Search > Results
You searched for: 2021 (Year of publication)
Showing 1 - 50 of 1321
Showing 1 - 50 of 1321
Details | EV-TRACK ID | Experiment nr. | Species | Sample type | Separation protocol | First author | Year | EV-METRIC |
---|---|---|---|---|---|---|---|---|
EV210153 | 3/11 | Homo sapiens | 22Rv1 |
(d)(U)C Filtration DG |
Allelein, Susann | 2021 | 100% | |
Study summaryFull title
All authors
Susann Allelein, Paula Medina-Perez, Ana Leonor Heitor Lopes, Sabrina Rau, Gerd Hause, Andreas Kölsch, Dirk Kuhlmeier
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) have attracted interest due to their ability to provide diagnostic info (show more...)
EV-METRIC
100% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Filtration DG Protein markers
EV: TSG101/ Alix/ CD9
non-EV: Calnexin Proteomics
no
EV density (g/ml)
1.08-1.11
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
22Rv1
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Pelleting performed
No
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5
Highest density fraction
40
Total gradient volume, incl. sample (mL)
16
Sample volume (mL)
0.5
Orientation
Top-down
Rotor type
Surespin 630 (17 ml)
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
8.25
Pelleting: duration (min)
180
Pelleting: rotor type
Surespin 630 (36 ml)
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ Alix
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
140
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 1.40E+11
EM
EM-type
Transmission electron microscopy
Image type
Close-up, Wide-field
|
||||||||
EV210118 | 1/4 | Bos taurus | cheese manufacturing byproducts |
DG tangential flow filtration Filtration |
Sukreet, Sonal | 2021 | 100% | |
Study summaryFull title
All authors
Sonal Sukreet, Camila Pereira Braga, Thuy T. An, Jiri Adamec, Juan Cui, Benjamin Trible, Janos Zempleni
Journal
Journal of Dairy Science
Abstract
Extracellular vesicles (EV) in milk, particularly exosomes, have attracted considerable attention as (show more...)
EV-METRIC
100% (50th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
cheese manufacturing byproducts
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
tangential flow filtration Filtration Protein markers
EV: TSG101/ CD63/ CD81/ Alix/ HSP70/ CD9
non-EV: Integrin-beta/ Histone H3/ ApoB Proteomics
yes
EV density (g/ml)
1.255
Show all info
Study aim
New methodological development/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
cheese manufacturing byproducts
Separation Method
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
5
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
3
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.22µm or 0.2µm
Other
Name other separation method
tangential flow filtration
EV-subtype
Distinction between multiple subtypes
Size
Used subtypes
M.W. >100 kDa
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
TSG101/ HSP70
Not detected EV-associated proteins
CD81/ CD63/ CD9/ Alix
Detected contaminants
Histone H3/ Integrin-beta/ ApoB
Proteomics database
No
Characterization: RNA analysis
RNA analysis
Type
RNA sequencing
Database
Yes
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
DLS
Report type
Mean
Reported size (nm)
1108+/-138
NTA
Report type
Mean
Reported size (nm)
102.3+/-6.7
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 4.12+/-0.525E09
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210118 | 2/4 | Bos taurus | cheese manufacturing byproducts |
DG tangential flow filtration Filtration |
Sukreet, Sonal | 2021 | 100% | |
Study summaryFull title
All authors
Sonal Sukreet, Camila Pereira Braga, Thuy T. An, Jiri Adamec, Juan Cui, Benjamin Trible, Janos Zempleni
Journal
Journal of Dairy Science
Abstract
Extracellular vesicles (EV) in milk, particularly exosomes, have attracted considerable attention as (show more...)
EV-METRIC
100% (50th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
cheese manufacturing byproducts
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
tangential flow filtration Filtration Protein markers
EV: CD81/ Alix/ CD63/ CD9/ HSP70
non-EV: Integrin-beta/ Histone H3/ ApoB Proteomics
yes
EV density (g/ml)
1.255
Show all info
Study aim
New methodological development/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
cheese manufacturing byproducts
Separation Method
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
5
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
3
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.22µm or 0.2µm
Other
Name other separation method
tangential flow filtration
EV-subtype
Distinction between multiple subtypes
Size
Used subtypes
M.W. 50 kDa to 100 kDa
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
HSP70
Not detected EV-associated proteins
CD81/ CD63/ CD9/ Alix
Not detected contaminants
Histone H3/ Integrin-beta/ ApoB
Proteomics database
No
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing
Database
Yes
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
DLS
Report type
Mean
Reported size (nm)
45+/-17
NTA
Report type
Mean
Reported size (nm)
80.9+/-4.3
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 2.06+/-0.22E09
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210118 | 3/4 | Bos taurus | cheese manufacturing byproducts |
DG tangential flow filtration Filtration |
Sukreet, Sonal | 2021 | 100% | |
Study summaryFull title
All authors
Sonal Sukreet, Camila Pereira Braga, Thuy T. An, Jiri Adamec, Juan Cui, Benjamin Trible, Janos Zempleni
Journal
Journal of Dairy Science
Abstract
Extracellular vesicles (EV) in milk, particularly exosomes, have attracted considerable attention as (show more...)
EV-METRIC
100% (50th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
cheese manufacturing byproducts
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
tangential flow filtration Filtration Protein markers
EV: CD81/ Alix/ CD63/ CD9/ HSP70
non-EV: Integrin-beta/ Histone H3/ ApoB Proteomics
yes
EV density (g/ml)
1.255
Show all info
Study aim
New methodological development/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
cheese manufacturing byproducts
Separation Method
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
5
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
3
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.22µm or 0.2µm
Other
Name other separation method
tangential flow filtration
EV-subtype
Distinction between multiple subtypes
Size
Used subtypes
M.W. >50 kDa
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
HSP70
Not detected EV-associated proteins
CD81/ CD63/ CD9/ Alix
Not detected contaminants
Histone H3/ Integrin-beta/ ApoB
Proteomics database
No
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing
Database
Yes
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
DLS
Report type
Mean
Reported size (nm)
157+/-122
NTA
Report type
Mean
Reported size (nm)
90.8
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 1.44+/-0.144E09
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210118 | 4/4 | Bos taurus | skim milk |
DG (d)(U)C |
Sukreet, Sonal | 2021 | 100% | |
Study summaryFull title
All authors
Sonal Sukreet, Camila Pereira Braga, Thuy T. An, Jiri Adamec, Juan Cui, Benjamin Trible, Janos Zempleni
Journal
Journal of Dairy Science
Abstract
Extracellular vesicles (EV) in milk, particularly exosomes, have attracted considerable attention as (show more...)
EV-METRIC
100% (50th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
skim milk
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
(d)(U)C Protein markers
EV: TSG101/ CD63/ CD81/ Alix/ HSP70/ CD9
non-EV: Integrin-beta/ Histone H3/ ApoB Proteomics
yes
EV density (g/ml)
1.255
Show all info
Study aim
New methodological development/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
skim milk
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g Between 50,000 g and 100,000 g Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
F37L-8x100
Pelleting: speed (g)
120000
Wash: volume per pellet (ml)
1
Wash: time (min)
90
Wash: Rotor Type
F37L-8x100
Wash: speed (g)
120000
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
5
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
3
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
Alix/ CD9/ CD63/ TSG101/ HSP70/ CD81
Not detected contaminants
Histone H3/ Integrin-beta/ ApoB
Proteomics database
No
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing
Database
Yes
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
DLS
Report type
Mean
Reported size (nm)
115+/-31
NTA
Report type
Mean
Reported size (nm)
106.6
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 1.42+/-0.0536E14
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210043 | 1/2 | Homo sapiens | hcMEC/D3 |
DG (d)(U)C UF Filtration |
Fikatas, Antonios | 2021 | 100% | |
Study summaryFull title
All authors
Antonios Fikatas, Jonas Dehairs, Sam Noppen, Jordi Doijen, Frank Vanderhoydonc, Eef Meyen, Johannes V Swinnen, Christophe Pannecouque, Dominique Schols
Journal
Viruses
Abstract
To date, no vaccines or antivirals are available against Zika virus (ZIKV). In addition, the mechani (show more...)
EV-METRIC
100% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
(d)(U)C UF Filtration Protein markers
EV: TSG101/ Alix/ CD63
non-EV: Calnexin Proteomics
no
EV density (g/ml)
1.06-1.16
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
hcMEC/D3
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Cell viability (%)
NA
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Pelleting performed
Yes
Pelleting: time(min)
1260
Pelleting: rotor type
TH-641
Pelleting: speed (g)
100 000
Wash: volume per pellet (ml)
10
Wash: time (min)
180
Wash: Rotor Type
TH-641
Wash: speed (g)
100 000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
10
Sample volume (mL)
1
Orientation
Top-down
Rotor type
TH-641
Speed (g)
100 000
Duration (min)
1080
Fraction volume (mL)
1,5
Fraction processing
None
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Detected EV-associated proteins
CD63/ TSG101/ Alix
Not detected contaminants
Calnexin
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
165
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 1,50E+08
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
130
|
||||||||
EV200102 | 1/7 | Homo sapiens | THP1 |
DG (d)(U)C qEV |
Tóth, Eszter | 2021 | 100% | |
Study summaryFull title
All authors
Eszter Á Tóth, Lilla Turiák, Tamás Visnovitz, Csaba Cserép, Anett Mázló, Barbara W Sódar, András I Försönits, Gábor Petővári, Anna Sebestyén, Zsolt Komlósi, László Drahos, Ágnes Kittel, György Nagy, Attila Bácsi, Ádám Dénes, Yong Song Gho, Katalin É Szabó-Taylor, Edit I Buzás
Journal
J Extracell Vesicles
Abstract
In this study we tested whether a protein corona is formed around extracellular vesicles (EVs) in bl (show more...)
