Search > Results

You searched for: 2018 (Year of publication)

Showing 101 - 150 of 1013

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Experiment number
  • Experiments differ in Sample type, Separation protocol
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in isolation protocol/particle analysis/sample origin/sample type
Experiment number
  • Experiments differ in isolation protocol/particle analysis/sample origin/sample type
Experiment number
  • Experiments differ in isolation protocol/particle analysis/sample origin/sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Isolation, Proteïn analysis, Particle analysis
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV200189 1/2 Homo sapiens Cerebrospinal Fluid (d)(U)C
Sonication
Filtration
UF
Manek, Rachna 2018 44%

Study summary

Full title
All authors
Rachna Manek, Ahmed Moghieb, Zhihui Yang, Dhwani Kumar, Firas Kobessiy, George Anis Sarkis, Vijaya Raghavan, Kevin K W Wang
Journal
Molecular Neurobiology
Abstract
Recently, there have been emerging interests in the area of microvesicles and exosome (MV/E) release (show more...)Recently, there have been emerging interests in the area of microvesicles and exosome (MV/E) released from brain cells in relation to neurodegenerative diseases. However, only limited studies focused on MV/E released post-traumatic brain injury (TBI) as they highlight on the mechanistic roles of released proteins. This study sought to examine if CSF samples from severe TBI patients contain MV/E with unique protein contents. First, nanoparticle tracking analysis determined MV/E from TBI have a mode of 74-98 nm in diameter, while control CSF MV/E have a mode of 99-104 nm. Also, there are more MV/E were isolated from TBI CSF (27.8-33.6 × 108/mL) than from control CSF (13.1-18.5 × 108/mL). Transmission electron microscopy (TEM) visualization also confirmed characteristic MV/E morphology. Using targeted immunoblotting approach, we observed the presence of several known TBI biomarkers such as αII-spectrin breakdown products (BDPs), GFAP, and its BDPs and UCH-L1 in higher concentrations in MV/E from TBI CSF than their counterparts from control CSF. Furthermore, we found presynaptic terminal protein synaptophysin and known exosome marker Alix enriched in MV/E from human TBI CSF. In parallel, we conducted nRPLC-tandem mass spectrometry-based proteomic analysis of two control and two TBI CSF samples. Ninety-one proteins were identified with high confidence in MV/E from control CSF, whereas 466 proteins were identified in the counterpart from TBI CSF. MV/E isolated from human CSF contain cytoskeletal proteins, neurite-outgrowth related proteins, and synaptic proteins, extracellular matrix proteins, and complement protein C1q subcomponent subunit B. Taken together, following severe TBI, the injured human brain released increased number of extracellular microvesicles/exosomes (MV/E) into CSF. These TBI MV/E contain several known TBI biomarkers and previously undescribed brain protein markers. It is also possible that such TBI-specific MV/E might contain cell to cell communication factors related to both cell death signaling a well as neurodegeneration pathways. (hide)
EV-METRIC
44% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cerebrospinal Fluid
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Sonication
Filtration
Ultrafiltration
Protein markers
EV: Spectrin/ UCH-L1/ Synaptophysin/ GFAP/ Alix
non-EV: None
Proteomics
yes
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cerebrospinal Fluid
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 55 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
3
Wash: time (min)
70
Wash: Rotor Type
SW 55 Ti
Wash: speed (g)
100000
Filtration steps
0.45µm > x > 0.22µm,
Ultra filtration
Cut-off size (kDa)
Not spec
Membrane type
Not specified
Other
Name other separation method
Sonication
Characterization: Protein analysis
Protein Concentration Method
No
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Spectrin/ Alix
Not detected EV-associated proteins
UCH-L1/ Synaptophysin/ GFAP
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mode
Reported size (nm)
99-104
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
EV200189 2/2 Homo sapiens Cerebrospinal Fluid (d)(U)C
Sonication
Filtration
UF
Manek, Rachna 2018 44%

Study summary

Full title
All authors
Rachna Manek, Ahmed Moghieb, Zhihui Yang, Dhwani Kumar, Firas Kobessiy, George Anis Sarkis, Vijaya Raghavan, Kevin K W Wang
Journal
Molecular Neurobiology
Abstract
Recently, there have been emerging interests in the area of microvesicles and exosome (MV/E) release (show more...)Recently, there have been emerging interests in the area of microvesicles and exosome (MV/E) released from brain cells in relation to neurodegenerative diseases. However, only limited studies focused on MV/E released post-traumatic brain injury (TBI) as they highlight on the mechanistic roles of released proteins. This study sought to examine if CSF samples from severe TBI patients contain MV/E with unique protein contents. First, nanoparticle tracking analysis determined MV/E from TBI have a mode of 74-98 nm in diameter, while control CSF MV/E have a mode of 99-104 nm. Also, there are more MV/E were isolated from TBI CSF (27.8-33.6 × 108/mL) than from control CSF (13.1-18.5 × 108/mL). Transmission electron microscopy (TEM) visualization also confirmed characteristic MV/E morphology. Using targeted immunoblotting approach, we observed the presence of several known TBI biomarkers such as αII-spectrin breakdown products (BDPs), GFAP, and its BDPs and UCH-L1 in higher concentrations in MV/E from TBI CSF than their counterparts from control CSF. Furthermore, we found presynaptic terminal protein synaptophysin and known exosome marker Alix enriched in MV/E from human TBI CSF. In parallel, we conducted nRPLC-tandem mass spectrometry-based proteomic analysis of two control and two TBI CSF samples. Ninety-one proteins were identified with high confidence in MV/E from control CSF, whereas 466 proteins were identified in the counterpart from TBI CSF. MV/E isolated from human CSF contain cytoskeletal proteins, neurite-outgrowth related proteins, and synaptic proteins, extracellular matrix proteins, and complement protein C1q subcomponent subunit B. Taken together, following severe TBI, the injured human brain released increased number of extracellular microvesicles/exosomes (MV/E) into CSF. These TBI MV/E contain several known TBI biomarkers and previously undescribed brain protein markers. It is also possible that such TBI-specific MV/E might contain cell to cell communication factors related to both cell death signaling a well as neurodegeneration pathways. (hide)
EV-METRIC
44% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cerebrospinal Fluid
Sample origin
Traumatic brain injury
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Sonication
Filtration
Ultrafiltration
Protein markers
EV: Spectrin/ UCH-L1/ Synaptophysin/ GFAP/ Alix
non-EV: None
Proteomics
yes
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cerebrospinal Fluid
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 55 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
3
Wash: time (min)
70
Wash: Rotor Type
SW 55 Ti
Wash: speed (g)
100000
Filtration steps
0.45µm > x > 0.22µm,
Ultra filtration
Cut-off size (kDa)
Not spec
Membrane type
Not specified
Other
Name other separation method
Sonication
Characterization: Protein analysis
Protein Concentration Method
No
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Spectrin/ UCH-L1/ Synaptophysin/ GFAP/ Alix
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mode
Reported size (nm)
74-98
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
EV200147 2/3 Homo sapiens Serum "Precipitation
(d)(U)C
DG
Filtration"
Shen, Li 2018 44%

Study summary

Full title
All authors
Li Shen, Yujing Li, Ruotian Li, Zhenyu Diao, Muyi Yany, Mengfei Wu, Haixiang Sun, Guijun Yan, Yali Hu
Journal
Int J Mol Med
Abstract
Preeclampsia (PE) is considered to be initiated by abnormal placentation in early pregnancy and resu (show more...)Preeclampsia (PE) is considered to be initiated by abnormal placentation in early pregnancy and results in systemic endothelial cell dysfunction in the second or third trimester. MicroRNAs (miRs) expressed in the human placenta can be secreted into maternal circulation via exosomes, which are secreted extracellular vesicles that serve important roles in intercellular communication. The present study hypothesized that upregulation of placenta‑associated serum exosomal miR‑155 from patients with PE may suppress endothelial nitric oxide synthase (eNOS) expression in endothelial cells. The results demonstrated that placenta‑associated serum exosomes from patients with PE decreased nitric oxide (NO) production and eNOS expression in primary human umbilical vein endothelial cells (HUVECs). Subsequently, an upregulation of placenta‑associated serum exosomal miR‑155 was detected in patients with PE compared with in gestational age‑matched normal pregnant women. In addition, the results demonstrated that overexpression of exosomal miR‑155 from BeWo cells was internalized into HUVECs, and was able to suppress eNOS expression by targeting its 3'‑untranslated region. The results of the present study indicated that placenta‑associated serum exosomes may inhibit eNOS expression in endothelial cell during PE development in humans, and this phenomenon may be partly due to increased miR‑155 expression in placenta‑associated serum exosomes. (hide)
EV-METRIC
44% (86th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Healthy pregnant
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
"Precipitation
(Differential) (ultra)centrifugation
Density gradient
Filtration"
Protein markers
EV: "CD81/ PLAP/ CD63"
non-EV: None
Proteomics
no
EV density (g/ml)
1.09
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Density gradient
Type
Not specified
Number of initial discontinuous layers
Not specified
Lowest density fraction
Not specified
Highest density fraction
Not specified
Total gradient volume, incl. sample (mL)
Not specified
Sample volume (mL)
Not spec
Orientation
Top-down
Rotor type
Not specified
Speed (g)
100000
Duration (min)
300
Fraction volume (mL)
Not specified
Fraction processing
Precipitation of all proteins/vesicles
Filtration steps
0.22µm or 0.2µm
Other
Name other separation method
"Precipitation
Other
Name other separation method
Filtration"
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
"CD63/ PLAP/ CD81"
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Mean
Reported size (nm)
73.74
EM
EM-type
Transmission-EM
Image type
Close-up
EV180026 7/7 Homo sapiens MCF7 (d)(U)C
Filtration
Wenzhe Li 2018 44%

