Search > Results
You searched for: EV210345 (EV-TRACK ID)
Showing 1 - 17 of 17
Showing 1 - 17 of 17
Details | EV-TRACK ID | Experiment nr. | Species | Sample type | Separation protocol | First author | Year | EV-METRIC |
---|---|---|---|---|---|---|---|---|
EV210345 | 1/17 | Homo sapiens | Expi293F | (d)(U)C | Osteikoetxea X | 2022 | 78% | |
Study summaryFull title
All authors
Osteikoetxea X, Silva A, Lázaro-Ibáñez E, Salmond N, Shatnyeva O, Stein J, Schick J, Wren S, Lindgren J, Firth M, Madsen A, Mayr LM, Overman R, Davies R, Dekker N
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic app (show more...)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD63/ CD81/ Flotillin1/ TSG101/ syntenin-1/ B-actin
non-EV: Calnexin Proteomics
no
Show all info
Study aim
Function/Drug delivery
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
95.4
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
38
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Size-exclusion chromatography
Resin type
Characterization: Protein analysis
Protein Concentration Method
Nanodrop
Protein Yield (µg)
number of particles per million cells
Western Blot
Detected EV-associated proteins
Alix/ CD63/ CD81/ Flotillin1/ TSG101/ syntenin-1/ B-actin
Detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
120
EV concentration
Yes
Particle yield
number of particles per million cells: 4.00e+4
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210345 | 3/17 | Homo sapiens | Expi293F | (d)(U)C | Osteikoetxea X | 2022 | 78% | |
Study summaryFull title
All authors
Osteikoetxea X, Silva A, Lázaro-Ibáñez E, Salmond N, Shatnyeva O, Stein J, Schick J, Wren S, Lindgren J, Firth M, Madsen A, Mayr LM, Overman R, Davies R, Dekker N
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic app (show more...)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
MysPalm-PHYB-PIF6-Cas9
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD63/ CD81/ Flotillin1/ TSG101/ B-actin/ syntenin-1
non-EV: Calnexin Proteomics
no
Show all info
Study aim
Function/Drug delivery
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
95.4
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
38
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Size-exclusion chromatography
Resin type
Characterization: Protein analysis
Protein Concentration Method
Nanodrop
Protein Yield (µg)
number of particles per million cells
Western Blot
Not detected EV-associated proteins
Alix/ CD63/ CD81/ Flotillin1/ TSG101/ B-actin/ syntenin-1/ spCas9
Detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
120
EV concentration
Yes
Particle yield
number of particles per million cells: 2.00e+4
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210345 | 5/17 | Homo sapiens | Expi293F | (d)(U)C | Osteikoetxea X | 2022 | 78% | |
Study summaryFull title
All authors
Osteikoetxea X, Silva A, Lázaro-Ibáñez E, Salmond N, Shatnyeva O, Stein J, Schick J, Wren S, Lindgren J, Firth M, Madsen A, Mayr LM, Overman R, Davies R, Dekker N
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic app (show more...)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
MysPalm-CIBN-CRY2-Cas9
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD63/ CD81/ Flotillin1/ TSG101/ B-actin/ Syntenin-1
non-EV: Calnexin Proteomics
no
Show all info
Study aim
Function/Drug delivery
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
95.4
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
38
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Size-exclusion chromatography
Resin type
Characterization: Protein analysis
Protein Concentration Method
Nanodrop
Protein Yield (µg)
number of particles per million cells
Western Blot
Detected EV-associated proteins
Alix/ CD63/ CD81/ Flotillin1/ TSG101/ B-actin/ Syntenin-1/ spCas9
Detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
120
EV concentration
Yes
Particle yield
number of particles per million cells: 4.00e+4