EV-METRIC
100% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
Density gradient
(Differential) (ultra)centrifugation Commercial method Protein markers
EV: CD63/ Phosphatydilserine
non-EV: None Proteomics
yes
EV density (g/ml)
1.10-1.15
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
THP1
EV-harvesting Medium
Serum free medium
Cell viability (%)
93
Cell count
80000000
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
40
Pelleting: rotor type
FA-45-24-11
Pelleting: speed (g)
12500
Wash: volume per pellet (ml)
1
Wash: time (min)
40
Wash: Rotor Type
FA-45-24-11
Wash: speed (g)
12500
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
4.5
Sample volume (mL)
0.5
Orientation
Top-down
Rotor type
MLS-50
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
0.5
Fraction processing
Centrifugation
Pelleting: volume per fraction
2
Pelleting: duration (min)
80
Pelleting: rotor type
FA-45-24-11
Pelleting: speed (g)
12500
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
microBCA
Flow cytometry
Type of Flow cytometry
FACS Calibur
Calibration bead size
The vesicular gate was set using Megamix Beads (Bi
Detected EV-associated proteins
Phosphatydilserine
Proteomics database
Yes:
Detected EV-associated proteins
CD63
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
TRPS
Report type
Modus
Reported size (nm)
244
Particle analysis: flow cytometry
Flow cytometer type
FACS Calibur
Hardware adjustment
Calibration bead size
0.160;0.200;0.240;0.500
Report type
Not Reported
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV200099 | 1/8 | Bos taurus | milk |
(d)(U)C DG |
Kleinjan, Marije | 2021 | 100% | |
Study summaryFull title
All authors
Marije Kleinjan, Martijn Jc van Herwijnen, Sten Fwm Libregts, Rj Joost van Neerven, Anouk L Feitsma, Marca Hm Wauben
Journal
J Nutr
Abstract
Background: Bovine milk contains extracellular vesicles (EVs), which act as mediators of intercellul (show more...)
EV-METRIC
100% (93rd percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
milk
Sample origin
raw
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
DG Protein markers
EV: MFG-E8/ CD63/ TSG101/ Flotillin1/ CD9
non-EV: beta-lactoglobulin/ beta-casein Proteomics
no
EV density (g/ml)
1.20-1.24
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
milk
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Pelleting performed
No
Density gradient
Type
Continuous
Lowest density fraction
0.4M
Highest density fraction
2.5M
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
6.5
Orientation
Top-down
Rotor type
SW 40 Ti
Speed (g)
192000
Duration (min)
1080
Fraction volume (mL)
0.5
Fraction processing
Centrifugation
Pelleting: volume per fraction
1.5
Pelleting: duration (min)
65
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
100000
EV-subtype
Distinction between multiple subtypes
Density
Used subtypes
1.20-1.24
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
Flotillin1/ CD9/ CD63/ MFG-E8/ TSG101
Not detected contaminants
beta-casein/ beta-lactoglobulin
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
Particle analysis: flow cytometry
Flow cytometer type
BD Influx cell sorter (BD Biosciences, San Jose, CA, USA)
Hardware adjustment
High-resolution flow cytometric analysis of PKH67-stained samples was performed on a BD Influx cell sorter (BD Biosciences, San Jose, CA, USA) that was dedicated and optimized for detection of submicron-sized particles
Calibration bead size
0.1
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
Report size (nm)
200
|
||||||||
EV200099 | 2/8 | Bos taurus | milk |
(d)(U)C DG |
Kleinjan, Marije | 2021 | 100% | |
Study summaryFull title
All authors
Marije Kleinjan, Martijn Jc van Herwijnen, Sten Fwm Libregts, Rj Joost van Neerven, Anouk L Feitsma, Marca Hm Wauben
Journal
J Nutr
Abstract
Background: Bovine milk contains extracellular vesicles (EVs), which act as mediators of intercellul (show more...)
EV-METRIC
100% (93rd percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
milk
Sample origin
raw
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
DG Protein markers
EV: MFG-E8/ CD63/ TSG101/ Flotillin1/ CD9
non-EV: beta-lactoglobulin/ beta-casein Proteomics
no
EV density (g/ml)
1.18-1.13
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
milk
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Pelleting performed
No
Density gradient
Type
Continuous
Lowest density fraction
0.4M
Highest density fraction
2.5M
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
6.5
Orientation
Top-down
Rotor type
SW 40 Ti
Speed (g)
192000
Duration (min)
1080
Fraction volume (mL)
0.5
Fraction processing
Centrifugation
Pelleting: volume per fraction
1.5
Pelleting: duration (min)
65
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
100000
EV-subtype
Distinction between multiple subtypes
Density
Used subtypes
1.18-1.13
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
Flotillin1/ CD9/ CD63/ MFG-E8/ TSG101
Not detected contaminants
beta-casein/ beta-lactoglobulin
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
Particle analysis: flow cytometry
Flow cytometer type
BD Influx cell sorter (BD Biosciences, San Jose, CA, USA)
Hardware adjustment
High-resolution flow cytometric analysis of PKH67-stained samples was performed on a BD Influx cell sorter (BD Biosciences, San Jose, CA, USA) that was dedicated and optimized for detection of submicron-sized particles
Calibration bead size
0.1
Report type
Not Reported
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
Report size (nm)
200
|
||||||||
EV200099 | 3/8 | Bos taurus | milk |
(d)(U)C DG |
Kleinjan, Marije | 2021 | 100% | |
Study summaryFull title
All authors
Marije Kleinjan, Martijn Jc van Herwijnen, Sten Fwm Libregts, Rj Joost van Neerven, Anouk L Feitsma, Marca Hm Wauben
Journal
J Nutr
Abstract
Background: Bovine milk contains extracellular vesicles (EVs), which act as mediators of intercellul (show more...)
EV-METRIC
100% (93rd percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
milk
Sample origin
pasteurized
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
DG Protein markers
EV: MFG-E8/ CD63/ TSG101/ Flotillin1/ CD9
non-EV: beta-lactoglobulin/ beta-casein Proteomics
no
EV density (g/ml)
1.20-1.24
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
milk
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Pelleting performed
No
Density gradient
Type
Continuous
Lowest density fraction
0.4M
Highest density fraction
2.5M
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
6.5
Orientation
Top-down
Rotor type
SW 40 Ti
Speed (g)
192000
Duration (min)
1080
Fraction volume (mL)
0.5
Fraction processing
Centrifugation
Pelleting: volume per fraction
1.5
Pelleting: duration (min)
65
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
100000
EV-subtype
Distinction between multiple subtypes
Density
Used subtypes
1.20-1.24
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
Flotillin1/ CD9/ CD63/ MFG-E8/ TSG101
Not detected contaminants
beta-casein/ beta-lactoglobulin
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
Particle analysis: flow cytometry
Flow cytometer type
BD Influx cell sorter (BD Biosciences, San Jose, CA, USA)
Hardware adjustment
High-resolution flow cytometric analysis of PKH67-stained samples was performed on a BD Influx cell sorter (BD Biosciences, San Jose, CA, USA) that was dedicated and optimized for detection of submicron-sized particles
Calibration bead size
0.1
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
Report size (nm)
200
|
||||||||
EV200099 | 4/8 | Bos taurus | milk |
(d)(U)C DG |
Kleinjan, Marije | 2021 | 100% | |
Study summaryFull title
All authors
Marije Kleinjan, Martijn Jc van Herwijnen, Sten Fwm Libregts, Rj Joost van Neerven, Anouk L Feitsma, Marca Hm Wauben
Journal
J Nutr
Abstract
Background: Bovine milk contains extracellular vesicles (EVs), which act as mediators of intercellul (show more...)
EV-METRIC
100% (93rd percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
milk
Sample origin
pasteurized
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
DG Protein markers
EV: MFG-E8/ CD63/ TSG101/ Flotillin1/ CD9
non-EV: beta-lactoglobulin/ beta-casein Proteomics
no
EV density (g/ml)
1.18-1.13
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
milk
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Pelleting performed
No
Density gradient
Type
Continuous
Lowest density fraction
0.4M
Highest density fraction
2.5M
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
6.5
Orientation
Top-down
Rotor type
SW 40 Ti
Speed (g)
192000
Duration (min)
1080
Fraction volume (mL)
0.5
Fraction processing
Centrifugation
Pelleting: volume per fraction
1.5
Pelleting: duration (min)
65
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
100000
EV-subtype
Distinction between multiple subtypes
Density
Used subtypes
1.18-1.13
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
Flotillin1/ CD9/ CD63/ MFG-E8/ TSG101
Not detected contaminants
beta-casein/ beta-lactoglobulin
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
Particle analysis: flow cytometry
Flow cytometer type
BD Influx cell sorter (BD Biosciences, San Jose, CA, USA)
Hardware adjustment
High-resolution flow cytometric analysis of PKH67-stained samples was performed on a BD Influx cell sorter (BD Biosciences, San Jose, CA, USA) that was dedicated and optimized for detection of submicron-sized particles
Calibration bead size
0.1
Report type
Not Reported
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
Report size (nm)
200
|
||||||||
EV200099 | 5/8 | Bos taurus | milk |
(d)(U)C DG |
Kleinjan, Marije | 2021 | 100% | |
Study summaryFull title
All authors
Marije Kleinjan, Martijn Jc van Herwijnen, Sten Fwm Libregts, Rj Joost van Neerven, Anouk L Feitsma, Marca Hm Wauben
Journal
J Nutr
Abstract
Background: Bovine milk contains extracellular vesicles (EVs), which act as mediators of intercellul (show more...)
