Search > Results

You searched for: EV180026 (EV-TRACK ID)

Showing 1 - 7 of 7

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Experiment number
  • Experiments differ in Sample type, Separation protocol
Experiment number
  • Experiments differ in Sample type, Separation protocol
Experiment number
  • Experiments differ in Sample type, Separation protocol
Experiment number
  • Experiments differ in Sample type, Separation protocol
Experiment number
  • Experiments differ in Sample type, Separation protocol
Experiment number
  • Experiments differ in Sample type, Separation protocol
Experiment number
  • Experiments differ in Sample type, Separation protocol
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV180026 5/7 Homo sapiens Serum (d)(U)C Wenzhe Li 2018 77%

Study summary

Full title
All authors
Wenzhe Li, Bin Shao, Changliang Liu, Huayi Wang, Wangshu Zheng, Weiyao Kong, Xiaoran Liu, Guobin Xu, Chen Wang, Huiping Li, Ling Zhu, Yanlian Yang
Journal
Small methods
Abstract
Blood‐based detection and molecular phenotyping are highly desired for the early diagnosis and dyn (show more...)Blood‐based detection and molecular phenotyping are highly desired for the early diagnosis and dynamic monitoring of cancer. Extracellular vesicles (EVs) carry molecular information from the cells of origin and are biomarkers of cancer. However, the detection and molecular analysis of EVs has been challenging due to their nanoscaled size. Here, an assessment of the detection and molecular phenotyping of serum EVs based on microbead‐assisted flow cytometry is established. The clinical utility of this method is validated in the diagnosis and human epidermal growth factor receptor 2 (HER2) phenotyping of breast cancer. Good correlation between the status of epithelial cell adhesion molecule (EpCAM) and HER2 expression in EVs and in the cells of origin is found. Both EpCAM+ and HER2+ EVs are demonstrated to be effective diagnostic markers of breast cancer with high sensitivity and specificity. EV‐based HER2 phenotyping is consistent with tissue‐based HER2 phenotyping by immunohistochemistry and can be used as a surrogate for the invasive tissue assessments. The microbead‐assisted flow cytometry assessment of EVs enables rapid and noninvasive detection and molecular phenotyping of cancer and would help to personalized treatment and cancer survival. (hide)
EV-METRIC
77% (99th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Adj. k-factor
120.7 (pelleting) / 120.7 (washing)
Protein markers
EV: CD81/ Flotillin-1/ CD63/ HER2/ EpCAM
non-EV: Calnexin/ Albumin
Proteomics
no
Show all info
Study aim
Function, Biomarker, New methodological development
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
1200
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
130000
Pelleting: adjusted k-factor
120.7
Wash: time (min)
120
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
130000
Wash: adjusted k-factor
120.7
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
30-120
Western Blot
Detected EV-associated proteins
CD63, CD81, Flotillin-1
Not detected contaminants
Albumin, Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Size range/distribution
Reported size (nm)
110.2 ± 12.95 nm
NTA
Report type
Size range/distribution
Reported size (nm)
124.4 ± 53.3 nm
EV concentration
Yes
Particle yield
3290000000000
EM
EM-type
Transmission-EM/ Immune-EM
EM protein
EpCAM,HER2
Image type
Close-up, Wide-field
EV concentration
Yes
EV180026 1/7 Homo sapiens SKBR3 (d)(U)C
Filtration
Wenzhe Li 2018 55%

