Search > Results

You searched for: EV210277 (EV-TRACK ID)

Showing 1 - 4 of 4

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV210277 3/4 Homo sapiens Urine Aqueous two-phase system Shin H 2018 38%

Study summary

Full title
All authors
Shin H, Park YH, Kim YG, Lee JY, Park J
Journal
PLoS One
Abstract
Analyzing extracellular vesicles (EVs) is an attractive approach to diagnosis of prostate diagnosis. (show more...)Analyzing extracellular vesicles (EVs) is an attractive approach to diagnosis of prostate diagnosis. However, existing methods of EVs isolation have low efficiency, purity, and long process time, and therefore have low diagnostic ability. To solve these the problems, a two-phase system is adapted to isolate EVs from a patient's urine. Urine from 20 prostate cancer (PCA) patients and 10 benign prostate hyperplasia patients was used to quantify the EVs-isolation ability of an aqueous two-phase system (ATPS) and to compare the diagnostic ability of ATPS with that of the conventional diagnosis method. An optimized ATPS isolates EVs with ~100% efficiency within ~30 min, with 14 times as high as achieved by ultracentrifugation. Afterward, PCR and ELISA are used to detect EVs derived from PCA cells in urine. The results demonstrate that diagnostic ability based on ATPS is better than other conventional diagnostic methods. ATPS can obtain a high quality and quantity of EVs from patients' urine. EVs contain cancer-related protein and genes, so these abundant sources enable diagnosis with high specificity and sensitivity. Therefore, ATPS is a useful tool to increase the specificity and sensitivity of diagnosis. (hide)
EV-METRIC
38% (73rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Prostate cancer
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Aqueous two-phase system
Protein markers
EV: CD81/ CD63/ CD9
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods/New methodological development
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
Other
Name other separation method
Aqueous two-phase system
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ CD63/ CD81
ELISA
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-400
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
EV210277 2/4 Homo sapiens Urine (d)(U)C Shin H 2018 33%

Study summary

Full title
All authors
Shin H, Park YH, Kim YG, Lee JY, Park J
Journal
PLoS One
Abstract
Analyzing extracellular vesicles (EVs) is an attractive approach to diagnosis of prostate diagnosis. (show more...)Analyzing extracellular vesicles (EVs) is an attractive approach to diagnosis of prostate diagnosis. However, existing methods of EVs isolation have low efficiency, purity, and long process time, and therefore have low diagnostic ability. To solve these the problems, a two-phase system is adapted to isolate EVs from a patient's urine. Urine from 20 prostate cancer (PCA) patients and 10 benign prostate hyperplasia patients was used to quantify the EVs-isolation ability of an aqueous two-phase system (ATPS) and to compare the diagnostic ability of ATPS with that of the conventional diagnosis method. An optimized ATPS isolates EVs with ~100% efficiency within ~30 min, with 14 times as high as achieved by ultracentrifugation. Afterward, PCR and ELISA are used to detect EVs derived from PCA cells in urine. The results demonstrate that diagnostic ability based on ATPS is better than other conventional diagnostic methods. ATPS can obtain a high quality and quantity of EVs from patients' urine. EVs contain cancer-related protein and genes, so these abundant sources enable diagnosis with high specificity and sensitivity. Therefore, ATPS is a useful tool to increase the specificity and sensitivity of diagnosis. (hide)
EV-METRIC
33% (65th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Prostate cancer
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: CD81/ CD63/ CD9
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods/New methodological development
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
Not specified
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
4
Wash: time (min)
120
Wash: Rotor Type
Not specified
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Not detected EV-associated proteins
CD9/ CD63/ CD81
ELISA
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-400
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
EV210277 4/4 Homo sapiens Urine Aqueous two-phase system Shin H 2018 14%

Study summary

Full title
All authors
Shin H, Park YH, Kim YG, Lee JY, Park J
Journal
PLoS One
Abstract
Analyzing extracellular vesicles (EVs) is an attractive approach to diagnosis of prostate diagnosis. (show more...)Analyzing extracellular vesicles (EVs) is an attractive approach to diagnosis of prostate diagnosis. However, existing methods of EVs isolation have low efficiency, purity, and long process time, and therefore have low diagnostic ability. To solve these the problems, a two-phase system is adapted to isolate EVs from a patient's urine. Urine from 20 prostate cancer (PCA) patients and 10 benign prostate hyperplasia patients was used to quantify the EVs-isolation ability of an aqueous two-phase system (ATPS) and to compare the diagnostic ability of ATPS with that of the conventional diagnosis method. An optimized ATPS isolates EVs with ~100% efficiency within ~30 min, with 14 times as high as achieved by ultracentrifugation. Afterward, PCR and ELISA are used to detect EVs derived from PCA cells in urine. The results demonstrate that diagnostic ability based on ATPS is better than other conventional diagnostic methods. ATPS can obtain a high quality and quantity of EVs from patients' urine. EVs contain cancer-related protein and genes, so these abundant sources enable diagnosis with high specificity and sensitivity. Therefore, ATPS is a useful tool to increase the specificity and sensitivity of diagnosis. (hide)
EV-METRIC
14% (40th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Prostate hyperplasia
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Aqueous two-phase system
Protein markers
EV: CD9
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods/New methodological development
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
Other
Name other separation method
Aqueous two-phase system
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
ELISA
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV210277 1/4 Homo sapiens Urine (d)(U)C Shin H 2018 13%

Study summary

Full title
All authors
Shin H, Park YH, Kim YG, Lee JY, Park J
Journal
PLoS One
Abstract
Analyzing extracellular vesicles (EVs) is an attractive approach to diagnosis of prostate diagnosis. (show more...)Analyzing extracellular vesicles (EVs) is an attractive approach to diagnosis of prostate diagnosis. However, existing methods of EVs isolation have low efficiency, purity, and long process time, and therefore have low diagnostic ability. To solve these the problems, a two-phase system is adapted to isolate EVs from a patient's urine. Urine from 20 prostate cancer (PCA) patients and 10 benign prostate hyperplasia patients was used to quantify the EVs-isolation ability of an aqueous two-phase system (ATPS) and to compare the diagnostic ability of ATPS with that of the conventional diagnosis method. An optimized ATPS isolates EVs with ~100% efficiency within ~30 min, with 14 times as high as achieved by ultracentrifugation. Afterward, PCR and ELISA are used to detect EVs derived from PCA cells in urine. The results demonstrate that diagnostic ability based on ATPS is better than other conventional diagnostic methods. ATPS can obtain a high quality and quantity of EVs from patients' urine. EVs contain cancer-related protein and genes, so these abundant sources enable diagnosis with high specificity and sensitivity. Therefore, ATPS is a useful tool to increase the specificity and sensitivity of diagnosis. (hide)
EV-METRIC
13% (35th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Prostate cancer
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: CD9
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods/New methodological development
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
Not specified
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
ELISA
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
EV concentration
Yes
1 - 4 of 4
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV210277
species
Homo sapiens
sample type
Urine
condition
Prostate cancer
Prostate cancer
Prostate hyperplasia
Prostate cancer
separation protocol
Aqueous
two-phase system
dUC
Aqueous
two-phase system
dUC
Exp. nr.
3
2
4
1
EV-METRIC %
38
33
14
13