Search > Results

You searched for: EV200136 (EV-TRACK ID)

Showing 1 - 7 of 7

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV200136 2/7 Homo sapiens Blood plasma DG
(d)(U)C
Filtration
Miranda, Jezid 2018 67%

Study summary

Full title
All authors
Jezid Miranda, Cristina Paules, Soumyalekshmi Nair, Andrew Lai, Carlos Palma, Katherin Scholz-Romero, Gregory E. Rice, Eduard Gratacos, Fatima Crispi, Carlos Salomon
Journal
Placenta
Abstract
Introduction: Placenta-derived exosomes may represent an additional pathway by which the placenta co (show more...)Introduction: Placenta-derived exosomes may represent an additional pathway by which the placenta communicates with the maternal system to induce maternal vascular adaptations to pregnancy and it may be affected during Fetal growth restriction (FGR). The objective of this study was to quantify the concentration of total and placenta-derived exosomes in maternal and fetal circulation in small fetuses classified as FGR or small for gestational age (SGA). Methods: Prospective cohort study in singleton term gestations including 10 normally grown fetuses and 20 small fetuses, sub-classified into SGA and FGR accordingly to birth weight (BW) percentile and fetoplacental Doppler. Exosomes were isolated from maternal and fetal plasma and characterized by morphology, enrichment of exosomal proteins, and size distribution by electron microscopy, western blot, and nanoparticle tracking analysis, respectively. Total and specific placenta-derived exosomes were determined using quantum dots coupled with CD63þve and placental-type alkaline phosphatase (PLAP)þve antibodies, respectively. Results: Maternal concentrations of CD63þve and PLAPþve exosomes were similar between the groups (all p > 0.05). However, there was a significant positive correlation between the ratio of placental-derived to total exosomes (PLAPþve ratio) and BW percentile, [rho ¼ 0.77 (95% CI: 0.57 to 0.89); p ¼ 0.0001]. The contribution of placental exosomes to the total exosome concentration in maternal and fetal circulation showed a significant decrease among cases, with lower PLAPþve ratios in FGR compared to controls and SGA cases. Discussion: Quantification of placental exosomes in maternal plasma reflects fetal growth and it may be a useful indicator of placental function. (hide)
EV-METRIC
67% (93rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Maternal; Normal pregnancy
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: TSG101/ Flotillin1/ PLAP/ CD63
non-EV: Grp94
Proteomics
no
EV density (g/ml)
1.12-1.188g/ml
Show all info
Study aim
Function/Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
T-8100
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
10
Wash: time (min)
120
Wash: Rotor Type
T-8100
Wash: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Sample volume (mL)
0.5mL
Orientation
Bottom-up
Rotor type
T-8100
Speed (g)
100000
Duration (min)
1200
Fraction processing
Centrifugation
Pelleting: volume per fraction
0.05
Pelleting: duration (min)
120
Pelleting: rotor type
T-8100
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
Flotillin1/ CD63/ TSG101
Not detected contaminants
Grp94
ELISA
Detected EV-associated proteins
PLAP
Fluorescent NTA
Relevant measurements variables specified?
NA
Antibody details provided?
No
Detected EV-associated proteins
PLAP/ CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
87+/-23
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
EV200136 5/7 Homo sapiens Blood plasma DG
(d)(U)C
Filtration
Miranda, Jezid 2018 67%