EV-METRIC
100% (93rd percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
milk
Sample origin
pasteurized and homogenized
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
DG Protein markers
EV: MFG-E8/ CD63/ TSG101/ Flotillin1/ CD9
non-EV: beta-lactoglobulin/ beta-casein Proteomics
no
EV density (g/ml)
1.20-1.24
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
milk
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Pelleting performed
No
Density gradient
Type
Continuous
Lowest density fraction
0.4M
Highest density fraction
2.5M
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
6.5
Orientation
Top-down
Rotor type
SW 40 Ti
Speed (g)
192000
Duration (min)
1080
Fraction volume (mL)
0.5
Fraction processing
Centrifugation
Pelleting: volume per fraction
1.5
Pelleting: duration (min)
65
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
100000
EV-subtype
Distinction between multiple subtypes
Density
Used subtypes
1.20-1.24
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
Flotillin1/ CD9/ CD63/ MFG-E8/ TSG101
Not detected contaminants
beta-casein/ beta-lactoglobulin
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
Particle analysis: flow cytometry
Flow cytometer type
BD Influx cell sorter (BD Biosciences, San Jose, CA, USA)
Hardware adjustment
High-resolution flow cytometric analysis of PKH67-stained samples was performed on a BD Influx cell sorter (BD Biosciences, San Jose, CA, USA) that was dedicated and optimized for detection of submicron-sized particles
Calibration bead size
0.1
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
Report size (nm)
200
|
||||||||
EV200099 | 6/8 | Bos taurus | milk |
(d)(U)C DG |
Kleinjan, Marije | 2021 | 100% | |
Study summaryFull title
All authors
Marije Kleinjan, Martijn Jc van Herwijnen, Sten Fwm Libregts, Rj Joost van Neerven, Anouk L Feitsma, Marca Hm Wauben
Journal
J Nutr
Abstract
Background: Bovine milk contains extracellular vesicles (EVs), which act as mediators of intercellul (show more...)
EV-METRIC
100% (93rd percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
milk
Sample origin
pasteurized and homogenized
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
DG Protein markers
EV: MFG-E8/ CD63/ TSG101/ Flotillin1/ CD9
non-EV: beta-lactoglobulin/ beta-casein Proteomics
no
EV density (g/ml)
1.18-1.13
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
milk
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Pelleting performed
No
Density gradient
Type
Continuous
Lowest density fraction
0.4M
Highest density fraction
2.5M
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
6.5
Orientation
Top-down
Rotor type
SW 40 Ti
Speed (g)
192000
Duration (min)
1080
Fraction volume (mL)
0.5
Fraction processing
Centrifugation
Pelleting: volume per fraction
1.5
Pelleting: duration (min)
65
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
100000
EV-subtype
Distinction between multiple subtypes
Density
Used subtypes
1.18-1.13
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
Flotillin1/ CD9/ CD63/ MFG-E8/ TSG101
Not detected contaminants
beta-casein/ beta-lactoglobulin
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
Particle analysis: flow cytometry
Flow cytometer type
BD Influx cell sorter (BD Biosciences, San Jose, CA, USA)
Hardware adjustment
High-resolution flow cytometric analysis of PKH67-stained samples was performed on a BD Influx cell sorter (BD Biosciences, San Jose, CA, USA) that was dedicated and optimized for detection of submicron-sized particles
Calibration bead size
0.1
Report type
Not Reported
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
Report size (nm)
200
|
||||||||
EV200099 | 7/8 | Bos taurus | milk |
(d)(U)C DG |
Kleinjan, Marije | 2021 | 100% | |
Study summaryFull title
All authors
Marije Kleinjan, Martijn Jc van Herwijnen, Sten Fwm Libregts, Rj Joost van Neerven, Anouk L Feitsma, Marca Hm Wauben
Journal
J Nutr
Abstract
Background: Bovine milk contains extracellular vesicles (EVs), which act as mediators of intercellul (show more...)
EV-METRIC
100% (93rd percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
milk
Sample origin
UHT
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
DG Protein markers
EV: MFG-E8/ CD63/ TSG101/ Flotillin1/ CD9
non-EV: beta-lactoglobulin/ beta-casein Proteomics
no
EV density (g/ml)
1.20-1.24
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
milk
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Pelleting performed
No
Density gradient
Type
Continuous
Lowest density fraction
0.4M
Highest density fraction
2.5M
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
6.5
Orientation
Top-down
Rotor type
SW 40 Ti
Speed (g)
192000
Duration (min)
1080
Fraction volume (mL)
0.5
Fraction processing
Centrifugation
Pelleting: volume per fraction
1.5
Pelleting: duration (min)
65
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
100000
EV-subtype
Distinction between multiple subtypes
Density
Used subtypes
1.20-1.24
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
Flotillin1/ CD9/ CD63/ MFG-E8/ TSG101
Not detected contaminants
beta-casein/ beta-lactoglobulin
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
Particle analysis: flow cytometry
Flow cytometer type
BD Influx cell sorter (BD Biosciences, San Jose, CA, USA)
Hardware adjustment
High-resolution flow cytometric analysis of PKH67-stained samples was performed on a BD Influx cell sorter (BD Biosciences, San Jose, CA, USA) that was dedicated and optimized for detection of submicron-sized particles
Calibration bead size
0.1
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
Report size (nm)
200
|
||||||||
EV200099 | 8/8 | Bos taurus | milk |
(d)(U)C DG |
Kleinjan, Marije | 2021 | 100% | |
Study summaryFull title
All authors
Marije Kleinjan, Martijn Jc van Herwijnen, Sten Fwm Libregts, Rj Joost van Neerven, Anouk L Feitsma, Marca Hm Wauben
Journal
J Nutr
Abstract
Background: Bovine milk contains extracellular vesicles (EVs), which act as mediators of intercellul (show more...)
EV-METRIC
100% (93rd percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
milk
Sample origin
UHT
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
DG Protein markers
EV: MFG-E8/ CD63/ TSG101/ Flotillin1/ CD9
non-EV: beta-lactoglobulin/ beta-casein Proteomics
no
EV density (g/ml)
1.18-1.13
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
milk
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Pelleting performed
No
Density gradient
Type
Continuous
Lowest density fraction
0.4M
Highest density fraction
2.5M
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
6.5
Orientation
Top-down
Rotor type
SW 40 Ti
Speed (g)
192000
Duration (min)
1080
Fraction volume (mL)
0.5
Fraction processing
Centrifugation
Pelleting: volume per fraction
1.5
Pelleting: duration (min)
65
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
100000
EV-subtype
Distinction between multiple subtypes
Density
Used subtypes
1.18-1.13
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
Flotillin1/ CD9/ CD63/ MFG-E8/ TSG101
Not detected contaminants
beta-casein/ beta-lactoglobulin
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
Particle analysis: flow cytometry
Flow cytometer type
BD Influx cell sorter (BD Biosciences, San Jose, CA, USA)
Hardware adjustment
High-resolution flow cytometric analysis of PKH67-stained samples was performed on a BD Influx cell sorter (BD Biosciences, San Jose, CA, USA) that was dedicated and optimized for detection of submicron-sized particles
Calibration bead size
0.1
Report type
Not Reported
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
Report size (nm)
200
|
||||||||
EV200049 | 1/2 | Homo sapiens | placental tissue culture supernatrant |
DG (d)(U)C |
Bergamelli, Mathilde | 2021 | 100% | |
Study summaryFull title
All authors
Mathilde Bergamelli, Hélène Martin, Mélinda Bénard, Jérôme Ausseil, Jean-Michel Mansuy, Ilse Hurbain, Maïlys Mouysset, Marion Groussolles, Géraldine Cartron, Yann Tanguy le Gac, Nathalie Moinard, Elsa Suberbielle, Jacques Izopet, Charlotte Tscherning, Graça Raposo, Daniel Gonzalez-Dunia, Gisela D'Angelo, Cécile E Malnou
Journal
Front Cell Dev Biol
Abstract
Extracellular vesicles (EVs) have increasingly been recognized as key players in a wide variety of p (show more...)
EV-METRIC
100% (50th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
placental tissue culture supernatrant
Sample origin
Control condition
Focus vesicles
Other / small extracellular vesicles
Separation protocol
Separation protocol
DG
(d)(U)C Protein markers
EV: CD29/ CD63/ CD81/ CD44/ CD326/ CD9
non-EV: Calreticulin Proteomics
no
EV density (g/ml)
1.103
Show all info
Study aim
New methodological development
Sample
Species
Homo sapiens
Sample Type
placental tissue culture supernatrant
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
3
Lowest density fraction
10%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
10
Sample volume (mL)
1
Orientation
Bottom-up
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1.7
Fraction processing
Centrifugation
Pelleting: volume per fraction
25
Pelleting: duration (min)
60
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63
Not detected EV-associated proteins
CD81/ CD9
Not detected contaminants
Calreticulin
Detected EV-associated proteins
CD9/ CD29/ CD44/ CD326/ CD81/ CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
143
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 1.00E+08
Particle analysis: flow cytometry
Flow cytometer type
mascquant VYB
Hardware adjustment
Use of calibration beads FITC positive, of different size (500, 240, 200 and 160 nm) and granulosity that allow bead population separation and calibration of the cytometer , creation of a gate on 200 nm and smaller events
Calibration bead size
0.16
EV concentration
Yes
EM
EM-type
Immuno-EM/ Transmission-EM
EM protein
CD63
Image type
Close-up, Wide-field
Report size (nm)
95
|
||||||||
EV200049 | 2/2 | Homo sapiens | placental tissue culture supernatrant |
DG (d)(U)C |
Bergamelli, Mathilde | 2021 | 100% | |
Study summaryFull title
All authors
Mathilde Bergamelli, Hélène Martin, Mélinda Bénard, Jérôme Ausseil, Jean-Michel Mansuy, Ilse Hurbain, Maïlys Mouysset, Marion Groussolles, Géraldine Cartron, Yann Tanguy le Gac, Nathalie Moinard, Elsa Suberbielle, Jacques Izopet, Charlotte Tscherning, Graça Raposo, Daniel Gonzalez-Dunia, Gisela D'Angelo, Cécile E Malnou
Journal
Front Cell Dev Biol
Abstract
Extracellular vesicles (EVs) have increasingly been recognized as key players in a wide variety of p (show more...)
