EV: CD81/ HSP70/ CD63/ CD9
non-EV: Calnexin/ Ribosomal protein S6 Proteomics
no
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
NCI-H1975
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Pelleting performed
No
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
10%
Highest density fraction
60%
Total gradient volume, incl. sample (mL)
4.7
Sample volume (mL)
0.3
Orientation
Bottom-up
Rotor type
SW 55 Ti
Speed (g)
366613
Duration (min)
960
Fraction volume (mL)
0.48
Fraction processing
None
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
HSP70/ CD81
Not detected contaminants
Calnexin/ Ribosomal protein S6
Flow cytometry
Type of Flow cytometry
BD Influx flow cytometer
Hardware adaptation to ~100nm EV's
EV samples were analyzed using a BD Influx flow cytometer (BD Biosciences, Franklin Lakes, New Jersey, USA) equipped with a 488 nm high power laser (200 mW) and a small-particle detector as previously described by van der Vlist et al. (2012).
Calibration bead size
0.1/ 0.2
Detected EV-associated proteins
CD63/ CD9/ CD81
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR/ Capillary electrophoresis (e.g. Bioanalyzer)/ Other
Database
Yes
Proteinase treatment
No
RNAse treatment
Yes
Moment of RNAse treatment
After
RNAse type
Other/ RNase A/T1 mix
RNAse concentration
RNase A: 0.02 mg/ml - RNase T1: 50 U/ml
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
186
EV concentration
Yes
Particle yield
as number of particles per mililiter in the final EV fraction (500 l)/ other:: 1.70E+10
Particle analysis: flow cytometry
Flow cytometer type
BD Influx flow cytometer
Hardware adjustment
EV samples were analyzed using a BD Influx flow cytometer (BD Biosciences, Franklin Lakes, New Jersey, USA) equipped with a 488 nm high power laser (200 mW) and a small-particle detector as previously described by van der Vlist et al. (2012).
Calibration bead size
1
Report type
Not Reported
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV200110 | 3/3 | Homo sapiens | NCI-H1975 |
(d)(U)C Other/ exoEasy Filtration DG |
Van Hoof R | 2022 | 88% | |
Study summaryFull title
All authors
Van Hoof R, Deville S, Hollanders K, Berckmans P, Wagner P, Hooyberghs J, Nelissen I
Journal
Int J Mol Sci
Abstract
Extracellular vesicles (EVs) are cell-derived structures surrounded by a lipid bilayer that carry RN (show more...)
EV-METRIC
88% (98th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Commercial method Filtration Density gradient Protein markers
EV: CD81/ HSP70/ CD63/ CD9
non-EV: Calnexin/ Ribosomal protein S6 Proteomics
no
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
NCI-H1975
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Pelleting performed
No
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
10%
Highest density fraction
60%
Total gradient volume, incl. sample (mL)
4.7
Sample volume (mL)
0.3
Orientation
Bottom-up
Rotor type
SW 55 Ti
Speed (g)
366613
Duration (min)
960
Fraction volume (mL)
0.48
Fraction processing
None
Filtration steps
> 0.45 µm, 0.22µm or 0.2µm
Commercial kit
Other/ exoEasy
Characterization: Protein analysis
Protein Concentration Method
Lowry-based assay
Western Blot
Detected EV-associated proteins
HSP70/ CD81
Not detected contaminants
Calnexin/ Ribosomal protein S6
Flow cytometry
Type of Flow cytometry
BD Influx flow cytometer
Hardware adaptation to ~100nm EV's
EV samples were analyzed using a BD Influx flow cytometer (BD Biosciences, Franklin Lakes, New Jersey, USA) equipped with a 488 nm high power laser (200 mW) and a small-particle detector as previously described by van der Vlist et al. (2012).