Study summary

Full title
All authors
Wenzhe Li, Bin Shao, Changliang Liu, Huayi Wang, Wangshu Zheng, Weiyao Kong, Xiaoran Liu, Guobin Xu, Chen Wang, Huiping Li, Ling Zhu, Yanlian Yang
Journal
Small methods
Abstract
Blood‐based detection and molecular phenotyping are highly desired for the early diagnosis and dyn (show more...)Blood‐based detection and molecular phenotyping are highly desired for the early diagnosis and dynamic monitoring of cancer. Extracellular vesicles (EVs) carry molecular information from the cells of origin and are biomarkers of cancer. However, the detection and molecular analysis of EVs has been challenging due to their nanoscaled size. Here, an assessment of the detection and molecular phenotyping of serum EVs based on microbead‐assisted flow cytometry is established. The clinical utility of this method is validated in the diagnosis and human epidermal growth factor receptor 2 (HER2) phenotyping of breast cancer. Good correlation between the status of epithelial cell adhesion molecule (EpCAM) and HER2 expression in EVs and in the cells of origin is found. Both EpCAM+ and HER2+ EVs are demonstrated to be effective diagnostic markers of breast cancer with high sensitivity and specificity. EV‐based HER2 phenotyping is consistent with tissue‐based HER2 phenotyping by immunohistochemistry and can be used as a surrogate for the invasive tissue assessments. The microbead‐assisted flow cytometry assessment of EVs enables rapid and noninvasive detection and molecular phenotyping of cancer and would help to personalized treatment and cancer survival. (hide)
EV-METRIC
55% (88th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Adj. k-factor
156.9 (pelleting) / 156.9 (washing)
Protein markers
EV: CD81/ Flotillin-1/ CD63/ HER2/ EpCAM
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Function, Biomarker, New methodological development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SKBR3
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
156.9
Wash: time (min)
120
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Wash: adjusted k-factor
156.9
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD63, CD81, Flotillin-1, EpCAM, HER2
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Size range/distribution
Reported size (nm)
110.2 ± 12.95
NTA
Report type
Size range/distribution
Reported size (nm)
124.4 ± 53.3
EM
EM-type
Transmission-EM/ Immune-EM
EM protein
EpCAM,HER2
Image type
Close-up, Wide-field
EV concentration
Yes
Extra information
Particle/protein ratio was determined
EV180026 3/7 Homo sapiens Serum (d)(U)C
Filtration
Wenzhe Li 2018 55%

Study summary

Full title
All authors
Wenzhe Li, Bin Shao, Changliang Liu, Huayi Wang, Wangshu Zheng, Weiyao Kong, Xiaoran Liu, Guobin Xu, Chen Wang, Huiping Li, Ling Zhu, Yanlian Yang
Journal
Small methods
Abstract
Blood‐based detection and molecular phenotyping are highly desired for the early diagnosis and dyn (show more...)Blood‐based detection and molecular phenotyping are highly desired for the early diagnosis and dynamic monitoring of cancer. Extracellular vesicles (EVs) carry molecular information from the cells of origin and are biomarkers of cancer. However, the detection and molecular analysis of EVs has been challenging due to their nanoscaled size. Here, an assessment of the detection and molecular phenotyping of serum EVs based on microbead‐assisted flow cytometry is established. The clinical utility of this method is validated in the diagnosis and human epidermal growth factor receptor 2 (HER2) phenotyping of breast cancer. Good correlation between the status of epithelial cell adhesion molecule (EpCAM) and HER2 expression in EVs and in the cells of origin is found. Both EpCAM+ and HER2+ EVs are demonstrated to be effective diagnostic markers of breast cancer with high sensitivity and specificity. EV‐based HER2 phenotyping is consistent with tissue‐based HER2 phenotyping by immunohistochemistry and can be used as a surrogate for the invasive tissue assessments. The microbead‐assisted flow cytometry assessment of EVs enables rapid and noninvasive detection and molecular phenotyping of cancer and would help to personalized treatment and cancer survival. (hide)
EV-METRIC
55% (91st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Breast cancer
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Adj. k-factor
104.6 (pelleting) / 104.6 (washing)
Protein markers
EV: CD81/ Flotillin-1/ CD63/ HER2/ EpCAM
non-EV: Albumin
Proteomics
no
Show all info
Study aim
Function, Biomarker, New methodological development
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
1200
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
150000
Pelleting: adjusted k-factor
104.6
Wash: time (min)
120
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
150000
Wash: adjusted k-factor
104.6
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD63, CD81, Flotillin-1
Not detected contaminants
Albumin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
134.8 ± 52
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV concentration
Yes
Extra information
Particle/protein ratio was determined
EV180026 7/7 Homo sapiens MCF7 (d)(U)C
Filtration
Wenzhe Li 2018 44%