Study summary

Full title
All authors
Jezid Miranda, Cristina Paules, Soumyalekshmi Nair, Andrew Lai, Carlos Palma, Katherin Scholz-Romero, Gregory E. Rice, Eduard Gratacos, Fatima Crispi, Carlos Salomon
Journal
Placenta
Abstract
Introduction: Placenta-derived exosomes may represent an additional pathway by which the placenta co (show more...)Introduction: Placenta-derived exosomes may represent an additional pathway by which the placenta communicates with the maternal system to induce maternal vascular adaptations to pregnancy and it may be affected during Fetal growth restriction (FGR). The objective of this study was to quantify the concentration of total and placenta-derived exosomes in maternal and fetal circulation in small fetuses classified as FGR or small for gestational age (SGA). Methods: Prospective cohort study in singleton term gestations including 10 normally grown fetuses and 20 small fetuses, sub-classified into SGA and FGR accordingly to birth weight (BW) percentile and fetoplacental Doppler. Exosomes were isolated from maternal and fetal plasma and characterized by morphology, enrichment of exosomal proteins, and size distribution by electron microscopy, western blot, and nanoparticle tracking analysis, respectively. Total and specific placenta-derived exosomes were determined using quantum dots coupled with CD63þve and placental-type alkaline phosphatase (PLAP)þve antibodies, respectively. Results: Maternal concentrations of CD63þve and PLAPþve exosomes were similar between the groups (all p > 0.05). However, there was a significant positive correlation between the ratio of placental-derived to total exosomes (PLAPþve ratio) and BW percentile, [rho ¼ 0.77 (95% CI: 0.57 to 0.89); p ¼ 0.0001]. The contribution of placental exosomes to the total exosome concentration in maternal and fetal circulation showed a significant decrease among cases, with lower PLAPþve ratios in FGR compared to controls and SGA cases. Discussion: Quantification of placental exosomes in maternal plasma reflects fetal growth and it may be a useful indicator of placental function. (hide)
EV-METRIC
67% (93rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Fetal; Normal pregnancy
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: TSG101/ Flotillin1/ PLAP/ CD63
non-EV: Grp94
Proteomics
no
EV density (g/ml)
1.12-1.188g/ml
Show all info
Study aim
Function/Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
T-8100
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
10
Wash: time (min)
120
Wash: Rotor Type
T-8100
Wash: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Sample volume (mL)
0.5mL
Orientation
Bottom-up
Rotor type
T-8100
Speed (g)
100000
Duration (min)
1200
Fraction processing
Centrifugation
Pelleting: volume per fraction
0.05
Pelleting: duration (min)
120
Pelleting: rotor type
T-8100
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
Flotillin1/ CD63/ TSG101
Not detected contaminants
Grp94
ELISA
Detected EV-associated proteins
PLAP
Fluorescent NTA
Relevant measurements variables specified?
NA
Antibody details provided?
No
Detected EV-associated proteins
PLAP/ CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
90 ± 17 nm
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
EV200136 3/7 Homo sapiens Blood plasma DG
(d)(U)C
Filtration
Miranda, Jezid 2018 56%

Study summary

Full title
All authors
Jezid Miranda, Cristina Paules, Soumyalekshmi Nair, Andrew Lai, Carlos Palma, Katherin Scholz-Romero, Gregory E. Rice, Eduard Gratacos, Fatima Crispi, Carlos Salomon
Journal
Placenta
Abstract
Introduction: Placenta-derived exosomes may represent an additional pathway by which the placenta co (show more...)Introduction: Placenta-derived exosomes may represent an additional pathway by which the placenta communicates with the maternal system to induce maternal vascular adaptations to pregnancy and it may be affected during Fetal growth restriction (FGR). The objective of this study was to quantify the concentration of total and placenta-derived exosomes in maternal and fetal circulation in small fetuses classified as FGR or small for gestational age (SGA). Methods: Prospective cohort study in singleton term gestations including 10 normally grown fetuses and 20 small fetuses, sub-classified into SGA and FGR accordingly to birth weight (BW) percentile and fetoplacental Doppler. Exosomes were isolated from maternal and fetal plasma and characterized by morphology, enrichment of exosomal proteins, and size distribution by electron microscopy, western blot, and nanoparticle tracking analysis, respectively. Total and specific placenta-derived exosomes were determined using quantum dots coupled with CD63þve and placental-type alkaline phosphatase (PLAP)þve antibodies, respectively. Results: Maternal concentrations of CD63þve and PLAPþve exosomes were similar between the groups (all p > 0.05). However, there was a significant positive correlation between the ratio of placental-derived to total exosomes (PLAPþve ratio) and BW percentile, [rho ¼ 0.77 (95% CI: 0.57 to 0.89); p ¼ 0.0001]. The contribution of placental exosomes to the total exosome concentration in maternal and fetal circulation showed a significant decrease among cases, with lower PLAPþve ratios in FGR compared to controls and SGA cases. Discussion: Quantification of placental exosomes in maternal plasma reflects fetal growth and it may be a useful indicator of placental function. (hide)
EV-METRIC
56% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Maternal; Fetus small for gestational age
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: TSG101/ Flotillin1/ PLAP/ CD63
non-EV: Grp94
Proteomics
no
EV density (g/ml)
1.12-1.188g/ml
Show all info
Study aim
Function/Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
T-8100
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
10
Wash: time (min)
120
Wash: Rotor Type
T-8100
Wash: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Sample volume (mL)
0.5mL
Orientation
Bottom-up
Rotor type
T-8100
Speed (g)
100000
Duration (min)
1200
Fraction processing
Centrifugation
Pelleting: volume per fraction
0.05
Pelleting: duration (min)
120
Pelleting: rotor type
T-8100
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
Flotillin1/ CD63/ TSG101
Not detected contaminants
Grp94
ELISA
Detected EV-associated proteins
PLAP
Fluorescent NTA
Relevant measurements variables specified?
NA
Antibody details provided?
No
Detected EV-associated proteins
PLAP/ CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
82+/-18nm
EV concentration
Yes
EV200136 4/7 Homo sapiens Blood plasma DG
(d)(U)C
Filtration
Miranda, Jezid 2018 56%

