Search > Results
You searched for: EV210151 (EV-TRACK ID)
Showing 1 - 8 of 8
Showing 1 - 8 of 8
Details | EV-TRACK ID | Experiment nr. | Species | Sample type | Separation protocol | First author | Year | EV-METRIC |
---|---|---|---|---|---|---|---|---|
EV210151 | 1/8 | Homo sapiens | hiPSC (IMR90)-4 |
DG (d)(U)C Filtration |
Louro, Ana Filipa | 2022 | 100% | |
Study summaryFull title
All authors
Ana F Louro, Marta A Paiva, Marta R Oliveira, Katharina A Kasper, Paula M Alves, Patrícia Gomes-Alves, Margarida Serra
Journal
Advanced Science
Abstract
Extracellular vesicles (EV) are an attractive therapy to boost cardiac regeneration. Nevertheless, i (show more...)
EV-METRIC
100% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
(d)(U)C Filtration Protein markers
EV: TSG101/ CD63/ Flotillin2
non-EV: Argonaute2 Proteomics
no
EV density (g/ml)
1.08
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
hiPSC (IMR90)-4
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
180
Pelleting: rotor type
SW 28
Pelleting: speed (g)
110000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
0.8
Orientation
Bottom-up
Rotor type
SW 28.1
Speed (g)
110000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63/ Flotillin2
Not detected EV-associated proteins
TSG101
Not detected contaminants
Argonaute2
Characterization: RNA analysis
RNA analysis
Type
RNA sequencing
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-250
EV concentration
Yes
Particle yield
number of particles per million cell per 24h;Yes, other: 2.23E7 +- 1.35E7
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210151 | 2/8 | Homo sapiens | CPC (IMR90)-4 |
DG (d)(U)C Filtration |
Louro, Ana Filipa | 2022 | 100% | |
Study summaryFull title
All authors
Ana F Louro, Marta A Paiva, Marta R Oliveira, Katharina A Kasper, Paula M Alves, Patrícia Gomes-Alves, Margarida Serra
Journal
Advanced Science
Abstract
Extracellular vesicles (EV) are an attractive therapy to boost cardiac regeneration. Nevertheless, i (show more...)
EV-METRIC
100% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
(d)(U)C Filtration Protein markers
EV: TSG101/ CD63/ Flotillin2
non-EV: Argonaute2 Proteomics
no
EV density (g/ml)
1.08
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
CPC (IMR90)-4
EV-harvesting Medium
Serum free medium
Cell viability (%)
85
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
180
Pelleting: rotor type
SW 28
Pelleting: speed (g)
110000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
0.8
Orientation
Bottom-up
Rotor type
SW 28.1
Speed (g)
110000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63/ Flotillin2/ TSG101
Not detected contaminants
Argonaute2
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-250
EV concentration
Yes
Particle yield
number of particles per million cell per 24h;Yes, other: 8.27E6 +- 3.53E6
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210151 | 3/8 | Homo sapiens | CMi (IMR90)-4 |
DG (d)(U)C Filtration |
Louro, Ana Filipa | 2022 | 100% | |
Study summaryFull title
All authors
Ana F Louro, Marta A Paiva, Marta R Oliveira, Katharina A Kasper, Paula M Alves, Patrícia Gomes-Alves, Margarida Serra
Journal
Advanced Science
Abstract
Extracellular vesicles (EV) are an attractive therapy to boost cardiac regeneration. Nevertheless, i (show more...)
EV-METRIC
100% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
(d)(U)C Filtration Protein markers
EV: TSG101/ CD63/ Flotillin2
non-EV: Argonaute2 Proteomics
no
EV density (g/ml)
1.08
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
CMi (IMR90)-4
EV-harvesting Medium
Serum free medium
Cell viability (%)
85
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
180
Pelleting: rotor type
SW 28
Pelleting: speed (g)
110000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
0.8
Orientation
Bottom-up
Rotor type
SW 28.1
Speed (g)
110000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63/ Flotillin2/ TSG101
Not detected contaminants
Argonaute2
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-250
EV concentration
Yes
Particle yield
number of particles per million cell per 24h;Yes, other: 2.95E7 +- 1.19E7
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210151 | 4/8 | Homo sapiens | CMm (IMR90)-4 |
DG (d)(U)C Filtration |
Louro, Ana Filipa | 2022 | 100% | |
Study summaryFull title
All authors
Ana F Louro, Marta A Paiva, Marta R Oliveira, Katharina A Kasper, Paula M Alves, Patrícia Gomes-Alves, Margarida Serra
Journal
Advanced Science
Abstract
Extracellular vesicles (EV) are an attractive therapy to boost cardiac regeneration. Nevertheless, i (show more...)
