Search > Results

You searched for: EV220155 (EV-TRACK ID)

Showing 1 - 3 of 3

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV220155 1/3 Homo sapiens MDAMB231 Exospin Campos A 2018 38%

Study summary

Full title
All authors
Campos A, Salomon C, Bustos R, Díaz J, Martínez S, Silva V, Reyes C, Díaz-Valdivia N, Varas-Godoy M, Lobos-González L, Quest AF
Journal
Nanomedicine (Lond)
Abstract
Breast cancer is one of the most frequently diagnosed cancers and the leading cause of cancer-relate (show more...)Breast cancer is one of the most frequently diagnosed cancers and the leading cause of cancer-related deaths in women worldwide, whereby mortality is largely attributable to the development of distant metastasis. Caveolin-1 (CAV1) is a multifunctional membrane protein that is typically upregulated in the final stages of cancer and promotes migration and invasion of tumor cells. Elevated levels of CAV1 have been detected in extracellular vesicles (EVs) from advanced cancer patients. EVs are lipid enclosed vesicular structures that contain bioactive proteins, DNA and RNAs, which can be transferred to other cells and promote metastasis. Therefore, we hypothesized that CAV1 containing EVs released from breast cancer cells may enhance migration and invasion of recipient cells. EVs were purified from conditioned media of MDA-MB-231 wild-type (WT), MDA-MB-231 (shCAV1/ possessing the plasmid pLKO.1 encoding a 'small hairpin' directed against CAV1) and MDA-MB-231 (shC) short hairpin control cells. Nanoparticle tracking analysis revealed an average particle size of 40-350 nm for all preparations. As anticipated, CAV1 was detected in MDA-MB-231 WT and shC EVs, but not in MDA-MB-231 (shCAV1) EVs. Mass spectrometry analysis revealed the presence of specific cell adhesion-related proteins, such as Cyr61, tenascin (TNC) and S100A9 only in WT and shC, but not in shCAV1 EVs. Importantly, EVs containing CAV1 promoted migration and invasion of cells lacking CAV1. We conclude that the presence of CAV1 in EVs from metastatic breast cancer cells is associated with enhanced migration and invasiveness of recipient cells in vitro, suggesting that intercellular communication promoted by EVs containing CAV1 will likely favor metastasis in vivo. (hide)
EV-METRIC
38% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Commercial method
Protein markers
EV: CD9/ Alix/ TSG101/ CAV1/ beta-actin
non-EV: Calnexin
Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDAMB231
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
Commercial kit
Exospin
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Detected EV-associated proteins
CAV1/ CD9/ Alix/ TSG101
Not detected EV-associated proteins
Beta-actin
Not detected contaminants
Calnexin
Proteomics database
No
Characterization: RNA analysis
RNA analysis
Type
(RT)­(q)PCR
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
EM
Image type
Wide-field
Report size (nm)
50-100
EV220155 2/3 Homo sapiens MDAMB231 Exospin Campos A 2018 38%

