Search > Results
You searched for: EV210153 (EV-TRACK ID)
Showing 1 - 11 of 11
Showing 1 - 11 of 11
Details | EV-TRACK ID | Experiment nr. | Species | Sample type | Separation protocol | First author | Year | EV-METRIC |
---|---|---|---|---|---|---|---|---|
EV210153 | 3/11 | Homo sapiens | 22Rv1 |
(d)(U)C Filtration DG |
Allelein, Susann | 2021 | 100% | |
Study summaryFull title
All authors
Susann Allelein, Paula Medina-Perez, Ana Leonor Heitor Lopes, Sabrina Rau, Gerd Hause, Andreas Kölsch, Dirk Kuhlmeier
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) have attracted interest due to their ability to provide diagnostic info (show more...)
EV-METRIC
100% (99th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Filtration DG Protein markers
EV: TSG101/ Alix/ CD9
non-EV: Calnexin Proteomics
no
EV density (g/ml)
1.08-1.11
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
22Rv1
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Pelleting performed
No
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5
Highest density fraction
40
Total gradient volume, incl. sample (mL)
16
Sample volume (mL)
0.5
Orientation
Top-down
Rotor type
Surespin 630 (17 ml)
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
8.25
Pelleting: duration (min)
180
Pelleting: rotor type
Surespin 630 (36 ml)
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ Alix
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
140
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 1.40E+11
EM
EM-type
Transmission electron microscopy
Image type
Close-up, Wide-field
|
||||||||
EV210153 | 2/11 | Homo sapiens | 22Rv1 |
(d)(U)C Filtration |
Allelein, Susann | 2021 | 78% | |
Study summaryFull title
All authors
Susann Allelein, Paula Medina-Perez, Ana Leonor Heitor Lopes, Sabrina Rau, Gerd Hause, Andreas Kölsch, Dirk Kuhlmeier
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) have attracted interest due to their ability to provide diagnostic info (show more...)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Filtration Protein markers
EV: TSG101/ Alix/ CD9
non-EV: Calnexin Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
22Rv1
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Surespin 630 (36 ml)
Pelleting: speed (g)
110000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ Alix
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
140
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 1.40E+11
EM
EM-type
Transmission electron microscopy
Image type
Close-up, Wide-field
|
||||||||
EV210153 | 1/11 | Homo sapiens | 22Rv1 |
(d)(U)C Filtration UF |
Allelein, Susann | 2021 | 75% | |
Study summaryFull title
All authors
Susann Allelein, Paula Medina-Perez, Ana Leonor Heitor Lopes, Sabrina Rau, Gerd Hause, Andreas Kölsch, Dirk Kuhlmeier
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) have attracted interest due to their ability to provide diagnostic info (show more...)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Filtration UF Protein markers
EV: TSG101/ Alix/ CD9
non-EV: Calnexin Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
22Rv1
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ Alix
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
140
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 1.40E+11
EM
EM-type
Transmission electron microscopy
Image type
Close-up, Wide-field
|
||||||||
EV210153 | 4/11 | Homo sapiens | 22Rv1 |
(d)(U)C Filtration SEC (non-commercial) |
Allelein, Susann | 2021 | 75% | |
Study summaryFull title
All authors
Susann Allelein, Paula Medina-Perez, Ana Leonor Heitor Lopes, Sabrina Rau, Gerd Hause, Andreas Kölsch, Dirk Kuhlmeier
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) have attracted interest due to their ability to provide diagnostic info (show more...)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Filtration Size-exclusion chromatography (non-commercial) Protein markers
EV: TSG101/ Alix/ CD9
non-EV: Calnexin Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
22Rv1
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Size-exclusion chromatography
Used for validation?