Study summary

Full title
All authors
Wenzhe Li, Bin Shao, Changliang Liu, Huayi Wang, Wangshu Zheng, Weiyao Kong, Xiaoran Liu, Guobin Xu, Chen Wang, Huiping Li, Ling Zhu, Yanlian Yang
Journal
Small methods
Abstract
Blood‐based detection and molecular phenotyping are highly desired for the early diagnosis and dyn (show more...)Blood‐based detection and molecular phenotyping are highly desired for the early diagnosis and dynamic monitoring of cancer. Extracellular vesicles (EVs) carry molecular information from the cells of origin and are biomarkers of cancer. However, the detection and molecular analysis of EVs has been challenging due to their nanoscaled size. Here, an assessment of the detection and molecular phenotyping of serum EVs based on microbead‐assisted flow cytometry is established. The clinical utility of this method is validated in the diagnosis and human epidermal growth factor receptor 2 (HER2) phenotyping of breast cancer. Good correlation between the status of epithelial cell adhesion molecule (EpCAM) and HER2 expression in EVs and in the cells of origin is found. Both EpCAM+ and HER2+ EVs are demonstrated to be effective diagnostic markers of breast cancer with high sensitivity and specificity. EV‐based HER2 phenotyping is consistent with tissue‐based HER2 phenotyping by immunohistochemistry and can be used as a surrogate for the invasive tissue assessments. The microbead‐assisted flow cytometry assessment of EVs enables rapid and noninvasive detection and molecular phenotyping of cancer and would help to personalized treatment and cancer survival. (hide)
EV-METRIC
44% (84th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Adj. k-factor
156.9 (pelleting) / 156.9 (washing)
Protein markers
EV: CD81/ Flotillin-1/ CD63/ EpCAM
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Function, Biomarker, New methodological development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MCF7
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
156.9
Wash: time (min)
120
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Wash: adjusted k-factor
156.9
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63, CD81, Flotillin-1, EpCAM
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Size range/distribution
Reported size (nm)
141.5 ± 15.04
NTA
Report type
Size range/distribution
Reported size (nm)
146.2 ± 60.2
EM
EM-type
Transmission-EM
Image type
Close-up
EV concentration
Yes
EV180010 1/2 Homo sapiens Serum (d)(U)C
qEV
Busatto, Sara 2018 44%

Study summary

Full title
All authors
Sara Busatto, Arianna Giacomini, Costanza Montis, Roberto Ronca, Paolo Bergese
Journal
Anal Chem
Abstract
Understanding extracellular vesicle (EV) internalization mechanisms and pathways in cells is of capi (show more...)Understanding extracellular vesicle (EV) internalization mechanisms and pathways in cells is of capital importance for both EV basic biology and clinical translation, but still presents analytical hurdles, such as undetermined purity grade and/or concentration of the EV samples and lack of standard protocols. We report an accessible, robust, and versatile method for resolving dose-dependent uptake profiles of exosomes-the nanosized (30-150 nm) subtypes of EVs of intracellular origin which are more intensively investigated for diagnostic and therapeutic applications-by cultured cells. The method is based on incubating recipient cells with consistently increasing doses of exosomes which are graded for purity and titrated by a COlorimetric NANoplasmonic (CONAN) assay followed by cell flow cytofluorimetric analysis. The proposed method allowed evaluation and comparison of the uptake of human serum exosomes by cancer cell lines of murine (TRAMP-C2) and human (LNCaP, DU145, MDA-MB-231, and A375) origin, setting a firmer footing for better characterization and understanding of exosome biology in different in vitro and (potentially) in vivo models of cancer growth. (hide)
EV-METRIC
44% (86th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
qEV
Adj. k-factor
89.2 (pelleting)
Protein markers
EV: ANXA11/ CD63
non-EV: GM130/ APOA1
Proteomics
no
Show all info
Study aim
Mechanism of uptake/transfer
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
TLA-55
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
89.20
Commercial kit
qEV
Other
Name other separation method
qEV
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63, ANXA11
Not detected contaminants
GM130, APOA1
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Atomic force-EM
Image type
Wide-field
Report size (nm)
30-150
EV180083 2/2 Mus musculus 5T33MMvt DG
(d)(U)C
ExoQuick
Faict S 2018 43%

Study summary

Full title
All authors
Faict S, Muller J, De Veirman K, De Bruyne E, Maes K, Vrancken L, Heusschen R, De Raeve H, Schots R, Vanderkerken K, Caers J, Menu E.
Journal
blood cancer j
Abstract
Progression of multiple myeloma (MM) is largely dependent on the bone marrow (BM) microenvironment w (show more...)Progression of multiple myeloma (MM) is largely dependent on the bone marrow (BM) microenvironment wherein communication through different factors including extracellular vesicles takes place. This cross-talk not only leads to drug resistance but also to the development of osteolysis. Targeting vesicle secretion could therefore simultaneously ameliorate drug response and bone disease. In this paper, we examined the effects of MM exosomes on different aspects of osteolysis using the 5TGM1 murine model. We found that 5TGM1 sEVs, or 'exosomes', not only enhanced osteoclast activity, they also blocked osteoblast differentiation and functionality in vitro. Mechanistically, we could demonstrate that transfer of DKK-1 led to a reduction in Runx2, Osterix, and Collagen 1A1 in osteoblasts. In vivo, we uncovered that 5TGM1 exosomes could induce osteolysis in a similar pattern as the MM cells themselves. Blocking exosome secretion using the sphingomyelinase inhibitor GW4869 not only increased cortical bone volume, but also it sensitized the myeloma cells to bortezomib, leading to a strong anti-tumor response when GW4869 and bortezomib were combined. Altogether, our results indicate an important role for exosomes in the BM microenvironment and suggest a novel therapeutic target for anti-myeloma therapy. (hide)
EV-METRIC
43% (81st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
(d)(U)C
ExoQuick
Protein markers
EV:
non-EV:
Proteomics
no
EV density (g/ml)
1.08
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
5T33MMvt
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
180
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
5
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
0.5
Orientation
Bottom-up
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
10800
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
10
Pelleting: duration (min)
180
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Commercial kit
ExoQuick
Other
Name other separation method
ExoQuick
Characterization: Protein analysis
None
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Not detected EV-associated proteins
Detected contaminants
Not detected contaminants
Characterization: Lipid analysis
No
EM
EM-type
EV concentration
EV180059 2/6 Gut microbiota Blood plasma DG
SEC
Tulkens J 2018 42%

Study summary

Full title
All authors
Tulkens J, Vergauwen G, Van Deun J, Geeurickx E, Dhondt B, Lippens L, De Scheerder MA, Miinalainen I, Rappu P, De Geest BG, Vandecasteele K, Laukens D, Vandekerckhove L, Denys H, Vandesompele J, De Wever O, Hendrix A.
Journal
Gut
Abstract
(show more...) (hide)
EV-METRIC
42% (74th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
LPS-positive bacterial EV
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
SEC
Protein markers
EV: LPS/ OmpA
non-EV:
Proteomics
no
EV density (g/ml)
1.141-1.186
Show all info
Study aim
Function/Biomarker/Identification of content (omics approaches)
Sample
Species
Gut microbiota
Sample Type
Blood plasma
Separation Method
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5
Highest density fraction
40
Total gradient volume, incl. sample (mL)
16,5
Sample volume (mL)
1
Orientation
Top-down
Rotor type
SW 32.1 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Size-exclusion chromatography
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
2
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Proteomics database
No
Detected EV-associated proteins
LPS
Characterization: Lipid analysis
No
EV180059 3/6 Gut microbiota Blood plasma SEC Tulkens J 2018 42%

Study summary

Full title
All authors
Tulkens J, Vergauwen G, Van Deun J, Geeurickx E, Dhondt B, Lippens L, De Scheerder MA, Miinalainen I, Rappu P, De Geest BG, Vandecasteele K, Laukens D, Vandekerckhove L, Denys H, Vandesompele J, De Wever O, Hendrix A.
Journal
Gut
Abstract
(show more...) (hide)
EV-METRIC
42% (74th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Inflammatory bowel disease
Focus vesicles
LPS-positive bacterial EV
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
SEC
Protein markers
EV: LPS/ OmpA
non-EV:
Proteomics
no
Show all info
Study aim
Function/Biomarker/Identification of content (omics approaches)
Sample
Species
Gut microbiota
Sample Type
Blood plasma
Separation Method
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
2
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Proteomics database
No
Detected EV-associated proteins
LPS
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Immuno-EM
EM protein
LPS
Image type
Close-up
EV180059 5/6 Gut microbiota Blood plasma SEC Tulkens J 2018 42%

Study summary

Full title
All authors
Tulkens J, Vergauwen G, Van Deun J, Geeurickx E, Dhondt B, Lippens L, De Scheerder MA, Miinalainen I, Rappu P, De Geest BG, Vandecasteele K, Laukens D, Vandekerckhove L, Denys H, Vandesompele J, De Wever O, Hendrix A.
Journal
Gut
Abstract
(show more...) (hide)
EV-METRIC
42% (74th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Therapy-induced intestinal mucositis
Focus vesicles
LPS-positive bacterial EV
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
SEC
Protein markers
EV: LPS/ OmpA
non-EV:
Proteomics
no
Show all info
Study aim
Function/Biomarker/Identification of content (omics approaches)
Sample
Species
Gut microbiota
Sample Type
Blood plasma
Separation Method
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
2
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Proteomics database
No
Detected EV-associated proteins
LPS
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Immuno-EM
EM protein
E. coli LPS
Image type
Close-up
EV180039 1/2 Bos taurus Non-conditioned medium DG
(d)(U)C
Driedonks, Tom 2018 42%