EV-METRIC
100% (50th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
placental tissue culture supernatrant
Sample origin
in vitro hCMV infected placental tissue
Focus vesicles
Other / small extracellular vesicles
Separation protocol
Separation protocol
DG
(d)(U)C Protein markers
EV: CD29/ CD63/ CD81/ CD44/ CD326/ CD9
non-EV: Calreticulin Proteomics
no
EV density (g/ml)
1.103
Show all info
Study aim
New methodological development
Sample
Species
Homo sapiens
Sample Type
placental tissue culture supernatrant
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
3
Lowest density fraction
10%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
10
Sample volume (mL)
1
Orientation
Bottom-up
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1.7
Fraction processing
Centrifugation
Pelleting: volume per fraction
25
Pelleting: duration (min)
60
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63
Not detected EV-associated proteins
CD63/ CD9
Not detected contaminants
Calreticulin
Detected EV-associated proteins
CD9/ CD29/ CD44/ CD326/ CD81/ CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
Particle analysis: flow cytometry
Flow cytometer type
mascquant VYB
Hardware adjustment
Use of calibration beads FITC positive, of different size (500, 240, 200 and 160 nm) and granulosity that allow bead population separation and calibration of the cytometer , creation of a gate on 200 nm and smaller events
Calibration bead size
0.16
Report type
Mean
Reported size (nm)
140
EV concentration
Yes
EM
EM-type
Immuno-EM/ Transmission-EM
EM protein
CD63
Image type
Close-up, Wide-field
Report size (nm)
100
|
||||||||
EV200010 | 4/4 | Homo sapiens | Blood plasma |
DG (d)(U)C SEC |
Kuypers, Sören | 2021 | 100% | |
Study summaryFull title
All authors
Sören Kuypers, Nick Smisdom, Isabel Pintelon, Jean-Pierre Timmermans, Marcel Ameloot, Luc Michiels, Jelle Hendrix, Baharak Hosseinkhani
Journal
Small
Abstract
Extracellular vesicles (EV) are biological nanoparticles that play an important role in cell-to-cell (show more...)
EV-METRIC
100% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Blood plasma
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
(d)(U)C SEC Protein markers
EV: ICAM/ CD63/ CD9/ ANXA2
non-EV: APOA1 Proteomics
no
EV density (g/ml)
1.1
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Pelleting performed
No
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
1
Orientation
Top-down
Rotor type
SW 28.1
Speed (g)
100000
Duration (min)
1451
Fraction volume (mL)
1
Fraction processing
Size-exclusion chromatography
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
1-6
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
CD9/ ANXA2
Not detected contaminants
APOA1
Detected EV-associated proteins
CD9/ CD63/ ICAM
Not detected contaminants
APOA1
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
100-200
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
100-200
|
||||||||
EV190096 | 1/2 | Bos taurus | skim milk |
acetic acid treatment DG (d)(U)C Filtration |
Mukhopadhya, Anindya | 2021 | 100% | |
Study summaryFull title
All authors
Anindya Mukhopadhya, Jessie Santoro, Barry Moran, Zivile Useckaite, Lorraine O'Driscoll
Journal
Food Chem.
Abstract
Many infants are fed infant milk formula (IMF). However, IMF production from skim milk (SM) involves (show more...)
EV-METRIC
100% (50th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
skim milk
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
acetic acid treatment
DG (d)(U)C Filtration Protein markers
EV: TSG101/ CD63/ CD81/ HLADR/ ADAM10/ CD9
non-EV: Actinin4 Proteomics
no
EV density (g/ml)
1.15
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
skim milk
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g Equal to or above 150,000 g Between 50,000 g and 100,000 g Pelleting performed
No
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
5
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
17
Sample volume (mL)
2.33
Orientation
Bottom-up
Rotor type
Type 70.1Ti
Speed (g)
186000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
9
Pelleting: duration (min)
90
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
110000
Filtration steps
0.45µm > x > 0.22µm,
Other
Name other separation method
acetic acid treatment
Other
Name other separation method
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD63/ TSG101
Not detected EV-associated proteins
Detected contaminants
Not detected contaminants
Actinin4
Flow cytometry
Type of Flow cytometry
AMNIS ImageStreamX Mark II Flow Cytometer
Calibration bead size
none
Detected EV-associated proteins
CD63/ CD9/ CD81/ ADAM10/ HLADR
Not detected EV-associated proteins
Detected contaminants
Not detected contaminants
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
160
EV concentration
Yes
|
||||||||
EV190096 | 2/2 | Bos taurus | powdered infant milk formula |
acetic acid treatment DG (d)(U)C Filtration |
Mukhopadhya, Anindya | 2021 | 100% | |
Study summaryFull title
All authors
Anindya Mukhopadhya, Jessie Santoro, Barry Moran, Zivile Useckaite, Lorraine O'Driscoll
Journal
Food Chem.
Abstract
Many infants are fed infant milk formula (IMF). However, IMF production from skim milk (SM) involves (show more...)
EV-METRIC
100% (50th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
powdered infant milk formula
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
acetic acid treatment
DG (d)(U)C Filtration Protein markers
EV: TSG101/ CD63/ CD81/ HLADR/ ADAM10/ CD9
non-EV: Actinin4 Proteomics
no
EV density (g/ml)
1.15
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
powdered infant milk formula
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g Equal to or above 150,000 g Between 50,000 g and 100,000 g Pelleting performed
No
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
5
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
17
Sample volume (mL)
2.33
Orientation
Bottom-up
Rotor type
Type 70.1Ti
Speed (g)
186000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
9
Pelleting: duration (min)
90
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
110000
Filtration steps
0.45µm > x > 0.22µm,
Other
Name other separation method
acetic acid treatment
Other
Name other separation method
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD63/ TSG101
Not detected EV-associated proteins
Detected contaminants
Not detected contaminants
Actinin4
Flow cytometry
Type of Flow cytometry
AMNIS ImageStreamX Mark II Flow Cytometer
Calibration bead size
none
Detected EV-associated proteins
CD63/ CD9/ CD81/ ADAM10/ HLADR
Not detected EV-associated proteins
Detected contaminants
Not detected contaminants
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
175
EV concentration
Yes
|
||||||||
EV210262 | 1/2 | Homo sapiens | hiPSC-derived RPE |
(d)(U)C DG Filtration |
Flores-Bellver, Miguel | 2021 | 89% | |
Study summaryFull title
All authors
Miguel Flores-Bellver, Jason Mighty, Silvia Aparicio-Domingo, Kang V Li, Cui Shi, Jing Zhou, Hannah Cobb, Patrick McGrath, German Michelis, Patricia Lenhart, Ganna Bilousova, Søren Heissel, Michael J Rudy, Christina Coughlan 10 , Andrew E Goodspeed 11 12 , S Patricia Becerra, Stephen Redenti 13 , M Valeria Canto-Soler
Journal
J Extracell Vesicles
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness worldwide. Drusen are key con (show more...)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Density gradient Filtration Adj. k-factor
7.66 (washing)
Protein markers
EV: CD63/ Flotillin-1/ HSP70/ HSP90/ TSG101
non-EV: GM130 Proteomics
yes
EV density (g/ml)
1.064
Show all info
Study aim
Mechanism of uptake/transfer/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
hiPSC-derived RPE
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Cell viability (%)
99
Cell count
8400000
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Type 70.1Ti
Pelleting: speed (g)
120000
Wash: volume per pellet (ml)
10
Wash: time (min)
90
Wash: Rotor Type
Type 70.1Ti
Wash: speed (g)
120000
Wash: adjusted k-factor
7.66E
Density gradient
Only used for validation of main results
Yes
Type
Continuous
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
10
Sample volume (mL)
1
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
141000
Duration (min)
3600
Fraction volume (mL)
0.5
Fraction processing
Centrifugation
Pelleting: volume per fraction
9
Pelleting: speed (g)
120000
Pelleting: adjusted k-factor
7.66E
Filtration steps
0.2 or 0.22 ?m
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Yield (µg)
15
Western Blot
Detected EV-associated proteins
CD63/ Flotillin-1/ HSP70/ HSP90/ TSG101
Detected contaminants
GM130
Proteomics database
Yes
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
120
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 4.00e+10
EM
EM-type
Transmission-EM
Image type
Close-up
Report size (nm)
120
|
||||||||
EV210262 | 2/2 | Homo sapiens | hiPSC-derived RPE |
(d)(U)C DG Filtration |
Flores-Bellver, Miguel | 2021 | 89% | |
Study summaryFull title
All authors
Miguel Flores-Bellver, Jason Mighty, Silvia Aparicio-Domingo, Kang V Li, Cui Shi, Jing Zhou, Hannah Cobb, Patrick McGrath, German Michelis, Patricia Lenhart, Ganna Bilousova, Søren Heissel, Michael J Rudy, Christina Coughlan 10 , Andrew E Goodspeed 11 12 , S Patricia Becerra, Stephen Redenti 13 , M Valeria Canto-Soler
Journal
J Extracell Vesicles
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness worldwide. Drusen are key con (show more...)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Cigarette smoke treatment
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Density gradient Filtration Adj. k-factor
7.66 (washing)
Protein markers
EV: CD63/ Flotillin-1/ HSP70/ HSP90/ TSG101
non-EV: GM130 Proteomics
yes
EV density (g/ml)
1.064
Show all info
Study aim
Mechanism of uptake/transfer/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
hiPSC-derived RPE
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Cell viability (%)
99
Cell count
8400000
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Type 70.1Ti
Pelleting: speed (g)
120000
Wash: volume per pellet (ml)
10
Wash: time (min)
90
Wash: Rotor Type
Type 70.1Ti