Yes
Total column volume (mL)
10
Sample volume/column (mL)
0.5
Resin type
Not Specified
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ Alix
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
140
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 1.40E+11
EM
EM-type
Transmission electron microscopy
Image type
Close-up, Wide-field
|
||||||||
EV210153 | 5/11 | Homo sapiens | 22Rv1 |
(d)(U)C Filtration IAF |
Allelein, Susann | 2021 | 75% | |
Study summaryFull title
All authors
Susann Allelein, Paula Medina-Perez, Ana Leonor Heitor Lopes, Sabrina Rau, Gerd Hause, Andreas Kölsch, Dirk Kuhlmeier
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) have attracted interest due to their ability to provide diagnostic info (show more...)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Filtration Immunoaffinity capture (non-commercial) Protein markers
EV: TSG101/ Alix/ CD9
non-EV: Calnexin Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
22Rv1
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Immunoaffinity capture
Selected surface protein(s)
PSMA, CD9
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ Alix
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
EM
EM-type
Transmission electron microscopy
Image type
Close-up, Wide-field
|
||||||||
EV210153 | 9/11 | Homo sapiens | LNCaP |
(d)(U)C Filtration UF IAF DG SEC (non-commercial) |
Allelein, Susann | 2021 | 75% | |
Study summaryFull title
All authors
Susann Allelein, Paula Medina-Perez, Ana Leonor Heitor Lopes, Sabrina Rau, Gerd Hause, Andreas Kölsch, Dirk Kuhlmeier
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) have attracted interest due to their ability to provide diagnostic info (show more...)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Filtration UF Immunoaffinity capture (non-commercial) DG Size-exclusion chromatography (non-commercial) Protein markers
EV: TSG101/ Alix/ CD9
non-EV: Calnexin Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
LNCaP
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Immunoaffinity capture
Selected surface protein(s)
PSMA, CD9
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ Alix
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
|
||||||||
EV210153 | 6/11 | Homo sapiens | PNT1A |
(d)(U)C UF |
Allelein, Susann | 2021 | 50% | |
Study summaryFull title
All authors
Susann Allelein, Paula Medina-Perez, Ana Leonor Heitor Lopes, Sabrina Rau, Gerd Hause, Andreas Kölsch, Dirk Kuhlmeier
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) have attracted interest due to their ability to provide diagnostic info (show more...)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
UF Protein markers
EV: TSG101/ Alix/ CD9
non-EV: Calnexin Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
PNT1A
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ Alix
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
Particle yield
No NA
|
||||||||
EV210153 | 7/11 | Homo sapiens | PNT1A |
(d)(U)C Filtration IAF |
Allelein, Susann | 2021 | 50% | |
Study summaryFull title
All authors
Susann Allelein, Paula Medina-Perez, Ana Leonor Heitor Lopes, Sabrina Rau, Gerd Hause, Andreas Kölsch, Dirk Kuhlmeier
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) have attracted interest due to their ability to provide diagnostic info (show more...)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Filtration Immunoaffinity capture (non-commercial) Protein markers
EV: TSG101/ Alix/ CD9
non-EV: Calnexin Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
PNT1A
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Immunoaffinity capture
Selected surface protein(s)
PSMA, CD9
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ Alix
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
|
||||||||
EV210153 | 8/11 | Homo sapiens | LNCaP |
(d)(U)C Filtration UF |
Allelein, Susann | 2021 | 50% | |
Study summaryFull title
All authors
Susann Allelein, Paula Medina-Perez, Ana Leonor Heitor Lopes, Sabrina Rau, Gerd Hause, Andreas Kölsch, Dirk Kuhlmeier
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) have attracted interest due to their ability to provide diagnostic info (show more...)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Filtration UF Protein markers
EV: TSG101/ Alix/ CD9
non-EV: Calnexin Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
LNCaP
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ Alix
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
Particle yield
No NA
|
||||||||
EV210153 | 10/11 | Homo sapiens | PC3 |
(d)(U)C Filtration UF |
Allelein, Susann | 2021 | 50% | |
Study summaryFull title
All authors
Susann Allelein, Paula Medina-Perez, Ana Leonor Heitor Lopes, Sabrina Rau, Gerd Hause, Andreas Kölsch, Dirk Kuhlmeier
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) have attracted interest due to their ability to provide diagnostic info (show more...)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Filtration UF Protein markers
EV: TSG101/ Alix/ CD9
non-EV: Calnexin Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
PC3
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ Alix
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
Particle yield
No NA
|
||||||||
EV210153 | 11/11 | Homo sapiens | PC3 |
(d)(U)C Filtration UF |
Allelein, Susann | 2021 | 50% | |
Study summaryFull title
All authors
Susann Allelein, Paula Medina-Perez, Ana Leonor Heitor Lopes, Sabrina Rau, Gerd Hause, Andreas Kölsch, Dirk Kuhlmeier
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) have attracted interest due to their ability to provide diagnostic info (show more...)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Filtration UF Protein markers
EV: TSG101/ Alix/ CD9
non-EV: Calnexin Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
PC3
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Immunoaffinity capture
Selected surface protein(s)
PSMA, CD9
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ Alix
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
|
||||||||
1 - 11 of 11 |
EV-TRACK ID | EV210153 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
species | Homo sapiens | ||||||||||
sample type | Cell culture | ||||||||||
cell type | 22Rv1 | 22Rv1 | 22Rv1 | 22Rv1 | 22Rv1 | LNCaP | PNT1A | PNT1A | LNCaP | PC3 | PC3 |
condition | Control condition | Control condition | Control condition | Control condition | Control condition | Control condition | Control condition | Control condition | Control condition | Control condition | Control condition |
separation protocol | (d)(U)C Filtration DG | (d)(U)C Filtration | (d)(U)C Filtration UF | (d)(U)C Filtration Size-exclusion chromatography (non-commercial) | (d)(U)C Filtration IAF capture (non-commercial) | (d)(U)C Filtration UF IAF capture (non-commercial) DG Size-exclusion chromatography (non-commercial) | (d)(U)C UF | (d)(U)C Filtration IAF capture (non-commercial) | (d)(U)C Filtration UF | (d)(U)C Filtration UF | (d)(U)C Filtration UF |
Exp. nr. | 3 | 2 | 1 | 4 | 5 | 9 | 6 | 7 | 8 | 10 | 11 |
EV-METRIC % | 100 | 78 | 75 | 75 | 75 | 75 | 50 | 50 | 50 | 50 | 50 |