Study summary

Full title
All authors
Tom A P Driedonks, Maarten K Nijen Twilhaar, Esther N M Nolte-'t Hoen
Journal
J Extracell Vesicles
Abstract
Foetal calf serum (FCS) is a common supplement of cell culture medium and a known source of contamin (show more...)Foetal calf serum (FCS) is a common supplement of cell culture medium and a known source of contaminating extracellular vesicles (EV) containing RNA. Because of a high degree of sequence similarity among homologous non-coding RNAs of mammalian species, residual FCS-RNA in culture medium may interfere in the analysis of EV-RNA released by cultured cells. Recently, doubts have been raised as to whether commonly used protocols for depletion of FCS-EV efficiently remove FCS-RNA. Moreover, technical details in FCS-EV depletion protocols are known to vary between labs, which may lead to inter-study differences in contaminating FCS-RNA levels. Here, we investigated how technical modifications of EV-depletion protocols affect the efficiency with which bovine RNAs are depleted from FCS, and determined the contribution of contaminating bovine RNA to EV-RNA purified from cell cultures. Our data show differences in depletion efficiency between and within various classes of small non-coding RNA. Importantly, we demonstrate that variations in FCS-EV depletion protocols affect both the quantity and type of residual FCS-RNAs in EV-depleted medium. By using optimised FCS-EV depletion protocols combined with methods for high-grade purification of EV the levels of contaminating bovine RNA in EV populations isolated from cell culture medium can be reduced. With illustrative datasets we also demonstrate that the abundance of a specific RNA in cell culture EV can only be determined if measured relative to background levels of this RNA in medium control samples. These data highlight the need for optimisation and validation of existing and novel FCS-EV depletion methods and urge for accurate descriptions of these methods in publications to increase experimental reproducibility. (hide)
EV-METRIC
42% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Non-conditioned medium
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
(d)(U)C
Adj. k-factor
253.9 (pelleting)
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
Non-conditioned medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
65
Pelleting: rotor type
SW 28
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
253.9
Density gradient
Type
Continuous
Lowest density fraction
0.4M
Highest density fraction
2.5M
Sample volume (mL)
0.05
Orientation
Bottom-up (sample migrates upwards)
Rotor type
SW 40 Ti
Speed (g)
192000
Duration (min)
900 - 1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
6
Pelleting: duration (min)
65
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
192000
Pelleting: adjusted k-factor
144.0
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: RNA analysis
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
Particle analysis: flow cytometry
Flow cytometer type
BD Influx
Hardware adjustment
see van der Vlist et al. 2012 Nature Protocols;and Nolte-'t Hoen 2012 Nanomedicine
Calibration bead size
0.1,0.2
EV concentration
Yes
EV180039 2/2 Homo sapiens HEK293T DG
(d)(U)C
Driedonks, Tom 2018 42%

Study summary

Full title
All authors
Tom A P Driedonks, Maarten K Nijen Twilhaar, Esther N M Nolte-'t Hoen
Journal
J Extracell Vesicles
Abstract
Foetal calf serum (FCS) is a common supplement of cell culture medium and a known source of contamin (show more...)Foetal calf serum (FCS) is a common supplement of cell culture medium and a known source of contaminating extracellular vesicles (EV) containing RNA. Because of a high degree of sequence similarity among homologous non-coding RNAs of mammalian species, residual FCS-RNA in culture medium may interfere in the analysis of EV-RNA released by cultured cells. Recently, doubts have been raised as to whether commonly used protocols for depletion of FCS-EV efficiently remove FCS-RNA. Moreover, technical details in FCS-EV depletion protocols are known to vary between labs, which may lead to inter-study differences in contaminating FCS-RNA levels. Here, we investigated how technical modifications of EV-depletion protocols affect the efficiency with which bovine RNAs are depleted from FCS, and determined the contribution of contaminating bovine RNA to EV-RNA purified from cell cultures. Our data show differences in depletion efficiency between and within various classes of small non-coding RNA. Importantly, we demonstrate that variations in FCS-EV depletion protocols affect both the quantity and type of residual FCS-RNAs in EV-depleted medium. By using optimised FCS-EV depletion protocols combined with methods for high-grade purification of EV the levels of contaminating bovine RNA in EV populations isolated from cell culture medium can be reduced. With illustrative datasets we also demonstrate that the abundance of a specific RNA in cell culture EV can only be determined if measured relative to background levels of this RNA in medium control samples. These data highlight the need for optimisation and validation of existing and novel FCS-EV depletion methods and urge for accurate descriptions of these methods in publications to increase experimental reproducibility. (hide)
EV-METRIC
42% (80th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
(d)(U)C
Adj. k-factor
253.9 (pelleting)
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HEK293T
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
NA
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
65
Pelleting: rotor type
SW 28
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
253.9
Density gradient
Type
Continuous
Lowest density fraction
0.4M
Highest density fraction
2.5M
Sample volume (mL)
0.05
Orientation
Bottom-up (sample migrates upwards)
Rotor type
SW 40 Ti
Speed (g)
192000
Duration (min)
900 - 1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
6
Pelleting: duration (min)
65
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
192000
Pelleting: adjusted k-factor
144.0
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: RNA analysis
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
Particle analysis: flow cytometry
Flow cytometer type
BD Influx
Hardware adjustment
see van der Vlist et al. 2012 Nature Protocols;and Nolte-'t Hoen 2012 Nanomedicine
Calibration bead size
0.1,0.2
EV concentration
Yes
EV220202 1/2 Homo sapiens Urine (d)(U)C
Urine Exosome RNA Isolation Kit (Norgen Biotek)
Zhan Y 2018 38%

Study summary

Full title
All authors
Zhan Y, Du L, Wang L, Jiang X, Zhang S, Li J, Yan K, Duan W, Zhao Y, Wang L, Wang Y, Wang C
Journal
Mol Cancer
Abstract
Recently, expression signatures of exosomal long non-coding RNAs (lncRNAs) have been proposed as pot (show more...)Recently, expression signatures of exosomal long non-coding RNAs (lncRNAs) have been proposed as potential non-invasive biomarkers for cancer detection. In this study, we aimed to develop a urinary exosome (UE)-derived lncRNA panel for diagnosis and recurrence prediction of bladder cancer (BC). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to screen and evaluate the expressions of eight candidate lncRNAs in a training set (208 urine samples) and a validation set (160 urine samples). A panel consisting of three differently expressed lncRNAs (MALAT1, PCAT-1 and SPRY4-IT1) was established for BC diagnosis in the training set, showing an area under the receiver-operating characteristic (ROC) curve (AUC) of 0.854. Subsequently, the performance of the panel was further verified with an AUC of 0.813 in the validation set, which was significantly higher than that of urine cytology (0.619). In addition, Kaplan-Meier analysis suggested that the up-regulation of PCAT-1 and MALAT1 was associated with poor recurrence-free survival (RFS) of non-muscle-invasive BC (NMIBC) (p < 0.001 and p = 0.002, respectively), and multivariate Cox proportional hazards regression analysis revealed that exosomal PCAT-1 overexpression was an independent prognostic factor for the RFS of NMIBC (p = 0.018). Collectively, our findings indicated that UE-derived lncRNAs possessed considerable clinical value in the diagnosis and prognosis of BC. (hide)
EV-METRIC
38% (73rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Commercial method
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Pelleting performed
No
Commercial kit
Urine Exosome RNA Isolation Kit (Norgen Biotek)
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ TSG101
Flow cytometry aspecific beads
Antibody details provided?
No
Detected EV-associated proteins
CD81/ CD63
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
20 nm to 200 nm
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
60 to 150 nm
EV220155 1/3 Homo sapiens MDAMB231 Exospin Campos A 2018 38%

Study summary

Full title
All authors
Campos A, Salomon C, Bustos R, Díaz J, Martínez S, Silva V, Reyes C, Díaz-Valdivia N, Varas-Godoy M, Lobos-González L, Quest AF
Journal
Nanomedicine (Lond)
Abstract
Breast cancer is one of the most frequently diagnosed cancers and the leading cause of cancer-relate (show more...)Breast cancer is one of the most frequently diagnosed cancers and the leading cause of cancer-related deaths in women worldwide, whereby mortality is largely attributable to the development of distant metastasis. Caveolin-1 (CAV1) is a multifunctional membrane protein that is typically upregulated in the final stages of cancer and promotes migration and invasion of tumor cells. Elevated levels of CAV1 have been detected in extracellular vesicles (EVs) from advanced cancer patients. EVs are lipid enclosed vesicular structures that contain bioactive proteins, DNA and RNAs, which can be transferred to other cells and promote metastasis. Therefore, we hypothesized that CAV1 containing EVs released from breast cancer cells may enhance migration and invasion of recipient cells. EVs were purified from conditioned media of MDA-MB-231 wild-type (WT), MDA-MB-231 (shCAV1/ possessing the plasmid pLKO.1 encoding a 'small hairpin' directed against CAV1) and MDA-MB-231 (shC) short hairpin control cells. Nanoparticle tracking analysis revealed an average particle size of 40-350 nm for all preparations. As anticipated, CAV1 was detected in MDA-MB-231 WT and shC EVs, but not in MDA-MB-231 (shCAV1) EVs. Mass spectrometry analysis revealed the presence of specific cell adhesion-related proteins, such as Cyr61, tenascin (TNC) and S100A9 only in WT and shC, but not in shCAV1 EVs. Importantly, EVs containing CAV1 promoted migration and invasion of cells lacking CAV1. We conclude that the presence of CAV1 in EVs from metastatic breast cancer cells is associated with enhanced migration and invasiveness of recipient cells in vitro, suggesting that intercellular communication promoted by EVs containing CAV1 will likely favor metastasis in vivo. (hide)
EV-METRIC
38% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Commercial method
Protein markers
EV: CD9/ Alix/ TSG101/ CAV1/ beta-actin
non-EV: Calnexin
Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDAMB231
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
Commercial kit
Exospin
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Detected EV-associated proteins
CAV1/ CD9/ Alix/ TSG101
Not detected EV-associated proteins
Beta-actin
Not detected contaminants
Calnexin
Proteomics database
No
Characterization: RNA analysis
RNA analysis
Type
(RT)­(q)PCR
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
EM
Image type
Wide-field
Report size (nm)
50-100
EV220155 2/3 Homo sapiens MDAMB231 Exospin Campos A 2018 38%