Calibration bead size
0.1/ 0.2
Detected EV-associated proteins
CD63/ CD9/ CD81
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR/ Capillary electrophoresis (e.g. Bioanalyzer)/ Other
Database
Yes
Proteinase treatment
No
RNAse treatment
Yes
Moment of RNAse treatment
After
RNAse type
Other/ RNase A/T1 mix
RNAse concentration
RNase A: 0.02 mg/ml - RNase T1: 50 U/ml
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
250
EV concentration
Yes
Particle yield
as number of particles per mililiter in the final EV fraction (500 l)/ other:: 2.60E+11
Particle analysis: flow cytometry
Flow cytometer type
BD Influx flow cytometer
Hardware adjustment
EV samples were analyzed using a BD Influx flow cytometer (BD Biosciences, Franklin Lakes, New Jersey, USA) equipped with a 488 nm high power laser (200 mW) and a small-particle detector as previously described by van der Vlist et al. (2012).
Calibration bead size
1
Report type
Not Reported
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210213 | 1/6 | Homo sapiens | MDA-MB-231-luc-D3H1 |
DG (d)(U)C |
Lischnig A | 2022 | 88% | |
Study summaryFull title
All authors
Lischnig A, Bergqvist M, Ochiya T, Lässer C
Journal
Mol Cell Proteomics
Abstract
There is a long-held consensus that several proteins are unique to small extracellular vesicles (EVs (show more...)
EV-METRIC
88% (98th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Large extracellular vesicles
Separation protocol
Separation protocol
Density gradient
(Differential) (ultra)centrifugation Protein markers
EV: CD81/ Flotillin1/ CD63/ CD9
non-EV: Calnexin Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA-MB-231-luc-D3H1
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Pelleting performed
Yes
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
16500
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
3
Lowest density fraction
10%
Highest density fraction
37.50%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
1.5
Orientation
Bottom-up
Speed (g)
180000
Duration (min)
120
Fraction volume (mL)
1
Fraction processing
None
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
Flotillin1
Not detected EV-associated proteins
CD81/ CD63
Detected contaminants
Calnexin
Proteomics database
Yes:
Detected EV-associated proteins
CD9/ CD63/ CD81
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
Particle yield
as number of particles per milliliter of starting sample: 1.45E+07
EM
EM-type
Transmission-EM
Image type
Close-up
|
||||||||
EV210213 | 2/6 | Homo sapiens | MDA-MB-231-luc-D3H1 |
DG (d)(U)C |
Lischnig A | 2022 | 88% | |
Study summaryFull title
All authors
Lischnig A, Bergqvist M, Ochiya T, Lässer C
Journal
Mol Cell Proteomics
Abstract
There is a long-held consensus that several proteins are unique to small extracellular vesicles (EVs (show more...)
EV-METRIC
88% (98th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Small extracellular vesicles
Separation protocol
Separation protocol
Density gradient
(Differential) (ultra)centrifugation Protein markers
EV: CD81/ Flotillin1/ CD63/ CD9
non-EV: Calnexin Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA-MB-231-luc-D3H1
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
118000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
3
Lowest density fraction
10%
Highest density fraction
37.50%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
1.5
Orientation
Bottom-up
Speed (g)
180000
Duration (min)
120
Fraction volume (mL)
1
Fraction processing
None
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
Flotillin1
Not detected EV-associated proteins
CD81/ CD63
Detected contaminants
Calnexin
Proteomics database
Yes:
Detected EV-associated proteins
CD9/ CD63/ CD81
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
Particle yield
as number of particles per milliliter of starting sample: 1.45E+07
EM
EM-type
Transmission-EM
Image type
Close-up
|
||||||||
EV210213 | 3/6 | Homo sapiens | MDA-MB-231-luc-D3H2LN |
DG (d)(U)C |
Lischnig A | 2022 | 88% | |
Study summaryFull title
All authors
Lischnig A, Bergqvist M, Ochiya T, Lässer C
Journal
Mol Cell Proteomics
Abstract
There is a long-held consensus that several proteins are unique to small extracellular vesicles (EVs (show more...)