Study summary

Full title
All authors
Wenzhe Li, Bin Shao, Changliang Liu, Huayi Wang, Wangshu Zheng, Weiyao Kong, Xiaoran Liu, Guobin Xu, Chen Wang, Huiping Li, Ling Zhu, Yanlian Yang
Journal
Small methods
Abstract
Blood‐based detection and molecular phenotyping are highly desired for the early diagnosis and dyn (show more...)Blood‐based detection and molecular phenotyping are highly desired for the early diagnosis and dynamic monitoring of cancer. Extracellular vesicles (EVs) carry molecular information from the cells of origin and are biomarkers of cancer. However, the detection and molecular analysis of EVs has been challenging due to their nanoscaled size. Here, an assessment of the detection and molecular phenotyping of serum EVs based on microbead‐assisted flow cytometry is established. The clinical utility of this method is validated in the diagnosis and human epidermal growth factor receptor 2 (HER2) phenotyping of breast cancer. Good correlation between the status of epithelial cell adhesion molecule (EpCAM) and HER2 expression in EVs and in the cells of origin is found. Both EpCAM+ and HER2+ EVs are demonstrated to be effective diagnostic markers of breast cancer with high sensitivity and specificity. EV‐based HER2 phenotyping is consistent with tissue‐based HER2 phenotyping by immunohistochemistry and can be used as a surrogate for the invasive tissue assessments. The microbead‐assisted flow cytometry assessment of EVs enables rapid and noninvasive detection and molecular phenotyping of cancer and would help to personalized treatment and cancer survival. (hide)
EV-METRIC
44% (84th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Adj. k-factor
156.9 (pelleting) / 156.9 (washing)
Protein markers
EV: CD81/ Flotillin-1/ CD63/ EpCAM
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Function, Biomarker, New methodological development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MCF7
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
156.9
Wash: time (min)
120
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Wash: adjusted k-factor
156.9
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD63, CD81, Flotillin-1, EpCAM
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Size range/distribution
Reported size (nm)
141.5 ± 15.04
NTA
Report type
Size range/distribution
Reported size (nm)
146.2 ± 60.2
EM
EM-type
Transmission-EM
Image type
Close-up
EV concentration
Yes
EV180026 2/7 Homo sapiens MCF10A (d)(U)C
Filtration
Wenzhe Li 2018 33%

Study summary

Full title
All authors
Wenzhe Li, Bin Shao, Changliang Liu, Huayi Wang, Wangshu Zheng, Weiyao Kong, Xiaoran Liu, Guobin Xu, Chen Wang, Huiping Li, Ling Zhu, Yanlian Yang
Journal
Small methods
Abstract
Blood‐based detection and molecular phenotyping are highly desired for the early diagnosis and dyn (show more...)Blood‐based detection and molecular phenotyping are highly desired for the early diagnosis and dynamic monitoring of cancer. Extracellular vesicles (EVs) carry molecular information from the cells of origin and are biomarkers of cancer. However, the detection and molecular analysis of EVs has been challenging due to their nanoscaled size. Here, an assessment of the detection and molecular phenotyping of serum EVs based on microbead‐assisted flow cytometry is established. The clinical utility of this method is validated in the diagnosis and human epidermal growth factor receptor 2 (HER2) phenotyping of breast cancer. Good correlation between the status of epithelial cell adhesion molecule (EpCAM) and HER2 expression in EVs and in the cells of origin is found. Both EpCAM+ and HER2+ EVs are demonstrated to be effective diagnostic markers of breast cancer with high sensitivity and specificity. EV‐based HER2 phenotyping is consistent with tissue‐based HER2 phenotyping by immunohistochemistry and can be used as a surrogate for the invasive tissue assessments. The microbead‐assisted flow cytometry assessment of EVs enables rapid and noninvasive detection and molecular phenotyping of cancer and would help to personalized treatment and cancer survival. (hide)
EV-METRIC
33% (74th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Adj. k-factor
156.9 (pelleting) / 156.9 (washing)
Protein markers
EV: CD81/ Flotillin-1/ CD63
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Function, Biomarker, New methodological development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MCF10A
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
156.9
Wash: time (min)
120
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Wash: adjusted k-factor
156.9
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD63, CD81, Flotillin-1
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
EV180026 4/7 Homo sapiens MDAMB468 (d)(U)C
Filtration
Wenzhe Li 2018 33%