Study summary

Full title
All authors
Campos A, Salomon C, Bustos R, Díaz J, Martínez S, Silva V, Reyes C, Díaz-Valdivia N, Varas-Godoy M, Lobos-González L, Quest AF
Journal
Nanomedicine (Lond)
Abstract
Breast cancer is one of the most frequently diagnosed cancers and the leading cause of cancer-relate (show more...)Breast cancer is one of the most frequently diagnosed cancers and the leading cause of cancer-related deaths in women worldwide, whereby mortality is largely attributable to the development of distant metastasis. Caveolin-1 (CAV1) is a multifunctional membrane protein that is typically upregulated in the final stages of cancer and promotes migration and invasion of tumor cells. Elevated levels of CAV1 have been detected in extracellular vesicles (EVs) from advanced cancer patients. EVs are lipid enclosed vesicular structures that contain bioactive proteins, DNA and RNAs, which can be transferred to other cells and promote metastasis. Therefore, we hypothesized that CAV1 containing EVs released from breast cancer cells may enhance migration and invasion of recipient cells. EVs were purified from conditioned media of MDA-MB-231 wild-type (WT), MDA-MB-231 (shCAV1/ possessing the plasmid pLKO.1 encoding a 'small hairpin' directed against CAV1) and MDA-MB-231 (shC) short hairpin control cells. Nanoparticle tracking analysis revealed an average particle size of 40-350 nm for all preparations. As anticipated, CAV1 was detected in MDA-MB-231 WT and shC EVs, but not in MDA-MB-231 (shCAV1) EVs. Mass spectrometry analysis revealed the presence of specific cell adhesion-related proteins, such as Cyr61, tenascin (TNC) and S100A9 only in WT and shC, but not in shCAV1 EVs. Importantly, EVs containing CAV1 promoted migration and invasion of cells lacking CAV1. We conclude that the presence of CAV1 in EVs from metastatic breast cancer cells is associated with enhanced migration and invasiveness of recipient cells in vitro, suggesting that intercellular communication promoted by EVs containing CAV1 will likely favor metastasis in vivo. (hide)
EV-METRIC
38% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
shC
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Commercial method
Protein markers
EV: CD9/ Alix/ TSG101/ CAV1/ beta-actin
non-EV: Calnexin
Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDAMB231
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
Commercial kit
Exospin
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Detected EV-associated proteins
CAV1/ CD9/ Alix/ TSG101
Not detected EV-associated proteins
Beta-actin
Not detected contaminants
Calnexin
Proteomics database
No
Characterization: RNA analysis
RNA analysis
Type
(RT)­(q)PCR
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
EM
Image type
Wide-field
Report size (nm)
50-100
EV220155 3/3 Homo sapiens MDAMB231 Exospin Campos A 2018 38%

Study summary

Full title
All authors
Campos A, Salomon C, Bustos R, Díaz J, Martínez S, Silva V, Reyes C, Díaz-Valdivia N, Varas-Godoy M, Lobos-González L, Quest AF
Journal
Nanomedicine (Lond)
Abstract
Breast cancer is one of the most frequently diagnosed cancers and the leading cause of cancer-relate (show more...)Breast cancer is one of the most frequently diagnosed cancers and the leading cause of cancer-related deaths in women worldwide, whereby mortality is largely attributable to the development of distant metastasis. Caveolin-1 (CAV1) is a multifunctional membrane protein that is typically upregulated in the final stages of cancer and promotes migration and invasion of tumor cells. Elevated levels of CAV1 have been detected in extracellular vesicles (EVs) from advanced cancer patients. EVs are lipid enclosed vesicular structures that contain bioactive proteins, DNA and RNAs, which can be transferred to other cells and promote metastasis. Therefore, we hypothesized that CAV1 containing EVs released from breast cancer cells may enhance migration and invasion of recipient cells. EVs were purified from conditioned media of MDA-MB-231 wild-type (WT), MDA-MB-231 (shCAV1/ possessing the plasmid pLKO.1 encoding a 'small hairpin' directed against CAV1) and MDA-MB-231 (shC) short hairpin control cells. Nanoparticle tracking analysis revealed an average particle size of 40-350 nm for all preparations. As anticipated, CAV1 was detected in MDA-MB-231 WT and shC EVs, but not in MDA-MB-231 (shCAV1) EVs. Mass spectrometry analysis revealed the presence of specific cell adhesion-related proteins, such as Cyr61, tenascin (TNC) and S100A9 only in WT and shC, but not in shCAV1 EVs. Importantly, EVs containing CAV1 promoted migration and invasion of cells lacking CAV1. We conclude that the presence of CAV1 in EVs from metastatic breast cancer cells is associated with enhanced migration and invasiveness of recipient cells in vitro, suggesting that intercellular communication promoted by EVs containing CAV1 will likely favor metastasis in vivo. (hide)
EV-METRIC
38% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
shCAV1
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Commercial method
Protein markers
EV: CD9/ Alix/ TSG101/ CAV1/ beta-actin
non-EV: Calnexin
Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDAMB231
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
Commercial kit
Exospin
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Detected EV-associated proteins
CD9/ Alix/ TSG101
Not detected EV-associated proteins
Beta-actin/ CAV1
Not detected contaminants
Calnexin
Proteomics database
No
Characterization: RNA analysis
RNA analysis
Type
(RT)­(q)PCR
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
EM
Image type
Wide-field
Report size (nm)
50-100
EV220070 2/3 Homo sapiens Serum (d)(U)C
qEV
An M 2018 38%

Study summary

Full title
All authors
An M, Wu J, Zhu J, Lubman DM
Journal
J Proteome Res
Abstract
Exosomes are nanosized vesicles that are abundant in biological fluids. In recent years, exosomes ha (show more...)Exosomes are nanosized vesicles that are abundant in biological fluids. In recent years, exosomes have attracted increasing attention as their cargo may provide promising biomarkers for the early diagnosis of and therapy for many diseases, such as cancer. In addition to ultracentrifugation (UC), many alternative methods including size-exclusion chromatography (SEC) have been developed for isolating exosomes. It has been reported that the SEC method provided improved performance relative to the UC method in isolating exosomes from plasma, where the former contained less residual blood protein contamination. We have compared the SEC method with an optimized UC method in isolating exosomes from human serum. This was based on dilution of the serum to reduce the viscosity and a prolonged cycle of UC, followed by another four cycles. We found that >95% of serum proteins were removed without a significant loss of exosome proteins relative to SEC. We also combined one cycle of UC with SEC and found that this method provided improved results relative to the SEC method, although the serum protein contamination was several times higher than that of our optimized UC method. The TEM showed that the size distribution of exosomes isolated from each of the three methods was similar. (hide)
EV-METRIC
38% (82nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Commercial method
Protein markers
EV: ALBU/ CD63
non-EV: Calnexin
Proteomics
yes
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ ALBU
Not detected contaminants
Calnexin
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
Particle yield
as number of particles per milliliter of starting sample: 1.30e+9
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
77
EV220058 4/5 Homo sapiens Blood plasma ExoQuick Lee CH 2018 38%

Study summary

Full title
All authors
Lee CH, Im EJ, Moon PG, Baek MC
Journal
BMC Cancer
Abstract
Small extracellular vesicles (small-EVs) are membranous vesicles that contain unique information reg (show more...)Small extracellular vesicles (small-EVs) are membranous vesicles that contain unique information regarding the condition of cells and contribute to the recruitment and reprogramming of components associated with the tumor environment. Therefore, many researchers have suggested that small-EV proteins are potential biomarkers for diseases such as cancer. Colon cancer (CC) is one of the most common causes of cancer-related deaths worldwide. Biomarkers such as carcinoembryonic antigen (CEA) show low sensitivity (~ 40%), and thus the demand for novel biomarkers for CC diagnosis is increasing. (hide)
EV-METRIC
38% (72nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Commercial method
Protein markers
EV: TSPAN1/ CD63/ CD9/ TSPAN1/ LGALS3BP/ SLC1A5/ CLDN7/ GPRC5A
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Commercial kit
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
TSPAN1/ LGALS3BP/ SLC1A5/ CLDN7/ GPRC5A/ CD9
ELISA
Antibody details provided?
No
Detected EV-associated proteins
CD63/ TSPAN1
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV220058 5/5 Homo sapiens Blood plasma ExoQuick Lee CH 2018 38%

Study summary

Full title
All authors
Lee CH, Im EJ, Moon PG, Baek MC
Journal
BMC Cancer
Abstract
Small extracellular vesicles (small-EVs) are membranous vesicles that contain unique information reg (show more...)Small extracellular vesicles (small-EVs) are membranous vesicles that contain unique information regarding the condition of cells and contribute to the recruitment and reprogramming of components associated with the tumor environment. Therefore, many researchers have suggested that small-EV proteins are potential biomarkers for diseases such as cancer. Colon cancer (CC) is one of the most common causes of cancer-related deaths worldwide. Biomarkers such as carcinoembryonic antigen (CEA) show low sensitivity (~ 40%), and thus the demand for novel biomarkers for CC diagnosis is increasing. (hide)
EV-METRIC
38% (72nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Colon cancer
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Commercial method
Protein markers
EV: TSPAN1/ CD63/ CD9/ TSPAN1/ LGALS3BP/ SLC1A5/ CLDN7/ GPRC5A
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Commercial kit
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
TSPAN1/ LGALS3BP/ SLC1A5/ CLDN7/ GPRC5A/ CD9
ELISA
Antibody details provided?
No
Detected EV-associated proteins
CD63/ TSPAN1
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV220057 1/6 Homo sapiens PCI-13 (d)(U)C
SEC (non-commercial)
Ludwig S 2018 38%

