Search > Results

You searched for: EV210118 (EV-TRACK ID)

Showing 1 - 4 of 4

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV210118 1/4 Bos taurus cheese manufacturing byproducts DG
tangential flow filtration
Filtration
Sukreet, Sonal 2021 100%

Study summary

Full title
All authors
Sonal Sukreet, Camila Pereira Braga, Thuy T. An, Jiri Adamec, Juan Cui, Benjamin Trible, Janos Zempleni
Journal
Journal of Dairy Science
Abstract
Extracellular vesicles (EV) in milk, particularly exosomes, have attracted considerable attention as (show more...)Extracellular vesicles (EV) in milk, particularly exosomes, have attracted considerable attention as bioactive food compounds and for their use in drug delivery. The utility of small EV in milk (sMEV) as an animal feed additive and in drug delivery would be enhanced by cost-effective large-scale protocols for the enrichment of sMEV from byproducts in dairy plants. Here, we tested the hypothesis that sMEV may be enriched from byproducts of cheesemaking by tangential flow filtration (EV-FF) and that the sMEV have properties similar to sMEV prepared by ultracentrifugation (sMEV-UC). Three fractions of EV were purified from the whey fraction of cottage cheese making by using EV-FF that passed through a membrane with a 50-kDa cutoff (50 penetrate; 50P), and subfractions of 50P that were retained (100 retentate; 100R) or passed through (100 penetrate; 100P) a membrane with a 100-kDa cutoff; sMEV-UC controls were prepared by serial ultracentrifugation. The abundance of sMEV (<200 nm) was less than 0.3% in EV-FF compared with sMEV-UC (1012/mL of milk). Despite the low EV count, the protein content (mg/mL) of 100R (63 ± 0.02; ± standard deviation) was higher than that of 50P (0.75 ± 0.10), 100P (0.65 ± 0.40), and sMEV-UC (27 ± 0.02). There were 17, 14, 35, and 75 distinct proteins detected by nontargeted mass spectrometry analysis in 50P, 100R, 100P, and sMEV-UC, respectively. Exosome markers CD9, CD63, CD81, HSP-70, PDCD6IP, and TSG101 were detected in control sMEV-UC but not in EV-FF by using targeted mass spectrometry and immunoblot analyses. Negative exosome markers, APOB, β-integrin, and histone H3 were below the limit of detection in EV-FF and control sMEV-UC analyzed by immunoblotting. The abundance of the major milk fat globule protein butyrophilin showed the following pattern: 100R ≫ 100P = 50P > sMEV-UC. More than 100 mature microRNA were detected in sMEV-UC by using sequencing analysis, compared with 36 to 60 microRNA in EV-FF. Only 100R and sMEV-UC yielded mRNA in quantities and qualities sufficient for sequencing analysis; an average of 276,000 and 838,000 reads were mapped to approximately 14,600 and 18,500 genes in 100R and sMEV-UC, respectively. In principal component analysis, microRNA, mRNA, and protein in EV-FF preparations clustered separately from control sMEV-UC. We conclude that under the conditions used here, flow filtration yields a heterogeneous population of milk EV. (hide)
EV-METRIC
100% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
cheese manufacturing byproducts
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
tangential flow filtration
Filtration
Protein markers
EV: TSG101/ CD63/ CD81/ Alix/ HSP70/ CD9
non-EV: Integrin-beta/ Histone H3/ ApoB
Proteomics
yes
EV density (g/ml)
1.255
Show all info
Study aim
New methodological development/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
cheese manufacturing byproducts
Separation Method
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
5
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
3
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.22µm or 0.2µm
Other
Name other separation method
tangential flow filtration
EV-subtype
Distinction between multiple subtypes
Size
Used subtypes
M.W. >100 kDa
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
TSG101/ HSP70
Not detected EV-associated proteins
CD81/ CD63/ CD9/ Alix
Detected contaminants
Histone H3/ Integrin-beta/ ApoB
Proteomics database
No
Characterization: RNA analysis
RNA analysis
Type
RNA sequencing
Database
Yes
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
DLS
Report type
Mean
Reported size (nm)
1108+/-138
NTA
Report type
Mean
Reported size (nm)
102.3+/-6.7
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 4.12+/-0.525E09
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV210118 2/4 Bos taurus cheese manufacturing byproducts DG
tangential flow filtration
Filtration
Sukreet, Sonal 2021 100%