EV-METRIC
88% (98th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Large extracellular vesicles
Separation protocol
Separation protocol
Density gradient
(Differential) (ultra)centrifugation Protein markers
EV: CD81/ Flotillin1/ CD63/ CD9
non-EV: Calnexin Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA-MB-231-luc-D3H2LN
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Pelleting performed
Yes
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
16500
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
3
Lowest density fraction
10%
Highest density fraction
37.50%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
1.5
Orientation
Bottom-up
Speed (g)
180000
Duration (min)
120
Fraction volume (mL)
1
Fraction processing
None
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
Flotillin1/ CD63
Not detected EV-associated proteins
CD81
Not detected contaminants
Calnexin
Proteomics database
Yes:
Detected EV-associated proteins
CD81/ CD9/ CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
Particle yield
as number of particles per milliliter of starting sample: 8.90E+06
EM
EM-type
Transmission-EM
Image type
Close-up
|
||||||||
EV210213 | 4/6 | Homo sapiens | MDA-MB-231-luc-D3H2LN |
DG (d)(U)C |
Lischnig A | 2022 | 88% | |
Study summaryFull title
All authors
Lischnig A, Bergqvist M, Ochiya T, Lässer C
Journal
Mol Cell Proteomics
Abstract
There is a long-held consensus that several proteins are unique to small extracellular vesicles (EVs (show more...)
EV-METRIC
88% (98th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Small extracellular vesicles
Separation protocol
Separation protocol
Density gradient
(Differential) (ultra)centrifugation Protein markers
EV: CD81/ Flotillin1/ CD63/ CD9
non-EV: Calnexin Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA-MB-231-luc-D3H2LN
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
118000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
3
Lowest density fraction
10%
Highest density fraction
37.50%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
1.5
Orientation
Bottom-up
Speed (g)
180000
Duration (min)
120
Fraction volume (mL)
1
Fraction processing
None
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
Flotillin1/ CD63
Not detected EV-associated proteins
CD81
Not detected contaminants
Calnexin
Proteomics database
Yes:
Detected EV-associated proteins
CD81/ CD9/ CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
Particle yield
as number of particles per milliliter of starting sample: 8.90E+06
EM
EM-type
Transmission-EM
Image type
Close-up
|
||||||||
EV210213 | 5/6 | Homo sapiens | MDA-MB-231-luc-BMD2a |
DG (d)(U)C |
Lischnig A | 2022 | 88% | |
Study summaryFull title
All authors
Lischnig A, Bergqvist M, Ochiya T, Lässer C
Journal
Mol Cell Proteomics
Abstract
There is a long-held consensus that several proteins are unique to small extracellular vesicles (EVs (show more...)
EV-METRIC
88% (98th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Other/ Large extracellular vesicles
Separation protocol
Separation protocol
Density gradient
(Differential) (ultra)centrifugation Protein markers
EV: CD81/ Flotillin1/ CD63/ CD9
non-EV: Calnexin Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA-MB-231-luc-BMD2a
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Pelleting performed
Yes
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
16500
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
3
Lowest density fraction
10%
Highest density fraction
37.50%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
1.5
Orientation
Bottom-up
Speed (g)
180000
Duration (min)
120
Fraction volume (mL)
1
Fraction processing
None
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
Flotillin1/ CD63/ CD81
Detected contaminants
Calnexin
Proteomics database
Yes:
Detected EV-associated proteins
CD81/ CD9/ CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
Particle yield
as number of particles per milliliter of starting sample: 2.30E+07
EM
EM-type
Transmission-EM
Image type
Close-up
|
||||||||
EV210213 | 6/6 | Homo sapiens | MDA-MB-231-luc-BMD2a |
DG (d)(U)C |
Lischnig A | 2022 | 88% | |
Study summaryFull title
All authors
Lischnig A, Bergqvist M, Ochiya T, Lässer C
Journal
Mol Cell Proteomics
Abstract
There is a long-held consensus that several proteins are unique to small extracellular vesicles (EVs (show more...)
EV-METRIC
88% (98th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Small extracellular vesicles
Separation protocol
Separation protocol
Density gradient
(Differential) (ultra)centrifugation Protein markers
EV: CD81/ Flotillin1/ CD63/ CD9
non-EV: Calnexin Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA-MB-231-luc-BMD2a
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
118000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
3
Lowest density fraction
10%
Highest density fraction
37.50%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
1.5
Orientation
Bottom-up
Speed (g)
180000
Duration (min)
120
Fraction volume (mL)
1
Fraction processing
None
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
Flotillin1/ CD63/ CD81
Detected contaminants
Calnexin
Proteomics database
Yes:
Detected EV-associated proteins
CD81/ CD9/ CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
Particle yield
as number of particles per milliliter of starting sample: 2.30E+07
EM
EM-type
Transmission-EM
Image type
Close-up
|
||||||||
EV180067 | 1/5 | Mus musculus | MPI cells |
UF (d)(U)C qEV DG |
Deville S | 2022 | 88% | |
Study summaryFull title
All authors
Deville S, Garcia Romeu H, Oeyen E, Mertens I, Nelissen I, Salvati A
Journal
Int J Mol Sci
Abstract
Extracellular vesicles are membrane-bound carriers with complex cargoes, which play a major role in (show more...)