Study summary

Full title
All authors
Wenzhe Li, Bin Shao, Changliang Liu, Huayi Wang, Wangshu Zheng, Weiyao Kong, Xiaoran Liu, Guobin Xu, Chen Wang, Huiping Li, Ling Zhu, Yanlian Yang
Journal
Small methods
Abstract
Blood‐based detection and molecular phenotyping are highly desired for the early diagnosis and dyn (show more...)Blood‐based detection and molecular phenotyping are highly desired for the early diagnosis and dynamic monitoring of cancer. Extracellular vesicles (EVs) carry molecular information from the cells of origin and are biomarkers of cancer. However, the detection and molecular analysis of EVs has been challenging due to their nanoscaled size. Here, an assessment of the detection and molecular phenotyping of serum EVs based on microbead‐assisted flow cytometry is established. The clinical utility of this method is validated in the diagnosis and human epidermal growth factor receptor 2 (HER2) phenotyping of breast cancer. Good correlation between the status of epithelial cell adhesion molecule (EpCAM) and HER2 expression in EVs and in the cells of origin is found. Both EpCAM+ and HER2+ EVs are demonstrated to be effective diagnostic markers of breast cancer with high sensitivity and specificity. EV‐based HER2 phenotyping is consistent with tissue‐based HER2 phenotyping by immunohistochemistry and can be used as a surrogate for the invasive tissue assessments. The microbead‐assisted flow cytometry assessment of EVs enables rapid and noninvasive detection and molecular phenotyping of cancer and would help to personalized treatment and cancer survival. (hide)
EV-METRIC
33% (74th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Adj. k-factor
156.9 (pelleting) / 156.9 (washing)
Protein markers
EV: CD81/ Flotillin-1/ CD63/ EpCAM
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Function, Biomarker, New methodological development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDAMB468
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
156.9
Wash: time (min)
120
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Wash: adjusted k-factor
156.9
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD63, CD81, Flotillin-1, EpCAM
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
EV180026 6/7 Homo sapiens Serum (d)(U)C
Filtration
Wenzhe Li 2018 33%

Study summary

Full title
All authors
Wenzhe Li, Bin Shao, Changliang Liu, Huayi Wang, Wangshu Zheng, Weiyao Kong, Xiaoran Liu, Guobin Xu, Chen Wang, Huiping Li, Ling Zhu, Yanlian Yang
Journal
Small methods
Abstract
Blood‐based detection and molecular phenotyping are highly desired for the early diagnosis and dyn (show more...)Blood‐based detection and molecular phenotyping are highly desired for the early diagnosis and dynamic monitoring of cancer. Extracellular vesicles (EVs) carry molecular information from the cells of origin and are biomarkers of cancer. However, the detection and molecular analysis of EVs has been challenging due to their nanoscaled size. Here, an assessment of the detection and molecular phenotyping of serum EVs based on microbead‐assisted flow cytometry is established. The clinical utility of this method is validated in the diagnosis and human epidermal growth factor receptor 2 (HER2) phenotyping of breast cancer. Good correlation between the status of epithelial cell adhesion molecule (EpCAM) and HER2 expression in EVs and in the cells of origin is found. Both EpCAM+ and HER2+ EVs are demonstrated to be effective diagnostic markers of breast cancer with high sensitivity and specificity. EV‐based HER2 phenotyping is consistent with tissue‐based HER2 phenotyping by immunohistochemistry and can be used as a surrogate for the invasive tissue assessments. The microbead‐assisted flow cytometry assessment of EVs enables rapid and noninvasive detection and molecular phenotyping of cancer and would help to personalized treatment and cancer survival. (hide)
EV-METRIC
33% (76th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Adj. k-factor
104.6 (pelleting) / 104.6 (washing)
Protein markers
EV: CD81/ Flotillin-1/ CD63/ EpCAM
non-EV: Albumin
Proteomics
no
Show all info
Study aim
Function, Biomarker, New methodological development
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
1200
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
150000
Pelleting: adjusted k-factor
104.6
Wash: time (min)
120
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
150000
Wash: adjusted k-factor
104.6
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD63, CD81, Flotillin-1
Not detected contaminants
Albumin
Characterization: Lipid analysis
No
1 - 7 of 7
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV180026
species
Homo
sapiens
sample type
Serum
Cell
culture
Serum
Cell
culture
Cell
culture
Cell
culture
Serum
cell type
NA
SKBR3
NA
MCF7
MCF10A
MDAMB468
NA
medium
NA
EV-depleted
serum
NA
EV-depleted
serum
EV-depleted
serum
EV-depleted
serum
NA
condition
Control
condition
Control
condition
Breast
cancer
Control
condition
Control
condition
Control
condition
Control
condition
separation protocol
(d)(U)C
(d)(U)C
Filtration
(d)(U)C
Filtration
(d)(U)C
Filtration
(d)(U)C
Filtration
(d)(U)C
Filtration
(d)(U)C
Filtration
Exp. nr.
5
1
3
7
2
4
6
EV-METRIC %
77
55
55
44
33
33
33