Study summary

Full title
All authors
Ludwig S, Sharma P, Theodoraki MN, Pietrowska M, Yerneni SS, Lang S, Ferrone S, Whiteside TL
Journal
Front Oncol
Abstract
Exosomes produced by tumor cells have been shown to reprogram functions of human immune cells. Molec (show more...)Exosomes produced by tumor cells have been shown to reprogram functions of human immune cells. Molecular cargos of exosomes isolated from supernatants of HPV(+) and HPV(-) head and neck cancer (HNC) cell lines or from HNC patients' plasma were compared. The exosome protein profiles resembled those of respective parent tumor cells. Only HPV(+) exosomes carried E6/E7, p16, and survivin. HPV(-) exosomes were negative for cyclin D1 and carried low p53 levels. Immunomodulatory molecules (TGF-β, FasL, OX40, OX40L, and HSP70) were carried by HPV(+) and HPV(-) exosomes. These exosomes co-incubated with human T cells induced apoptosis and suppressed T cell activation and proliferation. HPV(-) exosomes suppressed DC maturation and expression of antigen processing machinery (APM) components. In contrast, HPV(+) exosomes promoted DC maturation and did not suppress expression of APM components in mature DCs. While DCs readily internalized exosomes, T lymphocytes resisted their uptake during the initial 12 h co-culture. Thus, HPV(+) exosomes capable of sustaining DC functions may play a key role in promoting anti-tumor immune responses thereby improving outcome in patients with HPV(+) cancers. (hide)
EV-METRIC
38% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial)
Protein markers
EV: cyclin D1/ p53/ HPV16E6/ HPV16E7/ p16/ / Rb/ OXA40/ OX40L/ LAP-TGFbeta/ FasL/ PTPN11/ survivin/ HSP70/ TSG101
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
PCI-13
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
0.5-1
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Rb/ OXA40/ OX40L/ LAP-TGFbeta/ FasL/ PTPN11/ survivin/ HSP70/ TSG101
Not detected EV-associated proteins
cyclin D1/ p53/ HPV16E6/ HPV16E7/ p16/
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Size range/distribution
Reported size (nm)
30-150
EM
EM-type
Transmission-EM
Image type
Wide-field
EV220057 3/6 Homo sapiens UM-SCC-47 (d)(U)C
SEC (non-commercial)
Ludwig S 2018 38%

Study summary

Full title
All authors
Ludwig S, Sharma P, Theodoraki MN, Pietrowska M, Yerneni SS, Lang S, Ferrone S, Whiteside TL
Journal
Front Oncol
Abstract
Exosomes produced by tumor cells have been shown to reprogram functions of human immune cells. Molec (show more...)Exosomes produced by tumor cells have been shown to reprogram functions of human immune cells. Molecular cargos of exosomes isolated from supernatants of HPV(+) and HPV(-) head and neck cancer (HNC) cell lines or from HNC patients' plasma were compared. The exosome protein profiles resembled those of respective parent tumor cells. Only HPV(+) exosomes carried E6/E7, p16, and survivin. HPV(-) exosomes were negative for cyclin D1 and carried low p53 levels. Immunomodulatory molecules (TGF-β, FasL, OX40, OX40L, and HSP70) were carried by HPV(+) and HPV(-) exosomes. These exosomes co-incubated with human T cells induced apoptosis and suppressed T cell activation and proliferation. HPV(-) exosomes suppressed DC maturation and expression of antigen processing machinery (APM) components. In contrast, HPV(+) exosomes promoted DC maturation and did not suppress expression of APM components in mature DCs. While DCs readily internalized exosomes, T lymphocytes resisted their uptake during the initial 12 h co-culture. Thus, HPV(+) exosomes capable of sustaining DC functions may play a key role in promoting anti-tumor immune responses thereby improving outcome in patients with HPV(+) cancers. (hide)
EV-METRIC
38% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial)
Protein markers
EV: OXA40/ OX40L/ LAP-TGFbeta/ FasL/ PTPN11/ survivin/ HSP70/ TSG101/ Rb/ cyclin D1/ p53/ HPV16E6/ HPV16E7/ p16
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
UM-SCC-47
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
0.5-1
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
OXA40/ OX40L/ LAP-TGFbeta/ FasL/ PTPN11/ survivin/ HSP70/ TSG101/ Rb/ cyclin D1/ p53/ HPV16E6/ HPV16E7/ p16
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Size range/distribution
Reported size (nm)
30-150
EM
EM-type
Transmission-EM
Image type
Wide-field
EV210506 3/6 Mus musculus Mixed cortical neurons/astrocytes IAF Ko J 2018 38%

Study summary

Full title
All authors
Ko J, Hemphill M, Yang Z, Sewell E, Na YJ, Sandsmark DK, Haber M, Fisher SA, Torre EA, Svane KC, Omelchenko A, Firestein BL, Diaz-Arrastia R, Kim J, Meaney DF, Issadore D
Journal
Lab Chip
Abstract
The accurate diagnosis and clinical management of traumatic brain injury (TBI) is currently limited (show more...)The accurate diagnosis and clinical management of traumatic brain injury (TBI) is currently limited by the lack of accessible molecular biomarkers that reflect the pathophysiology of this heterogeneous disease. To address this challenge, we developed a microchip diagnostic that can characterize TBI more comprehensively using the RNA found in brain-derived extracellular vesicles (EVs). Our approach measures a panel of EV miRNAs, processed with machine learning algorithms to capture the state of the injured and recovering brain. Our diagnostic combines surface marker-specific nanomagnetic isolation of brain-derived EVs, biomarker discovery using RNA sequencing, and machine learning processing of the EV miRNA cargo to minimally invasively measure the state of TBI. We achieved an accuracy of 99% identifying the signature of injured vs. sham control mice using an independent blinded test set (N = 77), where the injured group consists of heterogeneous populations (injury intensity, elapsed time since injury) to model the variability present in clinical samples. Moreover, we successfully predicted the intensity of the injury, the elapsed time since injury, and the presence of a prior injury using independent blinded test sets (N = 82). We demonstrated the translatability in a blinded test set by identifying TBI patients from healthy controls (AUC = 0.9, N = 60). This approach, which can detect signatures of injury that persist across a variety of injury types and individual responses to injury, more accurately reflects the heterogeneity of human TBI injury and recovery than conventional diagnostics, opening new opportunities to improve treatment of traumatic brain injuries. (hide)
EV-METRIC
38% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Immunoaffinity capture (non-commercial)
Protein markers
EV: Alix/ TSG101/ CD9/ GluR2
non-EV: None
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
Mixed cortical neurons/astrocytes
Separation Method
Immunoaffinity capture
Selected surface protein(s)
GluR1/GluR2
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
Alix/ CD9/ TSG101/ GluR2
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Modus
EM
EM-type
Scanning-EM
Image type
Close-up
Report size (nm)
150-200
EV210492 3/8 Homo sapiens Serum (d)(U)C
ExoQuick
Kim DK 2018 38%

Study summary

Full title
All authors
Kim DK, Cho YE, Komarow HD, Bandara G, Song BJ, Olivera A, Metcalfe DD
Journal
Proc Natl Acad Sci U S A
Abstract
Extracellular vesicles (EVs) have been implicated in the development and progression of hematologica (show more...)Extracellular vesicles (EVs) have been implicated in the development and progression of hematological malignancies. We thus examined serum samples from patients with systemic mastocytosis (SM) and found EVs with a mast cell signature including the presence of tryptase, FcεRI, MRGX2, and KIT. The concentration of these EVs correlated with parameters of disease including levels of serum tryptase, IL-6, and alkaline phosphatase and physical findings including hepatosplenomegaly. Given reports that EVs from one cell type may influence another cell's behavior, we asked whether SM-EVs might affect hepatic stellate cells (HSCs), based on the abnormal liver pathology associated with mastocytosis. We found that KIT was transferred from SM-EVs into an HSC line eliciting proliferation, cytokine production, and differentiation, processes that have been associated with liver pathology. These effects were reduced by KIT inhibition or neutralization and recapitulated by enforced expression of KIT or constitutively active D816V-KIT, a gain-of-function variant associated with SM. Furthermore, HSCs in liver from mice injected with SM-EVs had increased expression of α-SMA and human KIT, particularly around portal areas, compared with mice injected with EVs from normal individuals, suggesting that SM-EVs can also initiate HSC activation in vivo. Our data are thus consistent with the conclusion that SM-EVs have the potential to influence cells outside the hematological compartment and that therapeutic approaches for treatment of SM may be effective in part through inhibition of effects of EVs on target tissues, findings important both to understanding complex disease pathology and in developing interventional agents for the treatment of hematologic diseases. (hide)
EV-METRIC
38% (82nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Commercial method
Protein markers
EV: Heparin/ KIT/ KIT p-Y730/ FcR1 gamma/ FcR1 alpha/ Tryptase/ MRGX2/ Histamine/ Prohibitin/ CD63/ CD9
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
No
Commercial kit
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ CD63/ KIT/ KIT p-Y730/ FcR1 gamma/ FcR1 alpha/ Tryptase/ MRGX2
Not detected EV-associated proteins
Prohibitin
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Histamine/ Heparin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
93
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up
EV210492 5/8 Homo sapiens Serum (d)(U)C
ExoQuick
Kim DK 2018 38%