Study summary

Full title
All authors
Jezid Miranda, Cristina Paules, Soumyalekshmi Nair, Andrew Lai, Carlos Palma, Katherin Scholz-Romero, Gregory E. Rice, Eduard Gratacos, Fatima Crispi, Carlos Salomon
Journal
Placenta
Abstract
Introduction: Placenta-derived exosomes may represent an additional pathway by which the placenta co (show more...)Introduction: Placenta-derived exosomes may represent an additional pathway by which the placenta communicates with the maternal system to induce maternal vascular adaptations to pregnancy and it may be affected during Fetal growth restriction (FGR). The objective of this study was to quantify the concentration of total and placenta-derived exosomes in maternal and fetal circulation in small fetuses classified as FGR or small for gestational age (SGA). Methods: Prospective cohort study in singleton term gestations including 10 normally grown fetuses and 20 small fetuses, sub-classified into SGA and FGR accordingly to birth weight (BW) percentile and fetoplacental Doppler. Exosomes were isolated from maternal and fetal plasma and characterized by morphology, enrichment of exosomal proteins, and size distribution by electron microscopy, western blot, and nanoparticle tracking analysis, respectively. Total and specific placenta-derived exosomes were determined using quantum dots coupled with CD63þve and placental-type alkaline phosphatase (PLAP)þve antibodies, respectively. Results: Maternal concentrations of CD63þve and PLAPþve exosomes were similar between the groups (all p > 0.05). However, there was a significant positive correlation between the ratio of placental-derived to total exosomes (PLAPþve ratio) and BW percentile, [rho ¼ 0.77 (95% CI: 0.57 to 0.89); p ¼ 0.0001]. The contribution of placental exosomes to the total exosome concentration in maternal and fetal circulation showed a significant decrease among cases, with lower PLAPþve ratios in FGR compared to controls and SGA cases. Discussion: Quantification of placental exosomes in maternal plasma reflects fetal growth and it may be a useful indicator of placental function. (hide)
EV-METRIC
56% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Maternal; Fetal growth restriction
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: TSG101/ Flotillin1/ PLAP/ CD63
non-EV: Grp94
Proteomics
no
EV density (g/ml)
1.12-1.188g/ml
Show all info
Study aim
Function/Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
T-8100
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
10
Wash: time (min)
120
Wash: Rotor Type
T-8100
Wash: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Sample volume (mL)
0.5mL
Orientation
Bottom-up
Rotor type
T-8100
Speed (g)
100000
Duration (min)
1200
Fraction processing
Centrifugation
Pelleting: volume per fraction
0.05
Pelleting: duration (min)
120
Pelleting: rotor type
T-8100
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
Flotillin1/ CD63/ TSG101
Not detected contaminants
Grp94
ELISA
Detected EV-associated proteins
PLAP
Fluorescent NTA
Relevant measurements variables specified?
NA
Antibody details provided?
No
Detected EV-associated proteins
PLAP/ CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
108+/-37nm
EV concentration
Yes
EV200136 6/7 Homo sapiens Blood plasma DG
(d)(U)C
Filtration
Miranda, Jezid 2018 56%

