Search > Results

You searched for: EV210261 (EV-TRACK ID)

Showing 1 - 8 of 8

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV210261 1/8 Homo sapiens SW620 (d)(U)C
DG
Rai, Alin 2021 89%

Study summary

Full title
All authors
Alin Rai, Haoyun Fang, Bethany Claridge, Richard J. Simpson, and David W Greening
Journal
J Extracell Vesicles
Abstract
The extracellular vesicle (EV) surface proteome (surfaceome) acts as a fundamental signalling gatewa (show more...)The extracellular vesicle (EV) surface proteome (surfaceome) acts as a fundamental signalling gateway by bridging intra‐ and extracellular signalling networks, dictates EVs’ capacity to communicate and interact with their environment, and is a source of potential disease biomarkers and therapeutic targets. However, our understanding of surface protein composition of large EVs (L‐EVs, 100–800 nm, mean 310 nm, ATP5F1A, ATP5F1B, DHX9, GOT2, HSPA5, HSPD1, MDH2, STOML2), a major EV‐subtype that are distinct from small EVs (S‐EVs, 30–150 nm, mean 110 nm, CD44, CD63, CD81, CD82, CD9, PDCD6IP, SDCBP, TSG101) remains limited. Using a membrane impermeant derivative of biotin to capture surface proteins coupled to mass spectrometry analysis, we show that out of 4143 proteins identified in density‐gradient purified L‐EVs (1.07–1.11 g/mL, from multiple cancer cell lines), 961 proteins are surface accessible. The surface molecular diversity of L‐EVs include (i) bona fide plasma membrane anchored proteins (cluster of differentiation, transporters, receptors and GPI anchored proteins implicated in cell‐cell and cell‐ECM interactions); and (ii) membrane surface‐associated proteins (that are released by divalent ion chelator EDTA) implicated in actin cytoskeleton regulation, junction organization, glycolysis and platelet activation. Ligand‐receptor analysis of L‐EV surfaceome (e.g., ITGAV/ITGB1) uncovered interactome spanning 172 experimentally verified cognate binding partners (e.g., ANGPTL3, PLG, and VTN) with highest tissue enrichment for liver. Assessment of biotin inaccessible L‐EV proteome revealed enrichment for proteins belonging to COPI/II‐coated ER/Golgi‐derived vesicles and mitochondria. Additionally, despite common surface proteins identified in L‐EVs and S‐EVs, our data reveals surfaceome heterogeneity between the two EV‐subtype. Collectively, our study provides critical insights into diverse proteins operating at the interactive platform of L‐EVs and molecular leads for future studies seeking to decipher L‐EV heterogeneity and function. (hide)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: Alix/ CD63/ TSG101
non-EV: None
Proteomics
yes
EV density (g/ml)
1.07-1.11
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-?related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SW620
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
30
Pelleting: rotor type
SW 28
Pelleting: speed (g)
10000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
0.5
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
2
Pelleting: speed (g)
10000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Alix/ CD63/ TSG101
Proteomics database
Yes
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
mean and size range/distribution
Reported size (nm)
166 mean, range 50-250 nm
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
EV210261 2/8 Homo sapiens SW620 (d)(U)C
DG
Rai, Alin 2021 89%