Study summary

Full title
All authors
Kim DK, Cho YE, Komarow HD, Bandara G, Song BJ, Olivera A, Metcalfe DD
Journal
Proc Natl Acad Sci U S A
Abstract
Extracellular vesicles (EVs) have been implicated in the development and progression of hematologica (show more...)Extracellular vesicles (EVs) have been implicated in the development and progression of hematological malignancies. We thus examined serum samples from patients with systemic mastocytosis (SM) and found EVs with a mast cell signature including the presence of tryptase, FcεRI, MRGX2, and KIT. The concentration of these EVs correlated with parameters of disease including levels of serum tryptase, IL-6, and alkaline phosphatase and physical findings including hepatosplenomegaly. Given reports that EVs from one cell type may influence another cell's behavior, we asked whether SM-EVs might affect hepatic stellate cells (HSCs), based on the abnormal liver pathology associated with mastocytosis. We found that KIT was transferred from SM-EVs into an HSC line eliciting proliferation, cytokine production, and differentiation, processes that have been associated with liver pathology. These effects were reduced by KIT inhibition or neutralization and recapitulated by enforced expression of KIT or constitutively active D816V-KIT, a gain-of-function variant associated with SM. Furthermore, HSCs in liver from mice injected with SM-EVs had increased expression of α-SMA and human KIT, particularly around portal areas, compared with mice injected with EVs from normal individuals, suggesting that SM-EVs can also initiate HSC activation in vivo. Our data are thus consistent with the conclusion that SM-EVs have the potential to influence cells outside the hematological compartment and that therapeutic approaches for treatment of SM may be effective in part through inhibition of effects of EVs on target tissues, findings important both to understanding complex disease pathology and in developing interventional agents for the treatment of hematologic diseases. (hide)
EV-METRIC
38% (82nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Systemic mastocytosis
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Commercial method
Protein markers
EV: CD63/ Histamine/ Prohibitin/ Heparine/ KIT/ KIT p-Y730/ FcR1 gamma/ FcR1 alpha/ Tryptase/ MRGX2/ CD9
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
No
Commercial kit
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
KIT/ KIT p-Y730/ FcR1 gamma/ FcR1 alpha/ Tryptase/ MRGX2/ CD9/ CD63
Not detected EV-associated proteins
Prohibitin
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Histamine/ Heparine
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
95/ 97
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up
EV210442 1/3 Homo sapiens Caco2 ExoQuick
Filtration
Yang YN 2018 38%

Study summary

Full title
All authors
Yang YN, Zhang R, Du JW, Yuan HH, Li YJ, Wei XL, Du XX, Jiang SL, Han Y
Journal
Cancer Cell Int
Abstract
Primary or acquired resistance to cetuximab often occurs during targeted therapy in metastatic color (show more...)Primary or acquired resistance to cetuximab often occurs during targeted therapy in metastatic colorectal cancer (mCRC) patients. In many cancers, the key role of the long noncoding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1) in anticancer drug resistance has been confirmed. Emerging evidence has shown that specific exosomal lncRNAs may serve as meaningful biomarkers. In this study, we hypothesize that exosomal UCA1 might predict the response to cetuximab in CRC patients. (hide)
EV-METRIC
38% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Commercial method
Filtration
Protein markers
EV: TSG101/ Alix/ CD81
non-EV: Tubulin
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Caco2
Separation Method
Filtration steps
0.45µm > x > 0.22µm,
Commercial kit
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
Other/ Spectrophotometry
Western Blot
Antibody details provided?
No
Lysis buffer provided?
Yes
Detected EV-associated proteins
TSG101/ Alix/ CD81
Not detected contaminants
Tubulin
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
EM
EM-type
Transmission-EM
Image type
Close-up
EV210442 2/3 Homo sapiens Caco2 ExoQuick
Filtration
Yang YN 2018 38%

Study summary

Full title
All authors
Yang YN, Zhang R, Du JW, Yuan HH, Li YJ, Wei XL, Du XX, Jiang SL, Han Y
Journal
Cancer Cell Int
Abstract
Primary or acquired resistance to cetuximab often occurs during targeted therapy in metastatic color (show more...)Primary or acquired resistance to cetuximab often occurs during targeted therapy in metastatic colorectal cancer (mCRC) patients. In many cancers, the key role of the long noncoding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1) in anticancer drug resistance has been confirmed. Emerging evidence has shown that specific exosomal lncRNAs may serve as meaningful biomarkers. In this study, we hypothesize that exosomal UCA1 might predict the response to cetuximab in CRC patients. (hide)
EV-METRIC
38% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Cetuximab-resistant clone
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Commercial method
Filtration
Protein markers
EV: TSG101/ Alix/ CD81
non-EV: Tubulin
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Caco2
Separation Method
Filtration steps
0.45µm > x > 0.22µm,
Commercial kit
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
Other/ Spectrophotometry
Western Blot
Antibody details provided?
No
Lysis buffer provided?
Yes
Detected EV-associated proteins
TSG101/ Alix/ CD81
Not detected contaminants
Tubulin
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
EM
EM-type
Transmission-EM
Image type
Close-up
EV210421 1/2 Mus musculus Blood plasma (d)(U)C
ExoQuick
Cho YE 2018 38%

Study summary

Full title
All authors
Cho YE, Seo W, Kim DK, Moon PG, Kim SH, Lee BH, Song BJ, Baek MC
Journal
Sci Rep
Abstract
Exosomes are small extracellular membrane vesicles released from endosomes of various cells and coul (show more...)Exosomes are small extracellular membrane vesicles released from endosomes of various cells and could be found in most body fluids. The main functions of exosomes have been recognized as important mediators of intercellular communication and as potential biomarkers of various disease states. This study investigated whether exogenous exosomes from mice with acetaminophen (APAP)-induced liver injury can damage the recipient hepatic cells or promote hepatotoxicity in mice. We observed that exogenous exosomes derived from APAP-exposed mice were internalized into the primary mouse hepatocytes or HepG2 hepatoma cells and significantly decreased the viability of these recipient cells. They also elevated mRNA transcripts and proteins associated with the cell death signaling pathways in primary hepatocytes or HepG2 cells via exosomes-to-cell communications. In addition, confocal microscopy of ex vivo liver section showed that exogenously added exosomes were accumulated in recipient hepatocytes. Furthermore, plasma reactive oxygen species and hepatic TNF-α/IL-1β production were elevated in APAP-exosomes recipient mice compared to control-exosomes recipient mice. The levels of apoptosis-related proteins such as phospho-JNK/JNK, Bax, and cleaved caspase-3 were increased in mouse liver received APAP-exosomes. These results demonstrate that exogenous exosomes from APAP-exposed mice with acute liver injury are functional and stimulate cell death or toxicity of the recipient hepatocytes and mice. (hide)
EV-METRIC
38% (72nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Commercial method
Protein markers
EV: TSG101/ CD63/ Arg-1
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Commercial kit
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
CD63/ TSG101
Not detected EV-associated proteins
Arg-1
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
87
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up
EV210421 2/2 Mus musculus Blood plasma (d)(U)C
ExoQuick
Cho YE 2018 38%

Study summary

Full title
All authors
Cho YE, Seo W, Kim DK, Moon PG, Kim SH, Lee BH, Song BJ, Baek MC
Journal
Sci Rep
Abstract
Exosomes are small extracellular membrane vesicles released from endosomes of various cells and coul (show more...)Exosomes are small extracellular membrane vesicles released from endosomes of various cells and could be found in most body fluids. The main functions of exosomes have been recognized as important mediators of intercellular communication and as potential biomarkers of various disease states. This study investigated whether exogenous exosomes from mice with acetaminophen (APAP)-induced liver injury can damage the recipient hepatic cells or promote hepatotoxicity in mice. We observed that exogenous exosomes derived from APAP-exposed mice were internalized into the primary mouse hepatocytes or HepG2 hepatoma cells and significantly decreased the viability of these recipient cells. They also elevated mRNA transcripts and proteins associated with the cell death signaling pathways in primary hepatocytes or HepG2 cells via exosomes-to-cell communications. In addition, confocal microscopy of ex vivo liver section showed that exogenously added exosomes were accumulated in recipient hepatocytes. Furthermore, plasma reactive oxygen species and hepatic TNF-α/IL-1β production were elevated in APAP-exosomes recipient mice compared to control-exosomes recipient mice. The levels of apoptosis-related proteins such as phospho-JNK/JNK, Bax, and cleaved caspase-3 were increased in mouse liver received APAP-exosomes. These results demonstrate that exogenous exosomes from APAP-exposed mice with acute liver injury are functional and stimulate cell death or toxicity of the recipient hepatocytes and mice. (hide)
EV-METRIC
38% (72nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Acetaminophen
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Commercial method
Protein markers
EV: TSG101/ CD63/ Arg-1
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Commercial kit
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
CD63/ Arg-1/ TSG101
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
92
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up
EV210277 3/4 Homo sapiens Urine Aqueous two-phase system Shin H 2018 38%

Study summary

Full title
All authors
Shin H, Park YH, Kim YG, Lee JY, Park J
Journal
PLoS One
Abstract
Analyzing extracellular vesicles (EVs) is an attractive approach to diagnosis of prostate diagnosis. (show more...)Analyzing extracellular vesicles (EVs) is an attractive approach to diagnosis of prostate diagnosis. However, existing methods of EVs isolation have low efficiency, purity, and long process time, and therefore have low diagnostic ability. To solve these the problems, a two-phase system is adapted to isolate EVs from a patient's urine. Urine from 20 prostate cancer (PCA) patients and 10 benign prostate hyperplasia patients was used to quantify the EVs-isolation ability of an aqueous two-phase system (ATPS) and to compare the diagnostic ability of ATPS with that of the conventional diagnosis method. An optimized ATPS isolates EVs with ~100% efficiency within ~30 min, with 14 times as high as achieved by ultracentrifugation. Afterward, PCR and ELISA are used to detect EVs derived from PCA cells in urine. The results demonstrate that diagnostic ability based on ATPS is better than other conventional diagnostic methods. ATPS can obtain a high quality and quantity of EVs from patients' urine. EVs contain cancer-related protein and genes, so these abundant sources enable diagnosis with high specificity and sensitivity. Therefore, ATPS is a useful tool to increase the specificity and sensitivity of diagnosis. (hide)
EV-METRIC
38% (73rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Prostate cancer
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Aqueous two-phase system
Protein markers
EV: CD81/ CD63/ CD9
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods/New methodological development
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
Other
Name other separation method
Aqueous two-phase system
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ CD63/ CD81
ELISA
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-400
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
EV200128 1/2 Homo sapiens Serum (d)(U)C
ExoQuick
Jia, Linyan 2018 38%