Study summary

Full title
All authors
Jezid Miranda, Cristina Paules, Soumyalekshmi Nair, Andrew Lai, Carlos Palma, Katherin Scholz-Romero, Gregory E. Rice, Eduard Gratacos, Fatima Crispi, Carlos Salomon
Journal
Placenta
Abstract
Introduction: Placenta-derived exosomes may represent an additional pathway by which the placenta co (show more...)Introduction: Placenta-derived exosomes may represent an additional pathway by which the placenta communicates with the maternal system to induce maternal vascular adaptations to pregnancy and it may be affected during Fetal growth restriction (FGR). The objective of this study was to quantify the concentration of total and placenta-derived exosomes in maternal and fetal circulation in small fetuses classified as FGR or small for gestational age (SGA). Methods: Prospective cohort study in singleton term gestations including 10 normally grown fetuses and 20 small fetuses, sub-classified into SGA and FGR accordingly to birth weight (BW) percentile and fetoplacental Doppler. Exosomes were isolated from maternal and fetal plasma and characterized by morphology, enrichment of exosomal proteins, and size distribution by electron microscopy, western blot, and nanoparticle tracking analysis, respectively. Total and specific placenta-derived exosomes were determined using quantum dots coupled with CD63þve and placental-type alkaline phosphatase (PLAP)þve antibodies, respectively. Results: Maternal concentrations of CD63þve and PLAPþve exosomes were similar between the groups (all p > 0.05). However, there was a significant positive correlation between the ratio of placental-derived to total exosomes (PLAPþve ratio) and BW percentile, [rho ¼ 0.77 (95% CI: 0.57 to 0.89); p ¼ 0.0001]. The contribution of placental exosomes to the total exosome concentration in maternal and fetal circulation showed a significant decrease among cases, with lower PLAPþve ratios in FGR compared to controls and SGA cases. Discussion: Quantification of placental exosomes in maternal plasma reflects fetal growth and it may be a useful indicator of placental function. (hide)
EV-METRIC
56% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Fetal; Fetus small for gestational age
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: TSG101/ Flotillin1/ PLAP/ CD63
non-EV: Grp94
Proteomics
no
EV density (g/ml)
1.12-1.188g/ml
Show all info
Study aim
Function/Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
T-8100
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
10
Wash: time (min)
120
Wash: Rotor Type
T-8100
Wash: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Sample volume (mL)
0.5mL
Orientation
Bottom-up
Rotor type
T-8100
Speed (g)
100000
Duration (min)
1200
Fraction processing
Centrifugation
Pelleting: volume per fraction
0.05
Pelleting: duration (min)
120
Pelleting: rotor type
T-8100
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
Flotillin1/ CD63/ TSG101
Not detected contaminants
Grp94
ELISA
Detected EV-associated proteins
PLAP
Fluorescent NTA
Relevant measurements variables specified?
NA
Antibody details provided?
No
Detected EV-associated proteins
PLAP/ CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
85 ± 17 nm
EV concentration
Yes
EV200136 7/7 Homo sapiens Blood plasma DG
(d)(U)C
Filtration
Miranda, Jezid 2018 56%

Study summary

Full title
All authors
Jezid Miranda, Cristina Paules, Soumyalekshmi Nair, Andrew Lai, Carlos Palma, Katherin Scholz-Romero, Gregory E. Rice, Eduard Gratacos, Fatima Crispi, Carlos Salomon
Journal
Placenta
Abstract
Introduction: Placenta-derived exosomes may represent an additional pathway by which the placenta co (show more...)Introduction: Placenta-derived exosomes may represent an additional pathway by which the placenta communicates with the maternal system to induce maternal vascular adaptations to pregnancy and it may be affected during Fetal growth restriction (FGR). The objective of this study was to quantify the concentration of total and placenta-derived exosomes in maternal and fetal circulation in small fetuses classified as FGR or small for gestational age (SGA). Methods: Prospective cohort study in singleton term gestations including 10 normally grown fetuses and 20 small fetuses, sub-classified into SGA and FGR accordingly to birth weight (BW) percentile and fetoplacental Doppler. Exosomes were isolated from maternal and fetal plasma and characterized by morphology, enrichment of exosomal proteins, and size distribution by electron microscopy, western blot, and nanoparticle tracking analysis, respectively. Total and specific placenta-derived exosomes were determined using quantum dots coupled with CD63þve and placental-type alkaline phosphatase (PLAP)þve antibodies, respectively. Results: Maternal concentrations of CD63þve and PLAPþve exosomes were similar between the groups (all p > 0.05). However, there was a significant positive correlation between the ratio of placental-derived to total exosomes (PLAPþve ratio) and BW percentile, [rho ¼ 0.77 (95% CI: 0.57 to 0.89); p ¼ 0.0001]. The contribution of placental exosomes to the total exosome concentration in maternal and fetal circulation showed a significant decrease among cases, with lower PLAPþve ratios in FGR compared to controls and SGA cases. Discussion: Quantification of placental exosomes in maternal plasma reflects fetal growth and it may be a useful indicator of placental function. (hide)
EV-METRIC
56% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Fetal; Fetal growth restriction
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: TSG101/ Flotillin1/ PLAP/ CD63
non-EV: Grp94
Proteomics
no
EV density (g/ml)
1.12-1.188g/ml
Show all info
Study aim
Function/Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
T-8100
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
10
Wash: time (min)
120
Wash: Rotor Type
T-8100
Wash: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Sample volume (mL)
0.5mL
Orientation
Bottom-up
Rotor type
T-8100
Speed (g)
100000
Duration (min)
1200
Fraction processing
Centrifugation
Pelleting: volume per fraction
0.05
Pelleting: duration (min)
120
Pelleting: rotor type
T-8100
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
Flotillin1/ CD63/ TSG101
Not detected contaminants
Grp94
ELISA
Detected EV-associated proteins
PLAP
Fluorescent NTA
Relevant measurements variables specified?
NA
Antibody details provided?
No
Detected EV-associated proteins
PLAP/ CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
81 ± 15 nm
EV concentration
Yes
EV200136 1/7 Homo sapiens Blood plasma DG
(d)(U)C
Filtration
Miranda, Jezid 2018 34%