Study summary

Full title
All authors
Alin Rai, Haoyun Fang, Bethany Claridge, Richard J. Simpson, and David W Greening
Journal
J Extracell Vesicles
Abstract
The extracellular vesicle (EV) surface proteome (surfaceome) acts as a fundamental signalling gatewa (show more...)The extracellular vesicle (EV) surface proteome (surfaceome) acts as a fundamental signalling gateway by bridging intra‐ and extracellular signalling networks, dictates EVs’ capacity to communicate and interact with their environment, and is a source of potential disease biomarkers and therapeutic targets. However, our understanding of surface protein composition of large EVs (L‐EVs, 100–800 nm, mean 310 nm, ATP5F1A, ATP5F1B, DHX9, GOT2, HSPA5, HSPD1, MDH2, STOML2), a major EV‐subtype that are distinct from small EVs (S‐EVs, 30–150 nm, mean 110 nm, CD44, CD63, CD81, CD82, CD9, PDCD6IP, SDCBP, TSG101) remains limited. Using a membrane impermeant derivative of biotin to capture surface proteins coupled to mass spectrometry analysis, we show that out of 4143 proteins identified in density‐gradient purified L‐EVs (1.07–1.11 g/mL, from multiple cancer cell lines), 961 proteins are surface accessible. The surface molecular diversity of L‐EVs include (i) bona fide plasma membrane anchored proteins (cluster of differentiation, transporters, receptors and GPI anchored proteins implicated in cell‐cell and cell‐ECM interactions); and (ii) membrane surface‐associated proteins (that are released by divalent ion chelator EDTA) implicated in actin cytoskeleton regulation, junction organization, glycolysis and platelet activation. Ligand‐receptor analysis of L‐EV surfaceome (e.g., ITGAV/ITGB1) uncovered interactome spanning 172 experimentally verified cognate binding partners (e.g., ANGPTL3, PLG, and VTN) with highest tissue enrichment for liver. Assessment of biotin inaccessible L‐EV proteome revealed enrichment for proteins belonging to COPI/II‐coated ER/Golgi‐derived vesicles and mitochondria. Additionally, despite common surface proteins identified in L‐EVs and S‐EVs, our data reveals surfaceome heterogeneity between the two EV‐subtype. Collectively, our study provides critical insights into diverse proteins operating at the interactive platform of L‐EVs and molecular leads for future studies seeking to decipher L‐EV heterogeneity and function. (hide)
EV-METRIC
89% (99th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: CD63
non-EV: None
Proteomics
yes
EV density (g/ml)
1.07-1.11
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-?related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SW620
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
0.5
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
2
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63
Proteomics database
Yes
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
mean and size range/distribution
Reported size (nm)
50-500
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
Report size (nm)
310
EV210261 3/8 Homo sapiens LIM1863 (d)(U)C
DG
Rai, Alin 2021 67%

Study summary

Full title
All authors
Alin Rai, Haoyun Fang, Bethany Claridge, Richard J. Simpson, and David W Greening
Journal
J Extracell Vesicles
Abstract
The extracellular vesicle (EV) surface proteome (surfaceome) acts as a fundamental signalling gatewa (show more...)The extracellular vesicle (EV) surface proteome (surfaceome) acts as a fundamental signalling gateway by bridging intra‐ and extracellular signalling networks, dictates EVs’ capacity to communicate and interact with their environment, and is a source of potential disease biomarkers and therapeutic targets. However, our understanding of surface protein composition of large EVs (L‐EVs, 100–800 nm, mean 310 nm, ATP5F1A, ATP5F1B, DHX9, GOT2, HSPA5, HSPD1, MDH2, STOML2), a major EV‐subtype that are distinct from small EVs (S‐EVs, 30–150 nm, mean 110 nm, CD44, CD63, CD81, CD82, CD9, PDCD6IP, SDCBP, TSG101) remains limited. Using a membrane impermeant derivative of biotin to capture surface proteins coupled to mass spectrometry analysis, we show that out of 4143 proteins identified in density‐gradient purified L‐EVs (1.07–1.11 g/mL, from multiple cancer cell lines), 961 proteins are surface accessible. The surface molecular diversity of L‐EVs include (i) bona fide plasma membrane anchored proteins (cluster of differentiation, transporters, receptors and GPI anchored proteins implicated in cell‐cell and cell‐ECM interactions); and (ii) membrane surface‐associated proteins (that are released by divalent ion chelator EDTA) implicated in actin cytoskeleton regulation, junction organization, glycolysis and platelet activation. Ligand‐receptor analysis of L‐EV surfaceome (e.g., ITGAV/ITGB1) uncovered interactome spanning 172 experimentally verified cognate binding partners (e.g., ANGPTL3, PLG, and VTN) with highest tissue enrichment for liver. Assessment of biotin inaccessible L‐EV proteome revealed enrichment for proteins belonging to COPI/II‐coated ER/Golgi‐derived vesicles and mitochondria. Additionally, despite common surface proteins identified in L‐EVs and S‐EVs, our data reveals surfaceome heterogeneity between the two EV‐subtype. Collectively, our study provides critical insights into diverse proteins operating at the interactive platform of L‐EVs and molecular leads for future studies seeking to decipher L‐EV heterogeneity and function. (hide)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: CD63
non-EV: None
Proteomics
yes
EV density (g/ml)
1.07-1.11
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-?related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
LIM1863
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
30
Pelleting: rotor type
SW 28
Pelleting: speed (g)
10000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
0.5
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
2
Pelleting: speed (g)
10000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63
Proteomics database
Yes
Characterization: Lipid analysis
No
EV210261 4/8 Homo sapiens LIM1863 (d)(U)C
DG
Rai, Alin 2021 67%