EV-METRIC
88% (98th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
Ultrafiltration
(Differential) (ultra)centrifugation Commercial method Density gradient Protein markers
EV: Alix/ CD81/ Flotillin1/ CD9
non-EV: Cytochrome C/ GRP94 Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
MPI cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Pelleting performed
No
Density gradient
Type
Continuous
Lowest density fraction
5%
Highest density fraction
60%
Total gradient volume, incl. sample (mL)
4.8
Sample volume (mL)
0.3
Orientation
Bottom-up
Rotor type
SW 55 Ti
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
Alix/ CD81/ Flotillin1
Not detected contaminants
Cytochrome C/ GRP94
Flow cytometry
Type of Flow cytometry
BD Influx instrument/ CytoFlex
Hardware adaptation to ~100nm EV's
Both BD Influx instrument (with a small particle detector) and Beckman Coulter CytoFlex instrument have been validated for the measurement of EVs.
Calibration bead size
0.1-0.9 µm beads
Detected EV-associated proteins
CD9
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
116
EV concentration
Yes
Particle analysis: flow cytometry
Flow cytometer type
BD Influx
Hardware adjustment
BD Influx flow cytometer equipped with a high power 488-nm laser (200 mW) and a small-particle detector for high sensitivity forward scatter detection.
Calibration bead size
0.1
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV180067 | 2/5 | Mus musculus | MPI cells |
UF (d)(U)C qEV DG |
Deville S | 2022 | 88% | |
Study summaryFull title
All authors
Deville S, Garcia Romeu H, Oeyen E, Mertens I, Nelissen I, Salvati A
Journal
Int J Mol Sci
Abstract
Extracellular vesicles are membrane-bound carriers with complex cargoes, which play a major role in (show more...)
EV-METRIC
88% (98th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
LPS
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
Ultrafiltration
(Differential) (ultra)centrifugation Commercial method Density gradient Protein markers
EV: Alix/ CD81/ Flotillin1/ CD9
non-EV: Cytochrome C/ GRP94 Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
MPI cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Pelleting performed
No
Density gradient
Type
Continuous
Lowest density fraction
5%
Highest density fraction
60%
Total gradient volume, incl. sample (mL)
4.8
Sample volume (mL)
0.3
Orientation
Bottom-up
Rotor type
SW 55 Ti
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
Alix/ CD81/ Flotillin1
Not detected contaminants
Cytochrome C/ GRP94
Flow cytometry
Type of Flow cytometry
BD Influx instrument/ CytoFlex
Hardware adaptation to ~100nm EV's
Both BD Influx instrument (with a small particle detector) and Beckman Coulter CytoFlex instrument have been validated for the measurement of EVs.
Calibration bead size
0.1-0.9 µm beads
Detected EV-associated proteins
CD9
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
114
EV concentration
Yes
Particle analysis: flow cytometry
Flow cytometer type
BD Influx
Hardware adjustment
BD Influx flow cytometer equipped with a high power 488-nm laser (200 mW) and a small-particle detector for high sensitivity forward scatter detection.
Calibration bead size
0.1
Report type
Not Reported
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV180067 | 3/5 | Mus musculus | MPI cells |
UF (d)(U)C qEV DG |
Deville S | 2022 | 88% | |
Study summaryFull title
All authors
Deville S, Garcia Romeu H, Oeyen E, Mertens I, Nelissen I, Salvati A
Journal
Int J Mol Sci
Abstract
Extracellular vesicles are membrane-bound carriers with complex cargoes, which play a major role in (show more...)