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210345 | 7/17 | Homo sapiens | Expi293F | (d)(U)C | Osteikoetxea X | 2022 | 67% | |
Study summaryFull title
All authors
Osteikoetxea X, Silva A, Lázaro-Ibáñez E, Salmond N, Shatnyeva O, Stein J, Schick J, Wren S, Lindgren J, Firth M, Madsen A, Mayr LM, Overman R, Davies R, Dekker N
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic app (show more...)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
MysPalm-pMag-nMag-Cas9
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD63/ CD81/ Flotillin1/ TSG101/ B-actin/ Syntenin-1
non-EV: Calnexin Proteomics
no
Show all info
Study aim
Function/Drug delivery
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
95.4
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
38
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Size-exclusion chromatography
Resin type
Characterization: Protein analysis
Protein Concentration Method
Nanodrop
Protein Yield (µg)
number of particles per million cells
Western Blot
Detected EV-associated proteins
Alix/ CD63/ CD81/ Flotillin1/ TSG101/ syntenin-1/ B-actin
Detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210345 | 9/17 | Homo sapiens | Expi293F | (d)(U)C | Osteikoetxea X | 2022 | 67% | |
Study summaryFull title
All authors
Osteikoetxea X, Silva A, Lázaro-Ibáñez E, Salmond N, Shatnyeva O, Stein J, Schick J, Wren S, Lindgren J, Firth M, Madsen A, Mayr LM, Overman R, Davies R, Dekker N
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic app (show more...)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
MysPalm-FKBP-FRB-Cas9
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD63/ CD81/ Flotillin1/ TSG101/ B-actin/ Syntenin-1
non-EV: Calnexin Proteomics
no
Show all info
Study aim
Function/Drug delivery
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
95.4
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
38
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Size-exclusion chromatography
Resin type
Characterization: Protein analysis
Protein Concentration Method
Nanodrop
Protein Yield (µg)
number of particles per million cells
Western Blot
Detected EV-associated proteins
Alix/ CD63/ CD81/ Flotillin1/ TSG101/ syntenin-1/ B-actin
Detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210345 | 2/17 | Homo sapiens | Expi293F | (d)(U)C | Osteikoetxea X | 2022 | 56% | |
Study summaryFull title
All authors
Osteikoetxea X, Silva A, Lázaro-Ibáñez E, Salmond N, Shatnyeva O, Stein J, Schick J, Wren S, Lindgren J, Firth M, Madsen A, Mayr LM, Overman R, Davies R, Dekker N
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic app (show more...)
EV-METRIC
56% (89th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
CD81-CIBN-CRY2-Cas9
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD63/ CD81/ Flotillin1/ TSG101/ syntenin-1/ B-actin
non-EV: calnexin Proteomics
no
Show all info
Study aim
Function/Drug delivery
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
95.4
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
38
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Size-exclusion chromatography
Resin type
Characterization: Protein analysis
Protein Concentration Method
Nanodrop
Protein Yield (µg)
number of particles per million cells
Western Blot
Detected EV-associated proteins
Alix/ CD63/ CD81/ Flotillin1/ TSG101/ syntenin-1/ B-actin/ spCas9
Detected contaminants
calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
120
EV concentration
Yes
Particle yield
number of particles per million cells: 5.00e+4
|
||||||||
EV210345 | 4/17 | Homo sapiens | Expi293F | (d)(U)C | Osteikoetxea X | 2022 | 56% | |
Study summaryFull title
All authors
Osteikoetxea X, Silva A, Lázaro-Ibáñez E, Salmond N, Shatnyeva O, Stein J, Schick J, Wren S, Lindgren J, Firth M, Madsen A, Mayr LM, Overman R, Davies R, Dekker N
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic app (show more...)