Study summary

Full title
All authors
Alin Rai, Haoyun Fang, Bethany Claridge, Richard J. Simpson, and David W Greening
Journal
J Extracell Vesicles
Abstract
The extracellular vesicle (EV) surface proteome (surfaceome) acts as a fundamental signalling gatewa (show more...)The extracellular vesicle (EV) surface proteome (surfaceome) acts as a fundamental signalling gateway by bridging intra‐ and extracellular signalling networks, dictates EVs’ capacity to communicate and interact with their environment, and is a source of potential disease biomarkers and therapeutic targets. However, our understanding of surface protein composition of large EVs (L‐EVs, 100–800 nm, mean 310 nm, ATP5F1A, ATP5F1B, DHX9, GOT2, HSPA5, HSPD1, MDH2, STOML2), a major EV‐subtype that are distinct from small EVs (S‐EVs, 30–150 nm, mean 110 nm, CD44, CD63, CD81, CD82, CD9, PDCD6IP, SDCBP, TSG101) remains limited. Using a membrane impermeant derivative of biotin to capture surface proteins coupled to mass spectrometry analysis, we show that out of 4143 proteins identified in density‐gradient purified L‐EVs (1.07–1.11 g/mL, from multiple cancer cell lines), 961 proteins are surface accessible. The surface molecular diversity of L‐EVs include (i) bona fide plasma membrane anchored proteins (cluster of differentiation, transporters, receptors and GPI anchored proteins implicated in cell‐cell and cell‐ECM interactions); and (ii) membrane surface‐associated proteins (that are released by divalent ion chelator EDTA) implicated in actin cytoskeleton regulation, junction organization, glycolysis and platelet activation. Ligand‐receptor analysis of L‐EV surfaceome (e.g., ITGAV/ITGB1) uncovered interactome spanning 172 experimentally verified cognate binding partners (e.g., ANGPTL3, PLG, and VTN) with highest tissue enrichment for liver. Assessment of biotin inaccessible L‐EV proteome revealed enrichment for proteins belonging to COPI/II‐coated ER/Golgi‐derived vesicles and mitochondria. Additionally, despite common surface proteins identified in L‐EVs and S‐EVs, our data reveals surfaceome heterogeneity between the two EV‐subtype. Collectively, our study provides critical insights into diverse proteins operating at the interactive platform of L‐EVs and molecular leads for future studies seeking to decipher L‐EV heterogeneity and function. (hide)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: CD63
non-EV: None
Proteomics
yes
EV density (g/ml)
1.07-1.11
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-?related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
LIM1863
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
0.5
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
2
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63
Proteomics database
Yes
Characterization: Lipid analysis
No
EV210261 5/8 Homo sapiens MDA MB 231 (d)(U)C
DG
Rai, Alin 2021 67%