Study summary

Full title
All authors
Jezid Miranda, Cristina Paules, Soumyalekshmi Nair, Andrew Lai, Carlos Palma, Katherin Scholz-Romero, Gregory E. Rice, Eduard Gratacos, Fatima Crispi, Carlos Salomon
Journal
Placenta
Abstract
Introduction: Placenta-derived exosomes may represent an additional pathway by which the placenta co (show more...)Introduction: Placenta-derived exosomes may represent an additional pathway by which the placenta communicates with the maternal system to induce maternal vascular adaptations to pregnancy and it may be affected during Fetal growth restriction (FGR). The objective of this study was to quantify the concentration of total and placenta-derived exosomes in maternal and fetal circulation in small fetuses classified as FGR or small for gestational age (SGA). Methods: Prospective cohort study in singleton term gestations including 10 normally grown fetuses and 20 small fetuses, sub-classified into SGA and FGR accordingly to birth weight (BW) percentile and fetoplacental Doppler. Exosomes were isolated from maternal and fetal plasma and characterized by morphology, enrichment of exosomal proteins, and size distribution by electron microscopy, western blot, and nanoparticle tracking analysis, respectively. Total and specific placenta-derived exosomes were determined using quantum dots coupled with CD63þve and placental-type alkaline phosphatase (PLAP)þve antibodies, respectively. Results: Maternal concentrations of CD63þve and PLAPþve exosomes were similar between the groups (all p > 0.05). However, there was a significant positive correlation between the ratio of placental-derived to total exosomes (PLAPþve ratio) and BW percentile, [rho ¼ 0.77 (95% CI: 0.57 to 0.89); p ¼ 0.0001]. The contribution of placental exosomes to the total exosome concentration in maternal and fetal circulation showed a significant decrease among cases, with lower PLAPþve ratios in FGR compared to controls and SGA cases. Discussion: Quantification of placental exosomes in maternal plasma reflects fetal growth and it may be a useful indicator of placental function. (hide)
EV-METRIC
34% (68th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Not pregnant
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: PLAP
non-EV: None
Proteomics
no
EV density (g/ml)
1.12-1.188g/ml
Show all info
Study aim
Function/Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
T-8100
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
10
Wash: time (min)
120
Wash: Rotor Type
T-8100
Wash: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Sample volume (mL)
0.5mL
Orientation
Bottom-up
Rotor type
T-8100
Speed (g)
100000
Duration (min)
1200
Fraction processing
Centrifugation
Pelleting: volume per fraction
0.05
Pelleting: duration (min)
120
Pelleting: rotor type
T-8100
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
ELISA
Detected EV-associated proteins
PLAP
Characterization: Lipid analysis
No
1 - 7 of 7
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV200136
species
Homo
sapiens
sample type
Blood
plasma
condition
Maternal
Normal
pregnancy
Fetal
Normal
pregnancy
Maternal
Fetus
small
for
gestational
age
Maternal
Fetal
growth
restriction
Fetal
Fetus
small
for
gestational
age
Fetal
Fetal
growth
restriction
Not
pregnant
separation protocol
Density
gradient
dUC
Filtration
Density
gradient
dUC
Filtration
Density
gradient
dUC
Filtration
Density
gradient
dUC
Filtration
Density
gradient
dUC
Filtration
Density
gradient
dUC
Filtration
Density
gradient
dUC
Filtration
Exp. nr.
2
5
3
4
6
7
1
EV-METRIC %
67
67
56
56
56
56
34