EV-METRIC
56% (89th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Mys-CIBN-CRY2-Cas9
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD63/ CD81/ Flotillin1/ TSG101/ B-actin/ syntenin-1
non-EV: Calnexin Proteomics
no
Show all info
Study aim
Function/Drug delivery
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
95.4
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
38
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Size-exclusion chromatography
Resin type
Characterization: Protein analysis
Protein Concentration Method
Nanodrop
Protein Yield (µg)
number of particles per million cells
Western Blot
Detected EV-associated proteins
Alix/ CD63/ CD81/ Flotillin1/ TSG101/ B-actin/ syntenin-1/ spCas9
Detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
120
EV concentration
Yes
Particle yield
number of particles per million cells: 4.00e+4
|
||||||||
EV210345 | 16/17 | Homo sapiens | Expi293F | (d)(U)C | Osteikoetxea X | 2022 | 56% | |
Study summaryFull title
All authors
Osteikoetxea X, Silva A, Lázaro-Ibáñez E, Salmond N, Shatnyeva O, Stein J, Schick J, Wren S, Lindgren J, Firth M, Madsen A, Mayr LM, Overman R, Davies R, Dekker N
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic app (show more...)
EV-METRIC
56% (89th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
CD9-FKBP-FRB-Cas9
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD63/ CD81/ Flotillin1/ TSG101/ B-actin/ syntenin-1
non-EV: Calnexin Proteomics
no
Show all info
Study aim
Function/Drug delivery
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
95.4
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
38
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Size-exclusion chromatography
Resin type
Characterization: Protein analysis
Protein Concentration Method
Nanodrop
Protein Yield (µg)
number of particles per million cells
Western Blot
Detected EV-associated proteins
Alix/ CD63/ CD81/ Flotillin1/ TSG101/ B-actin/ syntenin-1
Detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Particle yield
number of particles per million cells
|
||||||||
EV210345 | 10/17 | Homo sapiens | Expi293F |
(d)(U)C Size-exclusion chromatography (non-commercial) |
Osteikoetxea X | 2022 | 44% | |
Study summaryFull title
All authors
Osteikoetxea X, Silva A, Lázaro-Ibáñez E, Salmond N, Shatnyeva O, Stein J, Schick J, Wren S, Lindgren J, Firth M, Madsen A, Mayr LM, Overman R, Davies R, Dekker N
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic app (show more...)
EV-METRIC
44% (84th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
MysPalm-CIBN-CRY2-Cas9 + sgRNA
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial) Protein markers
EV: Alix/ CD9/ CD81/ Annexin V
non-EV: None Proteomics
no
Show all info
Study aim
Function/Drug delivery
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
95.4
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
38
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Size-exclusion chromatography
Used for validation?
Yes
Total column volume (mL)
1
Sample volume/column (mL)
0.15
Other
Name other separation method
Size-exclusion chromatography (non-commercial)
Characterization: Protein analysis
Protein Concentration Method
Nanodrop
Protein Yield (µg)
number of particles per million cells
Western Blot
Detected EV-associated proteins
Alix
Flow cytometry
Type of Flow cytometry
CytoFLEX
Detected EV-associated proteins
CD9/ CD81/ Annexin V
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
|
||||||||
EV210345 | 12/17 | Homo sapiens | Expi293F | (d)(U)C | Osteikoetxea X | 2022 | 44% | |
Study summaryFull title
All authors
Osteikoetxea X, Silva A, Lázaro-Ibáñez E, Salmond N, Shatnyeva O, Stein J, Schick J, Wren S, Lindgren J, Firth M, Madsen A, Mayr LM, Overman R, Davies R, Dekker N
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic app (show more...)
EV-METRIC
44% (84th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
MysPalm-CIBN-CRY2-Cas9 + sgRNA
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: Alix
non-EV: None Proteomics
no
Show all info
Study aim
Function/Drug delivery
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
95.4
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
38
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Size-exclusion chromatography
Resin type
Characterization: Protein analysis
Protein Concentration Method
Nanodrop
Protein Yield (µg)
number of particles per million cells
Western Blot
Detected EV-associated proteins
Alix
Characterization: RNA analysis
RNA analysis
Type
droplet digital PCR
Proteinase treatment
No
RNAse treatment
Yes
RNAse type
RNase A
RNAse concentration
2
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210345 | 14/17 | Homo sapiens | Expi293F | (d)(U)C | Osteikoetxea X | 2022 | 44% | |
Study summaryFull title
All authors
Osteikoetxea X, Silva A, Lázaro-Ibáñez E, Salmond N, Shatnyeva O, Stein J, Schick J, Wren S, Lindgren J, Firth M, Madsen A, Mayr LM, Overman R, Davies R, Dekker N
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic app (show more...)