Wash: speed (g)
120000
Wash: adjusted k-factor
7.66E
Density gradient
Only used for validation of main results
Yes
Type
Continuous
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
10
Sample volume (mL)
1
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
141000
Duration (min)
3600
Fraction volume (mL)
0.5
Fraction processing
Centrifugation
Pelleting: volume per fraction
9
Pelleting: speed (g)
120000
Pelleting: adjusted k-factor
7.66E
Filtration steps
0.2 or 0.22 ?m
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Yield (µg)
15
Western Blot
Detected EV-associated proteins
CD63/ Flotillin-1/ HSP70/ HSP90/ TSG101
Detected contaminants
GM130
Proteomics database
Yes
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
120
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 4.70e+11
EM
EM-type
Transmission-EM
Image type
Close-up
Report size (nm)
120
|
||||||||
EV210261 | 1/8 | Homo sapiens | SW620 |
(d)(U)C DG |
Rai, Alin | 2021 | 89% | |
Study summaryFull title
Proteomic dissection of large extracellular vesicle surfaceome unravels interactive surface platform
All authors
Alin Rai, Haoyun Fang, Bethany Claridge, Richard J. Simpson, and David W Greening
Journal
J Extracell Vesicles
Abstract
The extracellular vesicle (EV) surface proteome (surfaceome) acts as a fundamental signalling gatewa (show more...)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Density gradient Protein markers
EV: Alix/ CD63/ TSG101
non-EV: None Proteomics
yes
EV density (g/ml)
1.07-1.11
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-?related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SW620
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Pelleting performed
Yes
Pelleting: time(min)
30
Pelleting: rotor type
SW 28
Pelleting: speed (g)
10000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
0.5
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
2
Pelleting: speed (g)
10000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
Alix/ CD63/ TSG101
Proteomics database
Yes
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
mean and size range/distribution
Reported size (nm)
166 mean, range 50-250 nm
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
|
||||||||
EV210261 | 2/8 | Homo sapiens | SW620 |
(d)(U)C DG |
Rai, Alin | 2021 | 89% | |
Study summaryFull title
Proteomic dissection of large extracellular vesicle surfaceome unravels interactive surface platform
All authors
Alin Rai, Haoyun Fang, Bethany Claridge, Richard J. Simpson, and David W Greening
Journal
J Extracell Vesicles
Abstract
The extracellular vesicle (EV) surface proteome (surfaceome) acts as a fundamental signalling gatewa (show more...)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Density gradient Protein markers
EV: CD63
non-EV: None Proteomics
yes
EV density (g/ml)
1.07-1.11
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-?related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SW620
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
0.5
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
2
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
CD63
Proteomics database
Yes
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
mean and size range/distribution
Reported size (nm)
50-500
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
Report size (nm)
310
|
||||||||
EV210043 | 2/2 | Homo sapiens | hcMEC/D3 |
DG (d)(U)C UF Filtration |
Fikatas, Antonios | 2021 | 89% | |
Study summaryFull title
All authors
Antonios Fikatas, Jonas Dehairs, Sam Noppen, Jordi Doijen, Frank Vanderhoydonc, Eef Meyen, Johannes V Swinnen, Christophe Pannecouque, Dominique Schols
Journal
Viruses
Abstract
To date, no vaccines or antivirals are available against Zika virus (ZIKV). In addition, the mechani (show more...)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
ZIKV-infected
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DG
(d)(U)C UF Filtration Protein markers
EV: TSG101/ Alix/ CD63
non-EV: Calnexin Proteomics
no
EV density (g/ml)
1.06-1.16
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
hcMEC/D3
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Cell viability (%)
NA
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Pelleting performed
Yes
Pelleting: time(min)
1260
Pelleting: rotor type
TH-641
Pelleting: speed (g)
100 000
Wash: volume per pellet (ml)
10
Wash: time (min)
180
Wash: Rotor Type
TH-641
Wash: speed (g)
100 000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
10
Sample volume (mL)
1
Orientation
Top-down
Rotor type
TH-641
Speed (g)
100 000
Duration (min)
1080
Fraction volume (mL)
1,5
Fraction processing
None
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Detected EV-associated proteins
CD63/ TSG101/ Alix
Not detected contaminants
Calnexin
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
175
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 1,40E+08
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
130
|
||||||||
EV210021 | 1/2 | Rattus norvegicus | Primary rat hepatocytes |
(d)(U)C Filtration DG |
Mleczko, J.E. | 2021 | 89% | |
Study summaryFull title
All authors
J.E. Mleczko, F. Royo, I. Samuelson, M. Clos-Garcia, C. Williams, D. Cabrera, M. Azparren-Angulo, E. Gonzalez, C. Garcia-Vallicrosa, S. Carobbio, S. Rodriguez-Cuenca, M. Azkargorta, S. van Liempd, F. Elortza, A. Vidal-Puig, S. Mora, J.M. Falcon-Perez
Journal
Journal of Extracellular Biology
Abstract
The composition of extracellular vesicles (EVs) is altered in many pathological condi-tions, and the (show more...)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Obese hepatocytes
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Filtration Density gradient Protein markers
EV: TSG101/ CD63/ CD81/ HSP90/ Alix/ Flotillin1/ HSP70
non-EV: GRP78/ COXIV/ Parp Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Rattus norvegicus
Sample Type
Cell culture supernatant
EV-producing cells
Primary rat hepatocytes
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell count
300000000
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Between 50,000 g and 100,000 g Pelleting performed
Yes
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
45
Wash: time (min)
90
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
2
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
16,5
Sample volume (mL)
5,5
Orientation
Top-down
Speed (g)
100000
Duration (min)
160
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
Not repo
Pelleting: duration (min)
60
Pelleting: rotor type
Not reported
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Detected EV-associated proteins
Flotillin1/ CD63/ HSP90/ TSG101/ HSP70/ Alix/ CD81
Not detected EV-associated proteins
HSP90/ HSP70/ CD81/ Flotillin1/ TSG101/ CD63/ Alix
Detected contaminants
COXIV/ GRP78/ Parp
Not detected contaminants
COXIV/ GRP78/ Parp
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-400
EV concentration
Yes
Particle yield
as number of particles per million cells: 2
EM
EM-type
Cryo-EM
Image type
Close-up
|
||||||||
EV210021 | 2/2 | Rattus norvegicus | Primary rat hepatocytes |
(d)(U)C Filtration |
Mleczko, J.E. | 2021 | 89% | |
Study summaryFull title
All authors
J.E. Mleczko, F. Royo, I. Samuelson, M. Clos-Garcia, C. Williams, D. Cabrera, M. Azparren-Angulo, E. Gonzalez, C. Garcia-Vallicrosa, S. Carobbio, S. Rodriguez-Cuenca, M. Azkargorta, S. van Liempd, F. Elortza, A. Vidal-Puig, S. Mora, J.M. Falcon-Perez
Journal
Journal of Extracellular Biology
Abstract
The composition of extracellular vesicles (EVs) is altered in many pathological condi-tions, and the (show more...)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Lean hepatocytes
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Filtration Protein markers
EV: TSG101/ CD63/ CD81/ HSP90/ Alix/ Flotillin1/ HSP70
non-EV: Grp78/ GRP78/ COXIV/ Parp Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Rattus norvegicus
Sample Type
Cell culture supernatant
EV-producing cells
Primary rat hepatocytes
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell count
300000000
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
45
Wash: time (min)
90
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
2
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
16,5
Sample volume (mL)
5,5
Orientation
Top-down
Speed (g)
100000
Duration (min)
160
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
Not repo
Pelleting: duration (min)
60
Pelleting: rotor type
Not reported
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Detected EV-associated proteins
Flotillin1/ CD63/ HSP90/ TSG101/ HSP70/ Alix/ CD81
Not detected EV-associated proteins
HSP90/ HSP70/ CD81/ Flotillin1/ TSG101/ CD63/ Alix
Detected contaminants
COXIV/ GRP78/ Parp
Not detected contaminants
COXIV/ Grp78/ Parp
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-400
EV concentration
Yes
Particle yield
as number of particles per million cells: 1,8
EM
EM-type
Cryo-EM
Image type
Close-up
|
||||||||
EV200159 | 2/4 | Homo sapiens | Expi293F |
DG (d)(U)C |
Lázaro-Ibáñez, Elisa | 2021 | 89% | |
Study summaryFull title
All authors
Elisa Lázaro-Ibáñez, Farid N Faruqu, Amer F Saleh, Andreia M Silva, Julie Tzu-Wen Wang, Janusz Rak, Khuloud T Al-Jamal, Niek Dekker
Journal
ACS Nano
Abstract
The ability to track extracellular vesicles (EVs) in vivo without influencing their biodistribution (show more...)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
CD63-mCherry
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
Density gradient
(Differential) (ultra)centrifugation Protein markers
EV: CD63/ CD81/ Alix/ Flotillin1/ CD9/ mcherry
non-EV: Lamin B1 Proteomics
no
EV density (g/ml)
1.10 - 1.13
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods/Mechanism of uptake/transfer
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
85
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
9
Lowest density fraction
10%
Highest density fraction
50%
Total gradient volume, incl. sample (mL)
17
Sample volume (mL)
1
Orientation
Bottom-up
Rotor type
SW 32.1 Ti
Speed (g)
120000
Duration (min)
960
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
94
Pelleting: duration (min)
180