EV-METRIC
88% (98th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
NH2-PS NPs
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
Ultrafiltration
(Differential) (ultra)centrifugation Commercial method Density gradient Protein markers
EV: Alix/ CD81/ Flotillin1/ CD9
non-EV: Cytochrome C/ GRP94 Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
MPI cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Pelleting performed
No
Density gradient
Type
Continuous
Lowest density fraction
5%
Highest density fraction
60%
Total gradient volume, incl. sample (mL)
4.8
Sample volume (mL)
0.3
Orientation
Bottom-up
Rotor type
SW 55 Ti
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
Alix/ CD81/ Flotillin1
Not detected contaminants
Cytochrome C/ GRP94
Flow cytometry
Type of Flow cytometry
BD Influx instrument/ CytoFlex
Hardware adaptation to ~100nm EV's
Both BD Influx instrument (with a small particle detector) and Beckman Coulter CytoFlex instrument have been validated for the measurement of EVs.
Calibration bead size
0.1-0.9 µm beads
Detected EV-associated proteins
CD9
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
139
EV concentration
Yes
Particle analysis: flow cytometry
Flow cytometer type
BD Influx
Hardware adjustment
BD Influx flow cytometer equipped with a high power 488-nm laser (200 mW) and a small-particle detector for high sensitivity forward scatter detection.
Calibration bead size
0.1
Report type
Not Reported
EV concentration
Yes
EM
Image type
Close-up, Wide-field
|
||||||||
EV180067 | 4/5 | Mus musculus | MPI cells |
UF (d)(U)C qEV DG |
Deville S | 2022 | 88% | |
Study summaryFull title
All authors
Deville S, Garcia Romeu H, Oeyen E, Mertens I, Nelissen I, Salvati A
Journal
Int J Mol Sci
Abstract
Extracellular vesicles are membrane-bound carriers with complex cargoes, which play a major role in (show more...)
EV-METRIC
88% (98th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
COOH-PS NPs
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
Ultrafiltration
(Differential) (ultra)centrifugation Commercial method Density gradient Protein markers
EV: Alix/ CD81/ Flotillin1/ CD9
non-EV: Cytochrome C/ GRP94 Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
MPI cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Pelleting performed
No
Density gradient
Type
Continuous
Lowest density fraction
5%
Highest density fraction
60%
Total gradient volume, incl. sample (mL)
4.8
Sample volume (mL)
0.3
Orientation
Bottom-up
Rotor type
SW 55 Ti
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
Alix/ CD81/ Flotillin1
Not detected contaminants
GRP94/ Cytochrome C
Flow cytometry
Type of Flow cytometry
BD Influx instrument/ CytoFlex
Hardware adaptation to ~100nm EV's
Both BD Influx instrument (with a small particle detector) and Beckman Coulter CytoFlex instrument have been validated for the measurement of EVs.
Calibration bead size
0.1-0.9 µm beads
Detected EV-associated proteins
CD9
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
112
EV concentration
Yes
Particle analysis: flow cytometry
Flow cytometer type
BD Influx
Hardware adjustment
BD Influx flow cytometer equipped with a high power 488-nm laser (200 mW) and a small-particle detector for high sensitivity forward scatter detection.
Calibration bead size
0.1
Report type
Not Reported
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV180067 | 5/5 | Mus musculus | MPI cells |
UF (d)(U)C qEV DG |
Deville S | 2022 | 88% | |
Study summaryFull title
All authors
Deville S, Garcia Romeu H, Oeyen E, Mertens I, Nelissen I, Salvati A
Journal
Int J Mol Sci
Abstract
Extracellular vesicles are membrane-bound carriers with complex cargoes, which play a major role in (show more...)
EV-METRIC
88% (98th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
SiO2 NPs
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
Ultrafiltration
(Differential) (ultra)centrifugation Commercial method Density gradient Protein markers
EV: Alix/ CD81/ Flotillin1/ CD9
non-EV: Cytochrome C/ GRP94 Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
MPI cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Pelleting performed
No
Density gradient
Type
Continuous
Lowest density fraction
5%
Highest density fraction
60%
Total gradient volume, incl. sample (mL)
4.8
Sample volume (mL)
0.3
Orientation
Bottom-up
Rotor type
SW 55 Ti
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
Alix/ CD81/ Flotillin1
Not detected contaminants
GRP94/ Cytochrome c
Flow cytometry
Type of Flow cytometry
BD Influx instrument/ CytoFlex
Hardware adaptation to ~100nm EV's
Both BD Influx instrument (with a small particle detector) and Beckman Coulter CytoFlex instrument have been validated for the measurement of EVs.