Study summary

Full title
All authors
Linyan Jia, Xinyao Zhou, Xiaojie Huang, Xianghong Xu, Yuanhui Jia, Yingting Wu, Julei Yao, Yanming Wu, Kai Wang
Journal
FASEB J
Abstract
We investigated the role of exosomes derived from maternal and umbilical cord blood in the regulatio (show more...)We investigated the role of exosomes derived from maternal and umbilical cord blood in the regulation of angiogenesis. We report here that both maternal exosomes (MEs) and umbilical exosomes (UEs) significantly enhance HUVEC proliferation, migration, and tube formation. Importantly, ME-treated HUVECs (MEXs) displayed significantly increased migration, but not proliferation or tube formation, compared with UE-treated HUVECs (UEXs). We found that the expression of a subset of migration-related microRNAs (miRNAs), including miR-210-3p, miR-376c-3p, miR-151a-5p, miR-296-5p, miR-122-5p, and miR-550a-5p, among others, were significantly increased or decreased in UEs, and this altered expression was likely correlated with the differential regulation of HUVEC migration. We also found that the mRNA expression of hepatocyte growth factor (HGF) was up-regulated in MEXs and UEXs and, moreover, that inhibiting HGF partially abolished the enhanced cell migration induced by UEs. Our results suggest that both MEs and UEs greatly enhanced endothelial cell (EC) functions and differentially regulated EC migration, which was mostly attributed to the different expression profiles of exosomal miRNA. These findings highlight the importance of exosomes in the regulation of angiogenesis during pregnancy. Exosomal miRNAs, in particular, may be of great significance for the regulation of angiogenesis in maintaining normal pregnancy. (hide)
EV-METRIC
38% (82nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Healthy pregnant
Focus vesicles
Exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Commercial method
Protein markers
EV: CD81/ HSP70/ CD63/ CD9
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Commercial kit
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ CD63/ HSP70/ CD81
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-300
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
30-150
EV200128 2/2 Homo sapiens Serum (d)(U)C
ExoQuick
Jia, Linyan 2018 38%

Study summary

Full title
All authors
Linyan Jia, Xinyao Zhou, Xiaojie Huang, Xianghong Xu, Yuanhui Jia, Yingting Wu, Julei Yao, Yanming Wu, Kai Wang
Journal
FASEB J
Abstract
We investigated the role of exosomes derived from maternal and umbilical cord blood in the regulatio (show more...)We investigated the role of exosomes derived from maternal and umbilical cord blood in the regulation of angiogenesis. We report here that both maternal exosomes (MEs) and umbilical exosomes (UEs) significantly enhance HUVEC proliferation, migration, and tube formation. Importantly, ME-treated HUVECs (MEXs) displayed significantly increased migration, but not proliferation or tube formation, compared with UE-treated HUVECs (UEXs). We found that the expression of a subset of migration-related microRNAs (miRNAs), including miR-210-3p, miR-376c-3p, miR-151a-5p, miR-296-5p, miR-122-5p, and miR-550a-5p, among others, were significantly increased or decreased in UEs, and this altered expression was likely correlated with the differential regulation of HUVEC migration. We also found that the mRNA expression of hepatocyte growth factor (HGF) was up-regulated in MEXs and UEXs and, moreover, that inhibiting HGF partially abolished the enhanced cell migration induced by UEs. Our results suggest that both MEs and UEs greatly enhanced endothelial cell (EC) functions and differentially regulated EC migration, which was mostly attributed to the different expression profiles of exosomal miRNA. These findings highlight the importance of exosomes in the regulation of angiogenesis during pregnancy. Exosomal miRNAs, in particular, may be of great significance for the regulation of angiogenesis in maintaining normal pregnancy. (hide)
EV-METRIC
38% (82nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Healthy pregnant; Umbilical cord blood
Focus vesicles
Exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Commercial method
Protein markers
EV: CD81/ HSP70/ CD63/ CD9
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Commercial kit
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ CD63/ HSP70/ CD81
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-300
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
30-150
EV210366 2/6 Homo sapiens Primary Lymphatic Endothelial Cells (d)(U)C
ExoQuick
Filtration
DG
Brown M 2018 37%

Study summary

Full title
All authors
Brown M, Johnson LA, Leone DA, Majek P, Vaahtomeri K, Senfter D, Bukosza N, Schachner H, Asfour G, Langer B, Hauschild R, Parapatics K, Hong YK, Bennett KL, Kain R, Detmar M, Sixt M, Jackson DG, Kerjaschki D
Journal
J Cell Biol
Abstract
Lymphatic endothelial cells (LECs) release extracellular chemokines to guide the migration of dendri (show more...)Lymphatic endothelial cells (LECs) release extracellular chemokines to guide the migration of dendritic cells. In this study, we report that LECs also release basolateral exosome-rich endothelial vesicles (EEVs) that are secreted in greater numbers in the presence of inflammatory cytokines and accumulate in the perivascular stroma of small lymphatic vessels in human chronic inflammatory diseases. Proteomic analyses of EEV fractions identified >1,700 cargo proteins and revealed a dominant motility-promoting protein signature. In vitro and ex vivo EEV fractions augmented cellular protrusion formation in a CX3CL1/fractalkine-dependent fashion and enhanced the directional migratory response of human dendritic cells along guidance cues. We conclude that perilymphatic LEC exosomes enhance exploratory behavior and thus promote directional migration of CX3CR1-expressing cells in complex tissue environments. (hide)
EV-METRIC
37% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Exosome-rich endothelial vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Commercial method
Filtration
Density gradient
Protein markers
EV: CD63
non-EV: None
Proteomics
no
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Primary Lymphatic Endothelial Cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
1
Orientation
Top-down
Rotor type
P40ST (Hitachi)
Speed (g)
100000
Duration (min)
960
Fraction volume (mL)
1
Filtration steps
0.22µm or 0.2µm
Commercial kit
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV210366 4/6 Homo sapiens Primary Lymphatic Endothelial Cells (d)(U)C
ExoQuick
Filtration
DG
Brown M 2018 37%

Study summary

Full title
All authors
Brown M, Johnson LA, Leone DA, Majek P, Vaahtomeri K, Senfter D, Bukosza N, Schachner H, Asfour G, Langer B, Hauschild R, Parapatics K, Hong YK, Bennett KL, Kain R, Detmar M, Sixt M, Jackson DG, Kerjaschki D
Journal
J Cell Biol
Abstract
Lymphatic endothelial cells (LECs) release extracellular chemokines to guide the migration of dendri (show more...)Lymphatic endothelial cells (LECs) release extracellular chemokines to guide the migration of dendritic cells. In this study, we report that LECs also release basolateral exosome-rich endothelial vesicles (EEVs) that are secreted in greater numbers in the presence of inflammatory cytokines and accumulate in the perivascular stroma of small lymphatic vessels in human chronic inflammatory diseases. Proteomic analyses of EEV fractions identified >1,700 cargo proteins and revealed a dominant motility-promoting protein signature. In vitro and ex vivo EEV fractions augmented cellular protrusion formation in a CX3CL1/fractalkine-dependent fashion and enhanced the directional migratory response of human dendritic cells along guidance cues. We conclude that perilymphatic LEC exosomes enhance exploratory behavior and thus promote directional migration of CX3CR1-expressing cells in complex tissue environments. (hide)
EV-METRIC
37% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
TNF- containing EV harvesting media (7ng/mL)
Focus vesicles
Exosome-rich endothelial vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Commercial method
Filtration
Density gradient
Protein markers
EV: CD63
non-EV: None
Proteomics
no
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Primary Lymphatic Endothelial Cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
1
Orientation
Top-down
Rotor type
P40ST (Hitachi)
Speed (g)
100000
Duration (min)
960
Fraction volume (mL)
1
Filtration steps
0.22µm or 0.2µm
Commercial kit
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV210266 1/8 Homo sapiens MDA-MB-231 (d)(U)C
ExoQuick
Lee TS 2018 37%

Study summary

Full title
All authors
Lee TS, Kim Y, Zhang W, Song IH, Tung CH
Journal
Biochim Biophys Acta Gen Subj
Abstract
Exosomes are nano-sized vesicles derived from the fusion of multivesicular bodies with the surroundi (show more...)Exosomes are nano-sized vesicles derived from the fusion of multivesicular bodies with the surrounding plasma membrane. Exosomes have various diagnostic and therapeutic potentials in cancer and other diseases, thus tracking exosomes is an important issue. (hide)
EV-METRIC
37% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Commercial method
Protein markers
EV: CD63/ ITGA6/ Beta-actin
non-EV: None
Proteomics
no
Show all info
Study aim
New methodological development/Mechanism of uptake/transfer
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA-MB-231
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Commercial kit
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63/ ITGA6/ Beta-actin
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Mean
EM
EM-type
Transmission-EM
Image type
Close-up
Report type
Not Reported
EV-concentration
No
EV210266 5/8 Homo sapiens MCF7 (d)(U)C
ExoQuick
Lee TS 2018 37%

Study summary

Full title
All authors
Lee TS, Kim Y, Zhang W, Song IH, Tung CH
Journal
Biochim Biophys Acta Gen Subj
Abstract
Exosomes are nano-sized vesicles derived from the fusion of multivesicular bodies with the surroundi (show more...)Exosomes are nano-sized vesicles derived from the fusion of multivesicular bodies with the surrounding plasma membrane. Exosomes have various diagnostic and therapeutic potentials in cancer and other diseases, thus tracking exosomes is an important issue. (hide)
EV-METRIC
37% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Commercial method
Protein markers
EV: CD63/ ITGA6/ Beta-actin
non-EV: None
Proteomics
no
Show all info
Study aim
New methodological development/Mechanism of uptake/transfer
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MCF7
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Commercial kit
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63/ ITGA6/ Beta-actin
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Mean
EM
EM-type
Transmission-EM
Image type
Close-up
Report type
Not Reported
EV-concentration
No
EV180004 1/1 Homo sapiens Blood plasma (d)(U)C
qEV
Picciolini S 2018 37%