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
120000
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
Flotillin1/ CD9/ CD63/ mCherry/ Alix/ CD81
Not detected contaminants
Lamin B1
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
126-154
EV concentration
Yes
Particle yield
particles per milliliter of final volume of sample;Yes, other: 5,00E+13
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
56
|
||||||||
EV200159 | 3/4 | Homo sapiens | Expi293F |
DG (d)(U)C |
Lázaro-Ibáñez, Elisa | 2021 | 89% | |
Study summaryFull title
All authors
Elisa Lázaro-Ibáñez, Farid N Faruqu, Amer F Saleh, Andreia M Silva, Julie Tzu-Wen Wang, Janusz Rak, Khuloud T Al-Jamal, Niek Dekker
Journal
ACS Nano
Abstract
The ability to track extracellular vesicles (EVs) in vivo without influencing their biodistribution (show more...)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
CD63-FLuc
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
Density gradient
(Differential) (ultra)centrifugation Protein markers
EV: CD63/ CD81/ Alix/ Flotillin1/ CD9
non-EV: Lamin B1 Proteomics
no
EV density (g/ml)
1.10 - 1.13
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods/Mechanism of uptake/transfer
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
85
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
9
Lowest density fraction
10%
Highest density fraction
50%
Total gradient volume, incl. sample (mL)
17
Sample volume (mL)
1
Orientation
Bottom-up
Rotor type
SW 32.1 Ti
Speed (g)
120000
Duration (min)
960
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
94
Pelleting: duration (min)
180
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
120000
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
Flotillin1/ Alix/ Firely luciferase/ CD9/ CD63/ CD81
Not detected contaminants
Lamin B1
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
126-154
EV concentration
Yes
Particle yield
particles per milliliter of final volume of sample;Yes, other: 1,50E+13
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
80
|
||||||||
EV200157 | 5/10 | Homo sapiens | MDA-MB-468 |
(d)(U)C SEC (non-commercial) Polymer-based precipitation DG |
Martínez-Greene, Juan A | 2021 | 89% | |
Study summaryFull title
All authors
Juan A Martínez-Greene, Karina Hernández-Ortega, Ricardo Quiroz-Baez, Osbaldo Resendis-Antonio, Israel Pichardo-Casas, David A Sinclair, Bogdan Budnik, Alfredo Hidalgo-Miranda, Eileen Uribe-Querol, María Del Pilar Ramos-Godínez, Eduardo Martínez-Martínez
Journal
J Extracell Vesicles
Abstract
The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in (show more...)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial) Polymer-based precipitation Density gradient Protein markers
EV: CD9/ CD63/ CD81/ Alix/ TSG101/ ANXA2/ ANXA5
non-EV: Albumin Proteomics
yes
EV density (g/ml)
1.08-1.15
Show all info
Study aim
New methodological development/Biomarker/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA-MB-468
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
95
Cell count
1.50E+06
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
39
Pelleting: rotor type
TLA-100.3
Pelleting: speed (g)
118000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
3
Lowest density fraction
10%
Highest density fraction
30%
Total gradient volume, incl. sample (mL)
5
Sample volume (mL)
2.5
Orientation
Bottom-up
Rotor type
SW 55 Ti
Speed (g)
200000
Duration (min)
60
Fraction volume (mL)
0.49
Fraction processing
Centrifugation
Pelleting: volume per fraction
2.8
Pelleting: duration (min)
39
Pelleting: rotor type
TLA-100.3
Pelleting: speed (g)
118000
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
1
Resin type
Sepharose CL-2B
Other
Name other separation method
Polymer-based precipitation
EV-subtype
Distinction between multiple subtypes
SEC fraction
Used subtypes
F5-10
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD9/ CD63/ CD81/ Alix/ TSG101/ ANXA2/ ANXA5
Detected contaminants
Albumin
Proteomics database
Yes: ProteomeXchange
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
148.9
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 4.13E+11
EM
EM-type
Transmission-EM
Image type
Wide-field
|
||||||||
EV200157 | 6/10 | Homo sapiens | MDA-MB-468 |
(d)(U)C SEC (non-commercial) Polymer-based precipitation DG |
Martínez-Greene, Juan A | 2021 | 89% | |
Study summaryFull title
All authors
Juan A Martínez-Greene, Karina Hernández-Ortega, Ricardo Quiroz-Baez, Osbaldo Resendis-Antonio, Israel Pichardo-Casas, David A Sinclair, Bogdan Budnik, Alfredo Hidalgo-Miranda, Eileen Uribe-Querol, María Del Pilar Ramos-Godínez, Eduardo Martínez-Martínez
Journal
J Extracell Vesicles
Abstract
The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in (show more...)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial) Polymer-based precipitation Density gradient Protein markers
EV: CD9/ CD63/ CD81/ Alix/ TSG101/ ANXA2/ ANXA5
non-EV: Albumin Proteomics
yes
EV density (g/ml)
1.08-1.15
Show all info
Study aim
New methodological development/Biomarker/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA-MB-468
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
95
Cell count
1.50E+06
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
39
Pelleting: rotor type
TLA-100.3
Pelleting: speed (g)
118000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
3
Lowest density fraction
10%
Highest density fraction
30%
Total gradient volume, incl. sample (mL)
5
Sample volume (mL)
2.5
Orientation
Bottom-up
Rotor type
SW 55 Ti
Speed (g)
200000
Duration (min)
60
Fraction volume (mL)
0.49
Fraction processing
Centrifugation
Pelleting: volume per fraction
2.8
Pelleting: duration (min)
39
Pelleting: rotor type
TLA-100.3
Pelleting: speed (g)
118000
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
1
Resin type
Sepharose CL-2B
Other
Name other separation method
Polymer-based precipitation
EV-subtype
Distinction between multiple subtypes
SEC fraction
Used subtypes
F11-16
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD9/ CD63/ CD81/ ANXA2/ ANXA5
Not detected EV-associated proteins
Alix/ TSG101
Detected contaminants
Albumin
Proteomics database
Yes: ProteomeXchange
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
124
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 4.29E+11
EM
EM-type
Transmission-EM
Image type
Wide-field
|
||||||||
EV210179 | 2/6 | Mus musculus | Renca |
(d)(U)C DG |
Samoylenko, Anatoliy | 2021 | 88% | |
Study summaryFull title
All authors
Anatoliy Samoylenko, Martin Kögler, Artem Zhyvolozhnyi, Olha Makieieva, Geneviève Bart, Sampson S. Andoh, Matthieu Roussey, Seppo J. Vainio, and Jussi Hiltunen
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) represent a diverse group of small membrane-encapsulated particles invo (show more...)
EV-METRIC
88% (98th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
DG Protein markers
EV: TSG101/ Alix/ CD9/ CD81
non-EV: Argonaute2/ GM130 Proteomics
no
EV density (g/ml)
1.07-1.12
Show all info
Study aim
New methodological development/Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
Renca
EV-harvesting Medium
Serum free medium
Cell viability (%)
97
Cell count
Not reported
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Density gradient
Type
Continuous
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
2
Orientation
Top-down
Rotor type
TH-641
Speed (g)
100000
Duration (min)
900
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
10
Pelleting: duration (min)
900
Pelleting: rotor type
TH-641
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
Yes, per cell 0.17
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ Alix/ CD81
Not detected contaminants
GM130/ Argonaute2
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
108
EV concentration
Yes
Particle yield
Yes, as number of particles per million cells 9.96E+06
EM
EM-type
Immuno-EM/ Transmission-EM
EM protein
CD63
Image type
Wide-field
Report size (nm)
30-200
|
||||||||
EV210179 | 4/6 | Mus musculus | Renca |
(d)(U)C DG |
Samoylenko, Anatoliy | 2021 | 88% | |
Study summaryFull title
All authors
Anatoliy Samoylenko, Martin Kögler, Artem Zhyvolozhnyi, Olha Makieieva, Geneviève Bart, Sampson S. Andoh, Matthieu Roussey, Seppo J. Vainio, and Jussi Hiltunen
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) represent a diverse group of small membrane-encapsulated particles invo (show more...)
EV-METRIC
88% (98th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
hypoxia
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
DG Protein markers
EV: Alix/ TSG101/ CD9/ CD81
non-EV: Argonaute2/ GM130 Proteomics
no
EV density (g/ml)
1.07-1.12
Show all info
Study aim
New methodological development/Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
Renca
EV-harvesting Medium
Serum free medium
Cell viability (%)
97
Cell count
Not reported
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Density gradient
Type
Continuous
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
2
Orientation
Top-down
Rotor type
TH-641
Speed (g)
100000
Duration (min)
900
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
10
Pelleting: duration (min)
900
Pelleting: rotor type
TH-641
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
Yes, per cell 0.185
Western Blot
Detected EV-associated proteins
Alix/ CD9/ TSG101/ CD81
Not detected contaminants
GM130/ Argonaute2
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
128
EV concentration
Yes
Particle yield
Yes, as number of particles per million cells 2.10E+07
EM
EM-type
Immuno-EM/ Transmission-EM
EM protein
CD63
Image type
Wide-field
Report size (nm)
30-200
|
||||||||
EV200081 | 1/4 | Homo sapiens | Blood plasma |
DG SEC (non-commercial) |
Vergauwen, Glenn | 2021 | 88% | |
Study summaryFull title
All authors
Glenn Vergauwen, Joeri Tulkens, Cláudio Pinheiro, Francisco Avila Cobos, Sándor Dedeyne, Marie-Angélique De Scheerder, Linos Vandekerckhove, Francis Impens, Ilkka Miinalainen, Geert Braems, Kris Gevaert, Pieter Mestdagh, Jo Vandesompele, Hannelore Denys, Olivier De Wever, An Hendrix
Journal
J Extracell Vesicles
Abstract
Separating extracellular vesicles (EV) from blood plasma is challenging and complicates their biolog (show more...)