Study summary

Full title
All authors
Alin Rai, Haoyun Fang, Bethany Claridge, Richard J. Simpson, and David W Greening
Journal
J Extracell Vesicles
Abstract
The extracellular vesicle (EV) surface proteome (surfaceome) acts as a fundamental signalling gatewa (show more...)The extracellular vesicle (EV) surface proteome (surfaceome) acts as a fundamental signalling gateway by bridging intra‐ and extracellular signalling networks, dictates EVs’ capacity to communicate and interact with their environment, and is a source of potential disease biomarkers and therapeutic targets. However, our understanding of surface protein composition of large EVs (L‐EVs, 100–800 nm, mean 310 nm, ATP5F1A, ATP5F1B, DHX9, GOT2, HSPA5, HSPD1, MDH2, STOML2), a major EV‐subtype that are distinct from small EVs (S‐EVs, 30–150 nm, mean 110 nm, CD44, CD63, CD81, CD82, CD9, PDCD6IP, SDCBP, TSG101) remains limited. Using a membrane impermeant derivative of biotin to capture surface proteins coupled to mass spectrometry analysis, we show that out of 4143 proteins identified in density‐gradient purified L‐EVs (1.07–1.11 g/mL, from multiple cancer cell lines), 961 proteins are surface accessible. The surface molecular diversity of L‐EVs include (i) bona fide plasma membrane anchored proteins (cluster of differentiation, transporters, receptors and GPI anchored proteins implicated in cell‐cell and cell‐ECM interactions); and (ii) membrane surface‐associated proteins (that are released by divalent ion chelator EDTA) implicated in actin cytoskeleton regulation, junction organization, glycolysis and platelet activation. Ligand‐receptor analysis of L‐EV surfaceome (e.g., ITGAV/ITGB1) uncovered interactome spanning 172 experimentally verified cognate binding partners (e.g., ANGPTL3, PLG, and VTN) with highest tissue enrichment for liver. Assessment of biotin inaccessible L‐EV proteome revealed enrichment for proteins belonging to COPI/II‐coated ER/Golgi‐derived vesicles and mitochondria. Additionally, despite common surface proteins identified in L‐EVs and S‐EVs, our data reveals surfaceome heterogeneity between the two EV‐subtype. Collectively, our study provides critical insights into diverse proteins operating at the interactive platform of L‐EVs and molecular leads for future studies seeking to decipher L‐EV heterogeneity and function. (hide)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: CD63
non-EV: None
Proteomics
yes
EV density (g/ml)
1.07-1.11
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-?related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA MB 231
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
30
Pelleting: rotor type
SW 28
Pelleting: speed (g)
10000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
0.5
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
2
Pelleting: speed (g)
10000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63
Proteomics database
Yes
Characterization: Lipid analysis
No
EV210261 6/8 Homo sapiens MDA MB 231 (d)(U)C
DG
Rai, Alin 2021 67%