EV-METRIC
100% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
(d)(U)C Filtration Protein markers
EV: TSG101/ CD63/ Flotillin2
non-EV: Argonaute2 Proteomics
no
EV density (g/ml)
1.08
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
CMm (IMR90)-4
EV-harvesting Medium
Serum free medium
Cell viability (%)
85
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
180
Pelleting: rotor type
SW 28
Pelleting: speed (g)
110000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
0.8
Orientation
Bottom-up
Rotor type
SW 28.1
Speed (g)
110000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63/ Flotillin2
Not detected EV-associated proteins
TSG101
Not detected contaminants
Argonaute2
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-250 nm
EV concentration
Yes
Particle yield
number of particles per million cell per 24h;Yes, other: 4.10E7 +- 9.75E6
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210151 | 5/8 | Homo sapiens | hiPSC (DF19-9-11T.H) |
DG (d)(U)C Filtration |
Louro, Ana Filipa | 2022 | 89% | |
Study summaryFull title
All authors
Ana F Louro, Marta A Paiva, Marta R Oliveira, Katharina A Kasper, Paula M Alves, Patrícia Gomes-Alves, Margarida Serra
Journal
Advanced Science
Abstract
Extracellular vesicles (EV) are an attractive therapy to boost cardiac regeneration. Nevertheless, i (show more...)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
(d)(U)C Filtration Protein markers
EV: TSG101
non-EV: Argonaute2 Proteomics
no
EV density (g/ml)
1.083
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
hiPSC (DF19-9-11T.H)
EV-harvesting Medium
Serum free medium
Cell viability (%)
90
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
180
Pelleting: rotor type
SW 28
Pelleting: speed (g)
110000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5
Highest density fraction
40
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
0.8
Orientation
Bottom-up
Rotor type
SW 28.1
Speed (g)
110000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
TSG101
Not detected contaminants
Argonaute2
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-250
EV concentration
Yes
Particle yield
number of particles per million cells per 24h;Yes, other: 1.99E7 +- 1.99E6
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210151 | 6/8 | Homo sapiens | CPC (DF19-9-11T.H) |
DG (d)(U)C Filtration |
Louro, Ana Filipa | 2022 | 89% | |
Study summaryFull title
All authors
Ana F Louro, Marta A Paiva, Marta R Oliveira, Katharina A Kasper, Paula M Alves, Patrícia Gomes-Alves, Margarida Serra
Journal
Advanced Science
Abstract
Extracellular vesicles (EV) are an attractive therapy to boost cardiac regeneration. Nevertheless, i (show more...)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
(d)(U)C Filtration Protein markers
EV: TSG101
non-EV: Argonaute2 Proteomics
no
EV density (g/ml)
1.083
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
CPC (DF19-9-11T.H)
EV-harvesting Medium
Serum free medium
Cell viability (%)
85
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
180
Pelleting: rotor type
SW 28
Pelleting: speed (g)
110000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5
Highest density fraction
40
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
0.8
Orientation
Bottom-up
Rotor type
SW 28.1
Speed (g)
110000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
TSG101
Not detected contaminants
Argonaute2
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-250
EV concentration
Yes
Particle yield
number of particles per million cells per 24h;Yes, other: 6.43E06 +- 5.40E05
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210151 | 7/8 | Homo sapiens | CMi (DF19-9-11T.H) |
DG (d)(U)C Filtration |
Louro, Ana Filipa | 2022 | 89% | |
Study summaryFull title
All authors
Ana F Louro, Marta A Paiva, Marta R Oliveira, Katharina A Kasper, Paula M Alves, Patrícia Gomes-Alves, Margarida Serra
Journal
Advanced Science
Abstract
Extracellular vesicles (EV) are an attractive therapy to boost cardiac regeneration. Nevertheless, i (show more...)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
(d)(U)C Filtration Protein markers
EV: TSG101
non-EV: Argonaute2 Proteomics
no
EV density (g/ml)
1.083
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
CMi (DF19-9-11T.H)
EV-harvesting Medium
Serum free medium
Cell viability (%)
85
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
180
Pelleting: rotor type
SW 28
Pelleting: speed (g)
110000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5
Highest density fraction
40
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
0.8
Orientation
Bottom-up
Rotor type
SW 28.1
Speed (g)
110000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
TSG101
Not detected contaminants
Argonaute2
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-250
EV concentration
Yes
Particle yield
number of particles per million cells per 24h;Yes, other: 3.49E07 +- 2.85E06
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210151 | 8/8 | Homo sapiens | CMm (DF19-9-11T.H) |
DG (d)(U)C Filtration |
Louro, Ana Filipa | 2022 | 89% | |
Study summaryFull title
All authors
Ana F Louro, Marta A Paiva, Marta R Oliveira, Katharina A Kasper, Paula M Alves, Patrícia Gomes-Alves, Margarida Serra
Journal
Advanced Science
Abstract
Extracellular vesicles (EV) are an attractive therapy to boost cardiac regeneration. Nevertheless, i (show more...)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
(d)(U)C Filtration Protein markers
EV: TSG101
non-EV: Argonaute2 Proteomics
no
EV density (g/ml)
1.083
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
CMm (DF19-9-11T.H)
EV-harvesting Medium
Serum free medium
Cell viability (%)
85
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
180
Pelleting: rotor type
SW 28
Pelleting: speed (g)
110000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5
Highest density fraction
40
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
0.8
Orientation
Bottom-up
Rotor type
SW 28.1
Speed (g)
110000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
TSG101
Not detected contaminants
Argonaute2
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-250
EV concentration
Yes
Particle yield
number of particles per million cells per 24h;Yes, other: 2.13E07 +- 2.25E06
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
1 - 8 of 8 |
EV-TRACK ID | EV210151 | |||||||
---|---|---|---|---|---|---|---|---|
species | Homo sapiens | |||||||
sample type | Cell culture | |||||||
cell type | hiPSC (IMR90)-4 | CPC (IMR90)-4 | CMi (IMR90)-4 | CMm (IMR90)-4 | hiPSC (DF19-9-11T.H) | CPC (DF19-9-11T.H) | CMi (DF19-9-11T.H) | CMm (DF19-9-11T.H) |
condition | Control condition | Control condition | Control condition | Control condition | Control condition | Control condition | Control condition | Control condition |
separation protocol | DG (d)(U)C Filtration | DG (d)(U)C Filtration | DG (d)(U)C Filtration | DG (d)(U)C Filtration | DG (d)(U)C Filtration | DG (d)(U)C Filtration | DG (d)(U)C Filtration | DG (d)(U)C Filtration |
Exp. nr. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
EV-METRIC % | 100 | 100 | 100 | 100 | 89 | 89 | 89 | 89 |