Study summary

Full title
All authors
Campos A, Salomon C, Bustos R, Díaz J, Martínez S, Silva V, Reyes C, Díaz-Valdivia N, Varas-Godoy M, Lobos-González L, Quest AF
Journal
Nanomedicine (Lond)
Abstract
Breast cancer is one of the most frequently diagnosed cancers and the leading cause of cancer-relate (show more...)Breast cancer is one of the most frequently diagnosed cancers and the leading cause of cancer-related deaths in women worldwide, whereby mortality is largely attributable to the development of distant metastasis. Caveolin-1 (CAV1) is a multifunctional membrane protein that is typically upregulated in the final stages of cancer and promotes migration and invasion of tumor cells. Elevated levels of CAV1 have been detected in extracellular vesicles (EVs) from advanced cancer patients. EVs are lipid enclosed vesicular structures that contain bioactive proteins, DNA and RNAs, which can be transferred to other cells and promote metastasis. Therefore, we hypothesized that CAV1 containing EVs released from breast cancer cells may enhance migration and invasion of recipient cells. EVs were purified from conditioned media of MDA-MB-231 wild-type (WT), MDA-MB-231 (shCAV1/ possessing the plasmid pLKO.1 encoding a 'small hairpin' directed against CAV1) and MDA-MB-231 (shC) short hairpin control cells. Nanoparticle tracking analysis revealed an average particle size of 40-350 nm for all preparations. As anticipated, CAV1 was detected in MDA-MB-231 WT and shC EVs, but not in MDA-MB-231 (shCAV1) EVs. Mass spectrometry analysis revealed the presence of specific cell adhesion-related proteins, such as Cyr61, tenascin (TNC) and S100A9 only in WT and shC, but not in shCAV1 EVs. Importantly, EVs containing CAV1 promoted migration and invasion of cells lacking CAV1. We conclude that the presence of CAV1 in EVs from metastatic breast cancer cells is associated with enhanced migration and invasiveness of recipient cells in vitro, suggesting that intercellular communication promoted by EVs containing CAV1 will likely favor metastasis in vivo. (hide)
EV-METRIC
38% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
shC
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Commercial method
Protein markers
EV: CD9/ Alix/ TSG101/ CAV1/ beta-actin
non-EV: Calnexin
Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDAMB231
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
Commercial kit
Exospin
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Detected EV-associated proteins
CAV1/ CD9/ Alix/ TSG101
Not detected EV-associated proteins
Beta-actin
Not detected contaminants
Calnexin
Proteomics database
No
Characterization: RNA analysis
RNA analysis
Type
(RT)­(q)PCR
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
EM
Image type
Wide-field
Report size (nm)
50-100
EV220155 3/3 Homo sapiens MDAMB231 Exospin Campos A 2018 38%

Study summary

Full title
All authors
Campos A, Salomon C, Bustos R, Díaz J, Martínez S, Silva V, Reyes C, Díaz-Valdivia N, Varas-Godoy M, Lobos-González L, Quest AF
Journal
Nanomedicine (Lond)
Abstract
Breast cancer is one of the most frequently diagnosed cancers and the leading cause of cancer-relate (show more...)Breast cancer is one of the most frequently diagnosed cancers and the leading cause of cancer-related deaths in women worldwide, whereby mortality is largely attributable to the development of distant metastasis. Caveolin-1 (CAV1) is a multifunctional membrane protein that is typically upregulated in the final stages of cancer and promotes migration and invasion of tumor cells. Elevated levels of CAV1 have been detected in extracellular vesicles (EVs) from advanced cancer patients. EVs are lipid enclosed vesicular structures that contain bioactive proteins, DNA and RNAs, which can be transferred to other cells and promote metastasis. Therefore, we hypothesized that CAV1 containing EVs released from breast cancer cells may enhance migration and invasion of recipient cells. EVs were purified from conditioned media of MDA-MB-231 wild-type (WT), MDA-MB-231 (shCAV1/ possessing the plasmid pLKO.1 encoding a 'small hairpin' directed against CAV1) and MDA-MB-231 (shC) short hairpin control cells. Nanoparticle tracking analysis revealed an average particle size of 40-350 nm for all preparations. As anticipated, CAV1 was detected in MDA-MB-231 WT and shC EVs, but not in MDA-MB-231 (shCAV1) EVs. Mass spectrometry analysis revealed the presence of specific cell adhesion-related proteins, such as Cyr61, tenascin (TNC) and S100A9 only in WT and shC, but not in shCAV1 EVs. Importantly, EVs containing CAV1 promoted migration and invasion of cells lacking CAV1. We conclude that the presence of CAV1 in EVs from metastatic breast cancer cells is associated with enhanced migration and invasiveness of recipient cells in vitro, suggesting that intercellular communication promoted by EVs containing CAV1 will likely favor metastasis in vivo. (hide)
EV-METRIC
38% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
shCAV1
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Commercial method
Protein markers
EV: CD9/ Alix/ TSG101/ CAV1/ beta-actin
non-EV: Calnexin
Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDAMB231
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
Commercial kit
Exospin
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Detected EV-associated proteins
CD9/ Alix/ TSG101
Not detected EV-associated proteins
Beta-actin/ CAV1
Not detected contaminants
Calnexin
Proteomics database
No
Characterization: RNA analysis
RNA analysis
Type
(RT)­(q)PCR
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
EM
Image type
Wide-field
Report size (nm)
50-100
1 - 3 of 3
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV220155
species
Homo sapiens
sample type
Cell culture
cell type
MDAMB231
condition
Control condition
shC
shCAV1
separation protocol
Exospin
Exospin
Exospin
Exp. nr.
1
2
3
EV-METRIC %
38
38
38