EV-METRIC
88% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Blood plasma
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
Density gradient
Size-exclusion chromatography (non-commercial) Protein markers
EV: Flotillin1/ CD9
non-EV: APOB/ APOA1 Proteomics
no
EV density (g/ml)
1.09-1.10
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
1
Orientation
Top-down
Rotor type
SW 32.1 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Size-exclusion chromatography
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
2
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
Flotillin1
Not detected contaminants
APOA1
ELISA
Detected EV-associated proteins
CD9
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
50-250
|
||||||||
EV200102 | 4/7 | Homo sapiens | Blood plasma | DG | Tóth, Eszter | 2021 | 86% | |
Study summaryFull title
All authors
Eszter Á Tóth, Lilla Turiák, Tamás Visnovitz, Csaba Cserép, Anett Mázló, Barbara W Sódar, András I Försönits, Gábor Petővári, Anna Sebestyén, Zsolt Komlósi, László Drahos, Ágnes Kittel, György Nagy, Attila Bácsi, Ádám Dénes, Yong Song Gho, Katalin É Szabó-Taylor, Edit I Buzás
Journal
J Extracell Vesicles
Abstract
In this study we tested whether a protein corona is formed around extracellular vesicles (EVs) in bl (show more...)
EV-METRIC
86% (98th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Blood plasma
Sample origin
Control: EV-depleted plasma, spiked with THP1 EVs
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
Density gradient
Protein markers
EV: CD63/ Phosphatydilserine
non-EV: None Proteomics
yes
EV density (g/ml)
1.10-1.15
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
4.5
Sample volume (mL)
0.5
Orientation
Top-down
Rotor type
MLS-50
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
0.5
Fraction processing
Centrifugation
Pelleting: volume per fraction
2
Pelleting: duration (min)
80
Pelleting: rotor type
FA-45-24-11
Pelleting: speed (g)
12500
Characterization: Protein analysis
Protein Concentration Method
microBCA
Flow cytometry
Type of Flow cytometry
FACS Calibur
Calibration bead size
The vesicular gate was set using Megamix Beads (Bi
Detected EV-associated proteins
Phosphatydilserine
Proteomics database
Yes:
Characterization: Lipid analysis
No
Characterization: Particle analysis
Particle analysis: flow cytometry
Flow cytometer type
FACS Calibur
Hardware adjustment
Calibration bead size
0.160;0.200;0.240;0.500
Report type
Not Reported
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210209 | 6/7 | Homo sapiens | VERO-E6 |
(d)(U)C DG |
Xie F | 2021 | 78% | |
Study summaryFull title
All authors
Xie F, Su P, Pan T, Zhou X, Li H, Huang H, Wang A, Wang F, Huang J, Yan H, Zeng L, Zhang L, Zhou F
Journal
Adv Mater
Abstract
Angiotensin converting enzyme 2 (ACE2) is a key receptor present on cell surfaces that directly inte (show more...)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Density gradient Protein markers
EV: Alix/ TSG101/ ACE2
non-EV: None Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
VERO-E6
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
120000
Wash: volume per pellet (ml)
36mL/ultracentrifuge tube
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
120000
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
5
Lowest density fraction
5%
Highest density fraction
60%
Orientation
Top-down
Speed (g)
100,000g
Duration (min)
1080
Other
Name other separation method
Density gradient
EV-subtype
Distinction between multiple subtypes
Size
Used subtypes
30-200 nm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
TSG101/ Alix/ ACE2
ELISA
Detected EV-associated proteins
ACE2
Fluorescent NTA
Antibody details provided?
No
Detected EV-associated proteins
ACE2-GFP
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Size range/distribution
Used for determining EV concentration?
Yes
EM
EM-type
Transmission-EM/ Immuno-EM
EM protein
ACE2/ TSG101
Image type
Close-up
|
||||||||
EV210180 | 1/2 | Homo sapiens | SW620 | (d)(U)C | Santos, Mark F | 2021 | 78% | |
Study summaryFull title
All authors
Mark F. Santos, Germana Rappa, Jana Karbanová, Simona Fontana, Maria Antonietta Di Bella, Marshall R. Pope, Barbara Parrino, Stella Maria Cascioferro, Giulio Vistoli, Patrizia Diana, Girolamo Cirrincione, Goffredo O. Arena, Gyunghwi Woo, Kevin Huang, Tony Huynh, Marta Moschetti, Riccardo Alessandro, Denis Corbeil, Aurelio Lorico
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) are mediators of intercellular communication under both healthy and pat (show more...)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Protein markers
EV: CD63/ CD81/ Alix/ CD9
non-EV: Histone H1/ Calnexin Proteomics
no
Show all info
Study aim
Function/Mechanism of uptake/transfer
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SW620
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Equal to or above 150,000 g Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
SW 55 Ti
Pelleting: speed (g)
200000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
CD9/ CD63/ Alix/ CD81
Not detected contaminants
Histone H1/ Calnexin
Detected EV-associated proteins
CD9/ CD63/ CD81
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
150
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 4.00E+10
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
60-130
|
||||||||
EV210180 | 2/2 | Homo sapiens | FEMX-I | (d)(U)C | Santos, Mark F | 2021 | 78% | |
Study summaryFull title
All authors
Mark F. Santos, Germana Rappa, Jana Karbanová, Simona Fontana, Maria Antonietta Di Bella, Marshall R. Pope, Barbara Parrino, Stella Maria Cascioferro, Giulio Vistoli, Patrizia Diana, Girolamo Cirrincione, Goffredo O. Arena, Gyunghwi Woo, Kevin Huang, Tony Huynh, Marta Moschetti, Riccardo Alessandro, Denis Corbeil, Aurelio Lorico
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) are mediators of intercellular communication under both healthy and pat (show more...)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
CD9-GFP expression
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Protein markers
EV: CD63/ CD81/ Alix/ CD9
non-EV: Histone H1/ Calnexin Proteomics
no
Show all info
Study aim
Function/Mechanism of uptake/transfer
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
FEMX-I
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Equal to or above 150,000 g Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
SW 55 Ti
Pelleting: speed (g)
200000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
CD9/ CD63/ Alix/ CD81
Not detected contaminants
Histone H1/ Calnexin
Detected EV-associated proteins
CD9/ CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
120
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 2.00E+10
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
40-100
|
||||||||
EV210166 | 5/6 | Homo sapiens | Blood plasma | (d)(U)C | Krishnamachary, Balaji | 2021 | 78% | |
Study summaryFull title
All authors
Balaji Krishnamachary, Christine Cook, Ashok Kumar, Leslie Spikes, Prabhakar Chalise, Navneet K Dhillon
Journal
J Extracell Vesicles
Abstract
Coronavirus disease-2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavir (show more...)
EV-METRIC
78% (98th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Blood plasma
Sample origin
COVID19
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Protein markers
EV: TSG101/ Alix/ CD63/ CD81/ Integrin beta1/ Flotillin1/ CD9
non-EV: ApoE/ GM130 Proteomics
no
Show all info
Study aim
Function/Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
15
Pelleting: rotor type
FA-45-24-11
Pelleting: speed (g)
20000
Wash: volume per pellet (ml)
1
Wash: time (min)
15
Wash: Rotor Type
FA-45-24-11
Wash: speed (g)
20000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
Flotillin1/ Integrin beta1/ CD9/ CD63/ TSG101/ Alix/ CD81
Detected contaminants
ApoE
Not detected contaminants
GM130
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-300
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 7.10E+10
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
100-450
|
||||||||
EV210166 | 6/6 | Homo sapiens | Blood plasma | (d)(U)C | Krishnamachary, Balaji | 2021 | 78% | |
Study summaryFull title
All authors
Balaji Krishnamachary, Christine Cook, Ashok Kumar, Leslie Spikes, Prabhakar Chalise, Navneet K Dhillon
Journal
J Extracell Vesicles
Abstract
Coronavirus disease-2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavir (show more...)