Study summary

Full title
All authors
Picciolini S, Gualerzi A, Vanna R, Sguassero A, Gramatica F, Bedoni M, Masserini M, Morasso C
Journal
Anal Chem
Abstract
The use of exosomes for diagnostic and disease monitoring purposes is becoming particularly appealin (show more...)The use of exosomes for diagnostic and disease monitoring purposes is becoming particularly appealing in biomedical research because of the possibility to study directly in biological fluids some of the features related to the organs from which exosomes originate. A paradigmatic example are brain-derived exosomes that can be found in plasma and used as a direct read-out of the status of the central nervous system (CNS). Inspired by recent remarkable development of plasmonic biosensors, we have designed a surface plasmon resonance imaging (SPRi) assay that, taking advantage of the fact that exosome size perfectly fits within the surface plasmon wave depth, allows the detection of multiple exosome subpopulations of neural origin directly in blood. By use of an array of antibodies, exosomes derived from neurons and oligodendrocytes were isolated and detected with good sensitivity. Subsequently, by injecting a second antibody on the immobilized vesicles, we were able to quantify the amount of CD81 and GM1, membrane components of exosomes, on each subpopulation. In this way, we have been able to demonstrate that they are not homogeneously expressed but exhibit a variable abundance according to the exosome cellular origin. These results confirm the extreme variability of exosome composition and demonstrate how SPRi can provide an effective tool for their characterization. Besides, our work paves the road toward more precise clinical studies on the use of exosomes as potential biomarkers of neurodegenerative diseases. (hide)
EV-METRIC
37% (70th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
qEV
Protein markers
EV: CD81/ ephrinB/ CD171/ PLP1/ Flotillin-1/ CD9
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
No
Commercial kit
qEV
Other
Name other separation method
qEV
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
59.77
Western Blot
Antibody details provided?
No
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD81, Flotillin-1
Other 1
Surface plasmon resonance imaging
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
150
EV concentration
Yes
Particle yield
1500000000
EM
EM-type
Transmission-EM
Image type
Wide-field
EV170014 3/4 Homo sapiens HEK293 (d)(U)C
Filtration
SEC
Dionysios C Watson 2018 37%

Study summary

Full title
All authors
Dionysios C Watson, Bryant C Yung, Cristina Bergamaschi, Bhabadeb Chowdhury, Jenifer Bear, Dimitris Stellas, Aizea Morales-Kastresana, Jennifer C Jones, Barbara K Felber, Xiaoyuan Chen, George N Pavlakis
Journal
J Extracell Vesicles
Abstract
The development of extracellular vesicles (EV) for therapeutic applications is contingent upon the e (show more...)The development of extracellular vesicles (EV) for therapeutic applications is contingent upon the establishment of reproducible, scalable, and high-throughput methods for the production and purification of clinical grade EV. Methods including ultracentrifugation (U/C), ultrafiltration, immunoprecipitation, and size-exclusion chromatography (SEC) have been employed to isolate EV, each facing limitations such as efficiency, particle purity, lengthy processing time, and/or sample volume. We developed a cGMP-compatible method for the scalable production, concentration, and isolation of EV through a strategy involving bioreactor culture, tangential flow filtration (TFF), and preparative SEC. We applied this purification method for the isolation of engineered EV carrying multiple complexes of a novel human immunostimulatory cytokine-fusion protein, heterodimeric IL-15 (hetIL-15)/lactadherin. HEK293 cells stably expressing the fusion cytokine were cultured in a hollow-fibre bioreactor. Conditioned medium was collected and EV were isolated comparing three procedures: U/C, SEC, or TFF + SEC. SEC demonstrated comparable particle recovery, size distribution, and hetIL-15 density as U/C purification. Relative to U/C, SEC preparations achieved a 100-fold reduction in ferritin concentration, a major protein-complex contaminant. Comparative proteomics suggested that SEC additionally decreased the abundance of cytoplasmic proteins not associated with EV. Combination of TFF and SEC allowed for bulk processing of large starting volumes, and resulted in bioactive EV, without significant loss in particle yield or changes in size, morphology, and hetIL-15/lactadherin density. Taken together, the combination of bioreactor culture with TFF + SEC comprises a scalable, efficient method for the production of highly purified, bioactive EV carrying hetIL-15/lactadherin, which may be useful in targeted cancer immunotherapy approaches. (hide)
EV-METRIC
37% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
human hetIL-15 stably transfected,human hetIL-15/lactadherin stably transfected
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
SEC
Protein markers
EV: hetIL-15/Lactadherin
non-EV: ferritin
Proteomics
no
Show all info
Study aim
New methodological development, Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HEK293
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Size-exclusion chromatography
Total column volume (mL)
120
Sample volume/column (mL)
5
Resin type
Superdex 200
Characterization: Protein analysis
Protein Concentration Method
Bradford
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-200
EV concentration
Yes
Particle yield
240000000000
EV210027 1/2 Homo sapiens Primary adipose-derived stem cells (d)(U)C
Filtration
Han, Yu-di 2018 34%

Study summary

Full title
All authors
Yu-di Han, Yun Bai, Xin-Long Yan, Jing Ren, Quan Zeng, Xiao-Dong Li, Xue-Tao Pei, Yan Han
Journal
Biochem Biophys Res Commun
Abstract
Background: Adipose-derived stromal cells (ADSCs)-derived exosomes (ADSC-Exos) account for the proan (show more...)Background: Adipose-derived stromal cells (ADSCs)-derived exosomes (ADSC-Exos) account for the proangiogenic potential of stem cell. This study aimed to investigate the effect of ADSC-derived exosomes (ADSC-Exos) on the survival in fat grafting. Methods: A nude mouse model of subcutaneous fat grafting was adopted. Hypoxic preconditioned ADSC-Exos and ADSC-Exos were injected around the grafted tissue. The fat graft sample was weighed and examined by hematoxylin and eosin (H&E) staining and immunohistochemistry. Laser Doppler flowmetry and CD31 immunofluorescence staining were used to analyze neovascularization. Results: ADSC-Exo and hypoxic ADSC-Exo groups had a significantly higher weight of fat graft and more perilipin-positive adipocytes than the control groups from 2 to 8 weeks after grafting, and the hypoxic ADSC-Exo group had better outcomes (all P < 0.05). H&E staining showed that ADSC-Exos attenuated infiltration of inflammatory cells around the fat grafts. Laser Doppler flowmetry showed that the two ADSC-Exo groups had better blood perfusion in the graft tissue than the control groups (all P < 0.05). Immunofluorescence demonstrated that the hypoxic ADSC-Exo group had significantly more CD31-positive cells than the ADSC-Exo group. In vitro study showed that hypoxic ADSC-Exos treatment significantly increased the migration (at 12 and 24 h) and in vitro capillary network formation (at 12 h) in the human umbilical vein endothelial cells (HUVECs) as compared with the ADSC-Exo group and control group (all P < 0.05). Conclusions: Co-transplantation of ADSC-Exos can effectively promote the survival of graft, neovascularization and attenuated inflammation in the fat grafts. Hypoxia treatment can further enhance the beneficial effect of ADSC-Exos. (hide)
EV-METRIC
34% (78th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: TSG101/ CD63/ CD9
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Primary adipose-derived stem cells
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
110000
Wash: volume per pellet (ml)
not specified
Wash: time (min)
60
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
110000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ CD63/ TSG101
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Detected EV-associated proteins
CD9/ CD63/ TSG101
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
98
EV concentration
Yes
Particle yield
No NA
EM
EM-type
Transmission electron microscopy
Image type
Wide-field
EV200136 1/7 Homo sapiens Blood plasma DG
(d)(U)C
Filtration
Miranda, Jezid 2018 34%

Study summary

Full title
All authors
Jezid Miranda, Cristina Paules, Soumyalekshmi Nair, Andrew Lai, Carlos Palma, Katherin Scholz-Romero, Gregory E. Rice, Eduard Gratacos, Fatima Crispi, Carlos Salomon
Journal
Placenta
Abstract
Introduction: Placenta-derived exosomes may represent an additional pathway by which the placenta co (show more...)Introduction: Placenta-derived exosomes may represent an additional pathway by which the placenta communicates with the maternal system to induce maternal vascular adaptations to pregnancy and it may be affected during Fetal growth restriction (FGR). The objective of this study was to quantify the concentration of total and placenta-derived exosomes in maternal and fetal circulation in small fetuses classified as FGR or small for gestational age (SGA). Methods: Prospective cohort study in singleton term gestations including 10 normally grown fetuses and 20 small fetuses, sub-classified into SGA and FGR accordingly to birth weight (BW) percentile and fetoplacental Doppler. Exosomes were isolated from maternal and fetal plasma and characterized by morphology, enrichment of exosomal proteins, and size distribution by electron microscopy, western blot, and nanoparticle tracking analysis, respectively. Total and specific placenta-derived exosomes were determined using quantum dots coupled with CD63þve and placental-type alkaline phosphatase (PLAP)þve antibodies, respectively. Results: Maternal concentrations of CD63þve and PLAPþve exosomes were similar between the groups (all p > 0.05). However, there was a significant positive correlation between the ratio of placental-derived to total exosomes (PLAPþve ratio) and BW percentile, [rho ¼ 0.77 (95% CI: 0.57 to 0.89); p ¼ 0.0001]. The contribution of placental exosomes to the total exosome concentration in maternal and fetal circulation showed a significant decrease among cases, with lower PLAPþve ratios in FGR compared to controls and SGA cases. Discussion: Quantification of placental exosomes in maternal plasma reflects fetal growth and it may be a useful indicator of placental function. (hide)
EV-METRIC
34% (69th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Not pregnant
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: PLAP
non-EV: None
Proteomics
no
EV density (g/ml)
1.12-1.188g/ml
Show all info
Study aim
Function/Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
T-8100
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
10
Wash: time (min)
120
Wash: Rotor Type
T-8100
Wash: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Sample volume (mL)
0.5mL
Orientation
Bottom-up
Rotor type
T-8100
Speed (g)
100000
Duration (min)
1200
Fraction processing
Centrifugation
Pelleting: volume per fraction
0.05
Pelleting: duration (min)
120
Pelleting: rotor type
T-8100
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
ELISA
Antibody details provided?
No
Detected EV-associated proteins
PLAP
Characterization: Lipid analysis
No
101 - 150 of 1013 keyboard_arrow_leftkeyboard_arrow_right