Study summary

Full title
All authors
Alin Rai, Haoyun Fang, Bethany Claridge, Richard J. Simpson, and David W Greening
Journal
J Extracell Vesicles
Abstract
The extracellular vesicle (EV) surface proteome (surfaceome) acts as a fundamental signalling gatewa (show more...)The extracellular vesicle (EV) surface proteome (surfaceome) acts as a fundamental signalling gateway by bridging intra‐ and extracellular signalling networks, dictates EVs’ capacity to communicate and interact with their environment, and is a source of potential disease biomarkers and therapeutic targets. However, our understanding of surface protein composition of large EVs (L‐EVs, 100–800 nm, mean 310 nm, ATP5F1A, ATP5F1B, DHX9, GOT2, HSPA5, HSPD1, MDH2, STOML2), a major EV‐subtype that are distinct from small EVs (S‐EVs, 30–150 nm, mean 110 nm, CD44, CD63, CD81, CD82, CD9, PDCD6IP, SDCBP, TSG101) remains limited. Using a membrane impermeant derivative of biotin to capture surface proteins coupled to mass spectrometry analysis, we show that out of 4143 proteins identified in density‐gradient purified L‐EVs (1.07–1.11 g/mL, from multiple cancer cell lines), 961 proteins are surface accessible. The surface molecular diversity of L‐EVs include (i) bona fide plasma membrane anchored proteins (cluster of differentiation, transporters, receptors and GPI anchored proteins implicated in cell‐cell and cell‐ECM interactions); and (ii) membrane surface‐associated proteins (that are released by divalent ion chelator EDTA) implicated in actin cytoskeleton regulation, junction organization, glycolysis and platelet activation. Ligand‐receptor analysis of L‐EV surfaceome (e.g., ITGAV/ITGB1) uncovered interactome spanning 172 experimentally verified cognate binding partners (e.g., ANGPTL3, PLG, and VTN) with highest tissue enrichment for liver. Assessment of biotin inaccessible L‐EV proteome revealed enrichment for proteins belonging to COPI/II‐coated ER/Golgi‐derived vesicles and mitochondria. Additionally, despite common surface proteins identified in L‐EVs and S‐EVs, our data reveals surfaceome heterogeneity between the two EV‐subtype. Collectively, our study provides critical insights into diverse proteins operating at the interactive platform of L‐EVs and molecular leads for future studies seeking to decipher L‐EV heterogeneity and function. (hide)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: CD63
non-EV: None
Proteomics
yes
EV density (g/ml)
1.07-1.11
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-?related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA MB 231
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
0.5
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
2
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63
Proteomics database
Yes
Characterization: Lipid analysis
No
EV210261 7/8 Homo sapiens U87 (d)(U)C
DG
Rai, Alin 2021 67%

Study summary

Full title
All authors
Alin Rai, Haoyun Fang, Bethany Claridge, Richard J. Simpson, and David W Greening
Journal
J Extracell Vesicles
Abstract
The extracellular vesicle (EV) surface proteome (surfaceome) acts as a fundamental signalling gatewa (show more...)The extracellular vesicle (EV) surface proteome (surfaceome) acts as a fundamental signalling gateway by bridging intra‐ and extracellular signalling networks, dictates EVs’ capacity to communicate and interact with their environment, and is a source of potential disease biomarkers and therapeutic targets. However, our understanding of surface protein composition of large EVs (L‐EVs, 100–800 nm, mean 310 nm, ATP5F1A, ATP5F1B, DHX9, GOT2, HSPA5, HSPD1, MDH2, STOML2), a major EV‐subtype that are distinct from small EVs (S‐EVs, 30–150 nm, mean 110 nm, CD44, CD63, CD81, CD82, CD9, PDCD6IP, SDCBP, TSG101) remains limited. Using a membrane impermeant derivative of biotin to capture surface proteins coupled to mass spectrometry analysis, we show that out of 4143 proteins identified in density‐gradient purified L‐EVs (1.07–1.11 g/mL, from multiple cancer cell lines), 961 proteins are surface accessible. The surface molecular diversity of L‐EVs include (i) bona fide plasma membrane anchored proteins (cluster of differentiation, transporters, receptors and GPI anchored proteins implicated in cell‐cell and cell‐ECM interactions); and (ii) membrane surface‐associated proteins (that are released by divalent ion chelator EDTA) implicated in actin cytoskeleton regulation, junction organization, glycolysis and platelet activation. Ligand‐receptor analysis of L‐EV surfaceome (e.g., ITGAV/ITGB1) uncovered interactome spanning 172 experimentally verified cognate binding partners (e.g., ANGPTL3, PLG, and VTN) with highest tissue enrichment for liver. Assessment of biotin inaccessible L‐EV proteome revealed enrichment for proteins belonging to COPI/II‐coated ER/Golgi‐derived vesicles and mitochondria. Additionally, despite common surface proteins identified in L‐EVs and S‐EVs, our data reveals surfaceome heterogeneity between the two EV‐subtype. Collectively, our study provides critical insights into diverse proteins operating at the interactive platform of L‐EVs and molecular leads for future studies seeking to decipher L‐EV heterogeneity and function. (hide)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: CD63
non-EV: None
Proteomics
yes
EV density (g/ml)
1.07-1.11
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-?related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
U87
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
30
Pelleting: rotor type
SW 28
Pelleting: speed (g)
10000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
0.5
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
2
Pelleting: speed (g)
10000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63
Proteomics database
Yes
Characterization: Lipid analysis
No
EV210261 8/8 Homo sapiens U87 (d)(U)C
DG
Rai, Alin 2021 67%