EV-METRIC
78% (98th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Blood plasma
Sample origin
COVID19
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Protein markers
EV: TSG101/ Alix/ CD63/ IL-18R1/ CD81/ IL-6RA/ Integrin beta1/ Flotillin1/ EN-RAGE/ CD9
non-EV: ApoE/ GM130 Proteomics
no
Show all info
Study aim
Function/Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Surespin 630 (17 ml)
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
14
Wash: time (min)
70
Wash: Rotor Type
Surespin 630 (17 ml)
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
Flotillin1/ Alix/ Integrin beta1/ TSG101/ CD9/ CD63/ CD81
Detected contaminants
ApoE
Not detected contaminants
GM130
ELISA
Detected EV-associated proteins
EN-RAGE
Flow cytometry
Detected EV-associated proteins
IL-6RA/ IL-18R1
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-300
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 2.40E+10
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
30-200
|
||||||||
EV210153 | 2/11 | Homo sapiens | 22Rv1 |
(d)(U)C Filtration |
Allelein, Susann | 2021 | 78% | |
Study summaryFull title
All authors
Susann Allelein, Paula Medina-Perez, Ana Leonor Heitor Lopes, Sabrina Rau, Gerd Hause, Andreas Kölsch, Dirk Kuhlmeier
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) have attracted interest due to their ability to provide diagnostic info (show more...)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Filtration Protein markers
EV: TSG101/ Alix/ CD9
non-EV: Calnexin Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
22Rv1
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Surespin 630 (36 ml)
Pelleting: speed (g)
110000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ Alix
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
140
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 1.40E+11
EM
EM-type
Transmission electron microscopy
Image type
Close-up, Wide-field
|
||||||||
EV210143 | 1/6 | Homo sapiens | SKBR3 | (d)(U)C | Martinez-Pacheco, Sarai | 2021 | 78% | |
Study summaryFull title
All authors
Sarai Martinez-Pacheco and Lorraine O’Driscoll
Journal
Cancers
Abstract
To study and exploit extracellular vesicles (EVs) for clinical benefit as biomarkers, therapeutics, (show more...)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Protein markers
EV: CD63/ CD9/ Syntenin
non-EV: Calnexin/ GRP94 Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SKBR3
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
94
Cell count
1.90E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
39
Wash: time (min)
70
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Yield (µg)
Yes, per million cells 0.09
Western Blot
Detected EV-associated proteins
CD9/ CD63/ Syntenin
Not detected contaminants
Calnexin/ GRP94
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
125.7
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 2296296296
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210143 | 2/6 | Homo sapiens | SKBR3 |
PEG precipitation (d)(U)C Filtration |
Martinez-Pacheco, Sarai | 2021 | 78% | |
Study summaryFull title
All authors
Sarai Martinez-Pacheco and Lorraine O’Driscoll
Journal
Cancers
Abstract
To study and exploit extracellular vesicles (EVs) for clinical benefit as biomarkers, therapeutics, (show more...)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
PEG precipitation
(d)(U)C Filtration Protein markers
EV: CD63/ CD9/ Syntenin
non-EV: Calnexin/ GRP94 Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SKBR3
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
94
Cell count
1.90E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
130
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Other
Name other separation method
PEG precipitation
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Yield (µg)
Yes, per cell 0.14
Western Blot
Detected EV-associated proteins
CD9/ CD63/ Syntenin
Not detected contaminants
Calnexin/ GRP94
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
110.2
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 6314814815
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210143 | 3/6 | Homo sapiens | HCC1954 | (d)(U)C | Martinez-Pacheco, Sarai | 2021 | 78% | |
Study summaryFull title
All authors
Sarai Martinez-Pacheco and Lorraine O’Driscoll
Journal
Cancers
Abstract
To study and exploit extracellular vesicles (EVs) for clinical benefit as biomarkers, therapeutics, (show more...)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Protein markers
EV: CD63/ CD9/ Syntenin
non-EV: Calnexin/ GRP94 Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HCC1954
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
93
Cell count
2.10E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
39
Wash: time (min)
70
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Yield (µg)
Yes, per cell 0.03
Western Blot
Detected EV-associated proteins
CD9/ CD63/ Syntenin
Not detected contaminants
Calnexin/ GRP94
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
129.4
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 7703703703
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210143 | 4/6 | Homo sapiens | HCC1954 |
PEG precipitation (d)(U)C Filtration |
Martinez-Pacheco, Sarai | 2021 | 78% | |
Study summaryFull title
All authors
Sarai Martinez-Pacheco and Lorraine O’Driscoll
Journal
Cancers
Abstract
To study and exploit extracellular vesicles (EVs) for clinical benefit as biomarkers, therapeutics, (show more...)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
PEG precipitation
(d)(U)C Filtration Protein markers
EV: CD63/ CD9/ Syntenin
non-EV: Calnexin/ GRP94 Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HCC1954
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
93
Cell count
2.10E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
130
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Other
Name other separation method
PEG precipitation
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Yield (µg)
Yes, per cell 0.1
Western Blot
Detected EV-associated proteins
Syntenin/ CD9/ CD63
Not detected contaminants
Calnexin/ GRP94
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
119.3
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 8518481482
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210143 | 5/6 | Homo sapiens | EFM192A | (d)(U)C | Martinez-Pacheco, Sarai | 2021 | 78% | |
Study summaryFull title
All authors
Sarai Martinez-Pacheco and Lorraine O’Driscoll
Journal
Cancers
Abstract
To study and exploit extracellular vesicles (EVs) for clinical benefit as biomarkers, therapeutics, (show more...)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Protein markers
EV: CD63/ CD9/ Syntenin
non-EV: Calnexin/ GRP94 Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
EFM192A
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
98
Cell count
3.60E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
39
Wash: time (min)
70
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Yield (µg)
Yes, per cell 0.01
Western Blot
Detected EV-associated proteins
Syntenin/ CD63/ CD81
Not detected contaminants
Calnexin/ GRP94
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
131.7
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 727777778
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210143 | 6/6 | Homo sapiens | EFM192A |
PEG precipitation (d)(U)C Filtration |
Martinez-Pacheco, Sarai | 2021 | 78% | |
Study summaryFull title
All authors
Sarai Martinez-Pacheco and Lorraine O’Driscoll
Journal
Cancers
Abstract
To study and exploit extracellular vesicles (EVs) for clinical benefit as biomarkers, therapeutics, (show more...)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
PEG precipitation
(d)(U)C Filtration Protein markers
EV: CD63/ CD9/ Syntenin
non-EV: Calnexin/ GRP94 Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
EFM192A
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
98
Cell count
3.60E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
130
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Other
Name other separation method
PEG precipitation
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Yield (µg)
Yes, per cell 0.11
Western Blot
Detected EV-associated proteins
Syntenin/ CD63/ CD81
Not detected contaminants
Calnexin/ GRP94
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
117.7
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 5018518518
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210126 | 1/9 | Homo sapiens | Expi293F | (d)(U)C | Silva, Andreia;Lázaro-Ibáñez, Elisa | 2021 | 78% | |
Study summaryFull title
All authors
Andreia M. Silva, Elisa Lázaro-Ibáñez, Anders Gunnarsson, Aditya Dhande, George Daaboul, Ben Peacock, Xabier Osteikoetxea, Nikki Salmond, Kristina Pagh Friis, Olga Shatnyeva, Niek Dekker
Journal
J Extracell Vesicles
Abstract
Extracellular Vesicles (EVs) have been intensively explored for therapeutic delivery of proteins. Ho (show more...)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Protein markers
EV: TSG101/ CD63/ CD81/ Alix/ Flotillin1/ CD9
non-EV: calnexin Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
80
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
100
Wash: time (min)
120
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
Flotillin1/ CD63/ GFP/ TSG101/ Alix/ CD81
Not detected EV-associated proteins
CD9
Detected contaminants
calnexin
Flow cytometry
Type of Flow cytometry
NanoAnalyzer N30 (nanoFCM)
Calibration bead size
0.068; 0.091; 0.113; 0.155
Detected EV-associated proteins
CD9/ CD63/ CD81
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
100-200
EV concentration
Yes
Particle analysis: flow cytometry
Flow cytometer type
NanoAnalyzer N30 (nanoFCM)
Hardware adjustment
Calibration bead size
0.068; 0.091; 0.113; 0.155
Report type
Mean
Reported size (nm)
71
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210126 | 2/9 | Homo sapiens | Expi293F | (d)(U)C | Silva, Andreia;Lázaro-Ibáñez, Elisa | 2021 | 78% | |
Study summaryFull title
All authors
Andreia M. Silva, Elisa Lázaro-Ibáñez, Anders Gunnarsson, Aditya Dhande, George Daaboul, Ben Peacock, Xabier Osteikoetxea, Nikki Salmond, Kristina Pagh Friis, Olga Shatnyeva, Niek Dekker
Journal
J Extracell Vesicles
Abstract
Extracellular Vesicles (EVs) have been intensively explored for therapeutic delivery of proteins. Ho (show more...)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
CD47-GFP
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Protein markers
EV: TSG101/ CD63/ CD81/ Alix/ Flotillin1/ CD10
non-EV: calnexin Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
80
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
100
Wash: time (min)
120
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
Flotillin1/ CD63/ GFP/ TSG101/ Alix/ CD81
Not detected EV-associated proteins
CD9
Detected contaminants
calnexin
Flow cytometry
Type of Flow cytometry
NanoAnalyzer N30 (nanoFCM)
Calibration bead size
0.068; 0.091; 0.113; 0.155
Detected EV-associated proteins
GFP
Detected EV-associated proteins
CD81/ CD9/ CD63/ GFP
Detected EV-associated proteins
GFP
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
100-200
EV concentration
Yes
Particle analysis: flow cytometry
Flow cytometer type
NanoAnalyzer N30 (nanoFCM)
Hardware adjustment
Calibration bead size
0.068; 0.091; 0.113; 0.155
Report type
Mean
Reported size (nm)
75
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV210126 | 3/9 | Homo sapiens | Expi293F | (d)(U)C | Silva, Andreia;Lázaro-Ibáñez, Elisa | 2021 | 78% | |
Study summaryFull title
All authors
Andreia M. Silva, Elisa Lázaro-Ibáñez, Anders Gunnarsson, Aditya Dhande, George Daaboul, Ben Peacock, Xabier Osteikoetxea, Nikki Salmond, Kristina Pagh Friis, Olga Shatnyeva, Niek Dekker
Journal
J Extracell Vesicles
Abstract
Extracellular Vesicles (EVs) have been intensively explored for therapeutic delivery of proteins. Ho (show more...)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
TSPAN14-GFP
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Protein markers
EV: TSG101/ CD63/ CD81/ Alix/ Flotillin1/ CD11
non-EV: calnexin Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
80
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
100
Wash: time (min)
120
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
Flotillin1/ Alix/ CD63/ TSG101/ GFP/ CD81
Not detected EV-associated proteins
CD9
Detected contaminants
calnexin
Flow cytometry
Type of Flow cytometry
NanoAnalyzer N30 (nanoFCM)
Calibration bead size
0.068; 0.091; 0.113; 0.155
Detected EV-associated proteins
GFP
Detected EV-associated proteins
CD81/ CD9/ CD63/ GFP
Detected EV-associated proteins
GFP
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
100-200
EV concentration
Yes
Particle analysis: flow cytometry
Flow cytometer type
NanoAnalyzer N30 (nanoFCM)
Hardware adjustment
Calibration bead size
0.068; 0.091; 0.113; 0.155
Report type
Mean
Reported size (nm)
73
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
1 - 50 of 1321 | keyboard_arrow_right |