Calibration bead size
0.1-0.9 µm beads
Detected EV-associated proteins
CD9
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
102
EV concentration
Yes
Particle analysis: flow cytometry
Flow cytometer type
BD Influx
Hardware adjustment
Calibration bead size
0.1
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210204 | 1/12 | Homo sapiens | PANC-1 |
(d)(U)C Filtration |
Hinzman CP | 2022 | 78% | |
Study summaryFull title
All authors
Hinzman CP, Singh B, Bansal S, Li Y, Iliuk A, Girgis M, Herremans KM, Trevino JG, Singh VK, Banerjee PP, Cheema AK
Journal
J Extracell Vesicles
Abstract
Although cancer-derived extracellular vesicles (cEVs) are thought to play a pivotal role in promotin (show more...)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Pancreas cancer
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Filtration Protein markers
EV: TSG101/ ANXA5/ CD81/ Alix/ ICAM/ Flotillin1/ EpCAM/ CD63
non-EV: GM130 Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
PANC-1
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: rotor type
SW 28
Pelleting: speed (g)
120000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
Flotillin1/ CD63/ ANXA5/ EpCAM/ ICAM/ TSG101/ Alix/ CD81
Detected contaminants
GM130
Proteomics database
Yes:
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
180.8
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
|
||||||||
EV210204 | 2/12 | Homo sapiens | PANC-1 |
(d)(U)C Filtration UF qEV |
Hinzman CP | 2022 | 78% | |
Study summaryFull title
All authors
Hinzman CP, Singh B, Bansal S, Li Y, Iliuk A, Girgis M, Herremans KM, Trevino JG, Singh VK, Banerjee PP, Cheema AK
Journal
J Extracell Vesicles
Abstract
Although cancer-derived extracellular vesicles (cEVs) are thought to play a pivotal role in promotin (show more...)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Pancreas cancer
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Filtration Ultrafiltration Commercial method Protein markers
EV: TSG101/ ANXA5/ CD81/ Alix/ ICAM/ Flotillin1/ EpCAM/ CD63
non-EV: GM130 Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
PANC-1
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: rotor type
SW 28
Pelleting: speed (g)
120000
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
Flotillin1/ CD63/ ICAM/ EpCAM/ ANXA5/ TSG101/ Alix/ CD81
Detected contaminants
GM130
Proteomics database
Yes:
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
|
||||||||
EV210204 | 4/12 | Homo sapiens | PPCL-68 |
(d)(U)C Filtration |
Hinzman CP | 2022 | 78% | |
Study summaryFull title
All authors
Hinzman CP, Singh B, Bansal S, Li Y, Iliuk A, Girgis M, Herremans KM, Trevino JG, Singh VK, Banerjee PP, Cheema AK
Journal
J Extracell Vesicles
Abstract
Although cancer-derived extracellular vesicles (cEVs) are thought to play a pivotal role in promotin (show more...)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Pancreas cancer
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Filtration Protein markers
EV: TSG101/ ANXA5/ CD81/ Alix/ ICAM/ Flotillin1/ EpCAM/ CD63
non-EV: GM130 Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
PPCL-68
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: rotor type
SW 28
Pelleting: speed (g)
120000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
Flotillin1/ CD63/ ANXA5/ EpCAM/ ICAM/ TSG101/ Alix/ CD81
Detected contaminants
GM130
Proteomics database
Yes:
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
180.8
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
|
||||||||
EV210204 | 5/12 | Homo sapiens | PPCL-68 |
(d)(U)C Filtration UF qEV |
Hinzman CP | 2022 | 78% | |
Study summaryFull title
All authors
Hinzman CP, Singh B, Bansal S, Li Y, Iliuk A, Girgis M, Herremans KM, Trevino JG, Singh VK, Banerjee PP, Cheema AK
Journal
J Extracell Vesicles
Abstract
Although cancer-derived extracellular vesicles (cEVs) are thought to play a pivotal role in promotin (show more...) |