EV-METRIC
44% (84th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
CD9-CIBN-CRY2-Cas9 + sgRNA
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: Alix
non-EV: None Proteomics
no
Show all info
Study aim
Function/Drug delivery
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
95.4
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
38
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Size-exclusion chromatography
Resin type
Characterization: Protein analysis
Protein Concentration Method
Nanodrop
Protein Yield (µg)
number of particles per million cells
Western Blot
Detected EV-associated proteins
Alix
Characterization: RNA analysis
RNA analysis
Type
droplet digital PCR
Proteinase treatment
No
RNAse treatment
Yes
RNAse type
RNase A
RNAse concentration
2
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210345 | 6/17 | Homo sapiens | Expi293F | (d)(U)C | Osteikoetxea X | 2022 | 33% | |
Study summaryFull title
All authors
Osteikoetxea X, Silva A, Lázaro-Ibáñez E, Salmond N, Shatnyeva O, Stein J, Schick J, Wren S, Lindgren J, Firth M, Madsen A, Mayr LM, Overman R, Davies R, Dekker N
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic app (show more...)
EV-METRIC
33% (74th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Palm-CIBN-CRY2-Cas9
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: Alix
non-EV: None Proteomics
no
Show all info
Study aim
Function/Drug delivery
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
95.4
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
38
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Size-exclusion chromatography
Resin type
Characterization: Protein analysis
Protein Concentration Method
Nanodrop
Protein Yield (µg)
number of particles per million cells
Western Blot
Detected EV-associated proteins
Alix
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
120
Particle yield
number of particles per million cells
|
||||||||
EV210345 | 8/17 | Homo sapiens | Expi293F | (d)(U)C | Osteikoetxea X | 2022 | 33% | |
Study summaryFull title
All authors
Osteikoetxea X, Silva A, Lázaro-Ibáñez E, Salmond N, Shatnyeva O, Stein J, Schick J, Wren S, Lindgren J, Firth M, Madsen A, Mayr LM, Overman R, Davies R, Dekker N
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic app (show more...)
EV-METRIC
33% (74th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Prenyl-CIBN-CRY2-Cas9
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: None
non-EV: None Proteomics
no
Show all info
Study aim
Function/Drug delivery
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
95.4
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
38
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Size-exclusion chromatography
Resin type
Characterization: Protein analysis
Protein Concentration Method
Nanodrop
Protein Yield (µg)
number of particles per million cells
Western Blot
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
|
||||||||
EV210345 | 11/17 | Homo sapiens | Expi293F | (d)(U)C | Osteikoetxea X | 2022 | 33% | |
Study summaryFull title
All authors
Osteikoetxea X, Silva A, Lázaro-Ibáñez E, Salmond N, Shatnyeva O, Stein J, Schick J, Wren S, Lindgren J, Firth M, Madsen A, Mayr LM, Overman R, Davies R, Dekker N
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic app (show more...)
EV-METRIC
33% (74th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
CD9-CIBN-CRY2-Cas9
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: Alix
non-EV: None Proteomics
no
Show all info
Study aim
Function/Drug delivery
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
95.4
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
38
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Size-exclusion chromatography
Resin type
Characterization: Protein analysis
Protein Concentration Method
Nanodrop
Protein Yield (µg)
number of particles per million cells
Western Blot
Detected EV-associated proteins
Alix
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
|
||||||||
EV210345 | 13/17 | Homo sapiens | Expi293F | (d)(U)C | Osteikoetxea X | 2022 | 33% | |
Study summaryFull title
All authors
Osteikoetxea X, Silva A, Lázaro-Ibáñez E, Salmond N, Shatnyeva O, Stein J, Schick J, Wren S, Lindgren J, Firth M, Madsen A, Mayr LM, Overman R, Davies R, Dekker N
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic app (show more...)