Study summary

Full title
All authors
Alin Rai, Haoyun Fang, Bethany Claridge, Richard J. Simpson, and David W Greening
Journal
J Extracell Vesicles
Abstract
The extracellular vesicle (EV) surface proteome (surfaceome) acts as a fundamental signalling gatewa (show more...)The extracellular vesicle (EV) surface proteome (surfaceome) acts as a fundamental signalling gateway by bridging intra‐ and extracellular signalling networks, dictates EVs’ capacity to communicate and interact with their environment, and is a source of potential disease biomarkers and therapeutic targets. However, our understanding of surface protein composition of large EVs (L‐EVs, 100–800 nm, mean 310 nm, ATP5F1A, ATP5F1B, DHX9, GOT2, HSPA5, HSPD1, MDH2, STOML2), a major EV‐subtype that are distinct from small EVs (S‐EVs, 30–150 nm, mean 110 nm, CD44, CD63, CD81, CD82, CD9, PDCD6IP, SDCBP, TSG101) remains limited. Using a membrane impermeant derivative of biotin to capture surface proteins coupled to mass spectrometry analysis, we show that out of 4143 proteins identified in density‐gradient purified L‐EVs (1.07–1.11 g/mL, from multiple cancer cell lines), 961 proteins are surface accessible. The surface molecular diversity of L‐EVs include (i) bona fide plasma membrane anchored proteins (cluster of differentiation, transporters, receptors and GPI anchored proteins implicated in cell‐cell and cell‐ECM interactions); and (ii) membrane surface‐associated proteins (that are released by divalent ion chelator EDTA) implicated in actin cytoskeleton regulation, junction organization, glycolysis and platelet activation. Ligand‐receptor analysis of L‐EV surfaceome (e.g., ITGAV/ITGB1) uncovered interactome spanning 172 experimentally verified cognate binding partners (e.g., ANGPTL3, PLG, and VTN) with highest tissue enrichment for liver. Assessment of biotin inaccessible L‐EV proteome revealed enrichment for proteins belonging to COPI/II‐coated ER/Golgi‐derived vesicles and mitochondria. Additionally, despite common surface proteins identified in L‐EVs and S‐EVs, our data reveals surfaceome heterogeneity between the two EV‐subtype. Collectively, our study provides critical insights into diverse proteins operating at the interactive platform of L‐EVs and molecular leads for future studies seeking to decipher L‐EV heterogeneity and function. (hide)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: CD63
non-EV: None
Proteomics
yes
EV density (g/ml)
1.07-1.11
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-?related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
U87
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
0.5
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
2
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63
Proteomics database
Yes
Characterization: Lipid analysis
No
1 - 8 of 8
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV210261
species
Homo
sapiens
sample type
Cell
culture
cell type
SW620
SW620
LIM1863
LIM1863
MDA
MB
231
MDA
MB
231
U87
U87
condition
Control
condition
Control
condition
Control
condition
Control
condition
Control
condition
Control
condition
Control
condition
Control
condition
separation protocol
dUC/
Density
gradient
dUC/
Density
gradient
dUC/
Density
gradient
dUC/
Density
gradient
dUC/
Density
gradient
dUC/
Density
gradient
dUC/
Density
gradient
dUC/
Density
gradient
Exp. nr.
1
2
3
4
5
6
7
8
EV-METRIC %
89
89
67
67
67
67
67
67