EV-METRIC
33% (74th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
CD9-PHYB-PIF6-Cas9
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: Alix
non-EV: None Proteomics
no
Show all info
Study aim
Function/Drug delivery
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
95.4
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
38
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Size-exclusion chromatography
Resin type
Characterization: Protein analysis
Protein Concentration Method
Nanodrop
Protein Yield (µg)
number of particles per million cells
Western Blot
Detected EV-associated proteins
Alix
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
|
||||||||
EV210345 | 17/17 | Homo sapiens | Expi293F | (d)(U)C | Osteikoetxea X | 2022 | 33% | |
Study summaryFull title
All authors
Osteikoetxea X, Silva A, Lázaro-Ibáñez E, Salmond N, Shatnyeva O, Stein J, Schick J, Wren S, Lindgren J, Firth M, Madsen A, Mayr LM, Overman R, Davies R, Dekker N
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic app (show more...)
EV-METRIC
33% (74th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Rab5c-CIBN-CRY2-Cas9
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: Alix
non-EV: None Proteomics
no
Show all info
Study aim
Function/Drug delivery
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
95.4
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
38
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Nanodrop
Protein Yield (µg)
number of particles per million cells
Western Blot
Detected EV-associated proteins
Alix
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
|
||||||||
EV210345 | 15/17 | Homo sapiens | Expi293F | (d)(U)C | Osteikoetxea X | 2022 | 14% | |
Study summaryFull title
All authors
Osteikoetxea X, Silva A, Lázaro-Ibáñez E, Salmond N, Shatnyeva O, Stein J, Schick J, Wren S, Lindgren J, Firth M, Madsen A, Mayr LM, Overman R, Davies R, Dekker N
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic app (show more...)
EV-METRIC
14% (43rd percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
CD9-pMag-nMag-Cas9
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: None
non-EV: None Proteomics
no
Show all info
Study aim
Function/Drug delivery
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
95.4
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
38
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Size-exclusion chromatography
Resin type
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Protein Yield (µg)
number of particles per million cells
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Particle yield
number of particles per million cells
|
||||||||
1 - 17 of 17 |
EV-TRACK ID | EV210345 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
species | Homo sapiens | ||||||||||||||||
sample type | Cell culture | ||||||||||||||||
cell type | Expi293F | ||||||||||||||||
condition | Control condition | MysPalm-PHYB-PIF6-Cas9 | MysPalm-CIBN-CRY2-Cas9 | MysPalm-pMag-nMag-Cas9 | MysPalm-FKBP-FRB-Cas9 | CD81-CIBN-CRY2-Cas9 | Mys-CIBN-CRY2-Cas9 | CD9-FKBP-FRB-Cas9 | MysPalm-CIBN-CRY2-Cas9 sgRNA | MysPalm-CIBN-CRY2-Cas9 sgRNA | CD9-CIBN-CRY2-Cas9 sgRNA | Palm-CIBN-CRY2-Cas9 | Prenyl-CIBN-CRY2-Cas9 | CD9-CIBN-CRY2-Cas9 | CD9-PHYB-PIF6-Cas9 | Rab5c-CIBN-CRY2-Cas9 | CD9-pMag-nMag-Cas9 |
separation protocol | dUC | dUC | dUC | dUC | dUC | dUC | dUC | dUC | dUC/ Size-exclusion chromatography (non-commercial) | dUC | dUC | dUC | dUC | dUC | dUC | dUC | dUC |
Exp. nr. | 1 | 3 | 5 | 7 | 9 | 2 | 4 | 16 | 10 | 12 | 14 | 6 | 8 | 11 | 13 | 17 | 15 |
EV-METRIC % | 78 | 78 | 78 | 67 | 67 | 56 | 56 | 56 | 44 | 44 | 44 | 33 | 33 | 33 | 33 | 33 | 14 |