Study summary

Full title
All authors
Sonal Sukreet, Camila Pereira Braga, Thuy T. An, Jiri Adamec, Juan Cui, Benjamin Trible, Janos Zempleni
Journal
Journal of Dairy Science
Abstract
Extracellular vesicles (EV) in milk, particularly exosomes, have attracted considerable attention as (show more...)Extracellular vesicles (EV) in milk, particularly exosomes, have attracted considerable attention as bioactive food compounds and for their use in drug delivery. The utility of small EV in milk (sMEV) as an animal feed additive and in drug delivery would be enhanced by cost-effective large-scale protocols for the enrichment of sMEV from byproducts in dairy plants. Here, we tested the hypothesis that sMEV may be enriched from byproducts of cheesemaking by tangential flow filtration (EV-FF) and that the sMEV have properties similar to sMEV prepared by ultracentrifugation (sMEV-UC). Three fractions of EV were purified from the whey fraction of cottage cheese making by using EV-FF that passed through a membrane with a 50-kDa cutoff (50 penetrate; 50P), and subfractions of 50P that were retained (100 retentate; 100R) or passed through (100 penetrate; 100P) a membrane with a 100-kDa cutoff; sMEV-UC controls were prepared by serial ultracentrifugation. The abundance of sMEV (<200 nm) was less than 0.3% in EV-FF compared with sMEV-UC (1012/mL of milk). Despite the low EV count, the protein content (mg/mL) of 100R (63 ± 0.02; ± standard deviation) was higher than that of 50P (0.75 ± 0.10), 100P (0.65 ± 0.40), and sMEV-UC (27 ± 0.02). There were 17, 14, 35, and 75 distinct proteins detected by nontargeted mass spectrometry analysis in 50P, 100R, 100P, and sMEV-UC, respectively. Exosome markers CD9, CD63, CD81, HSP-70, PDCD6IP, and TSG101 were detected in control sMEV-UC but not in EV-FF by using targeted mass spectrometry and immunoblot analyses. Negative exosome markers, APOB, β-integrin, and histone H3 were below the limit of detection in EV-FF and control sMEV-UC analyzed by immunoblotting. The abundance of the major milk fat globule protein butyrophilin showed the following pattern: 100R ≫ 100P = 50P > sMEV-UC. More than 100 mature microRNA were detected in sMEV-UC by using sequencing analysis, compared with 36 to 60 microRNA in EV-FF. Only 100R and sMEV-UC yielded mRNA in quantities and qualities sufficient for sequencing analysis; an average of 276,000 and 838,000 reads were mapped to approximately 14,600 and 18,500 genes in 100R and sMEV-UC, respectively. In principal component analysis, microRNA, mRNA, and protein in EV-FF preparations clustered separately from control sMEV-UC. We conclude that under the conditions used here, flow filtration yields a heterogeneous population of milk EV. (hide)
EV-METRIC
100% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
cheese manufacturing byproducts
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
tangential flow filtration
Filtration
Protein markers
EV: CD81/ Alix/ CD63/ CD9/ HSP70
non-EV: Integrin-beta/ Histone H3/ ApoB
Proteomics
yes
EV density (g/ml)
1.255
Show all info
Study aim
New methodological development/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
cheese manufacturing byproducts
Separation Method
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
5
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
3
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.22µm or 0.2µm
Other
Name other separation method
tangential flow filtration
EV-subtype
Distinction between multiple subtypes
Size
Used subtypes
M.W. 50 kDa to 100 kDa
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
HSP70
Not detected EV-associated proteins
CD81/ CD63/ CD9/ Alix
Not detected contaminants
Histone H3/ Integrin-beta/ ApoB
Proteomics database
No
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing
Database
Yes
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
DLS
Report type
Mean
Reported size (nm)
45+/-17
NTA
Report type
Mean
Reported size (nm)
80.9+/-4.3
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 2.06+/-0.22E09
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV210118 3/4 Bos taurus cheese manufacturing byproducts DG
tangential flow filtration
Filtration
Sukreet, Sonal 2021 100%

Study summary

Full title
All authors
Sonal Sukreet, Camila Pereira Braga, Thuy T. An, Jiri Adamec, Juan Cui, Benjamin Trible, Janos Zempleni
Journal
Journal of Dairy Science
Abstract
Extracellular vesicles (EV) in milk, particularly exosomes, have attracted considerable attention as (show more...)Extracellular vesicles (EV) in milk, particularly exosomes, have attracted considerable attention as bioactive food compounds and for their use in drug delivery. The utility of small EV in milk (sMEV) as an animal feed additive and in drug delivery would be enhanced by cost-effective large-scale protocols for the enrichment of sMEV from byproducts in dairy plants. Here, we tested the hypothesis that sMEV may be enriched from byproducts of cheesemaking by tangential flow filtration (EV-FF) and that the sMEV have properties similar to sMEV prepared by ultracentrifugation (sMEV-UC). Three fractions of EV were purified from the whey fraction of cottage cheese making by using EV-FF that passed through a membrane with a 50-kDa cutoff (50 penetrate; 50P), and subfractions of 50P that were retained (100 retentate; 100R) or passed through (100 penetrate; 100P) a membrane with a 100-kDa cutoff; sMEV-UC controls were prepared by serial ultracentrifugation. The abundance of sMEV (<200 nm) was less than 0.3% in EV-FF compared with sMEV-UC (1012/mL of milk). Despite the low EV count, the protein content (mg/mL) of 100R (63 ± 0.02; ± standard deviation) was higher than that of 50P (0.75 ± 0.10), 100P (0.65 ± 0.40), and sMEV-UC (27 ± 0.02). There were 17, 14, 35, and 75 distinct proteins detected by nontargeted mass spectrometry analysis in 50P, 100R, 100P, and sMEV-UC, respectively. Exosome markers CD9, CD63, CD81, HSP-70, PDCD6IP, and TSG101 were detected in control sMEV-UC but not in EV-FF by using targeted mass spectrometry and immunoblot analyses. Negative exosome markers, APOB, β-integrin, and histone H3 were below the limit of detection in EV-FF and control sMEV-UC analyzed by immunoblotting. The abundance of the major milk fat globule protein butyrophilin showed the following pattern: 100R ≫ 100P = 50P > sMEV-UC. More than 100 mature microRNA were detected in sMEV-UC by using sequencing analysis, compared with 36 to 60 microRNA in EV-FF. Only 100R and sMEV-UC yielded mRNA in quantities and qualities sufficient for sequencing analysis; an average of 276,000 and 838,000 reads were mapped to approximately 14,600 and 18,500 genes in 100R and sMEV-UC, respectively. In principal component analysis, microRNA, mRNA, and protein in EV-FF preparations clustered separately from control sMEV-UC. We conclude that under the conditions used here, flow filtration yields a heterogeneous population of milk EV. (hide)
EV-METRIC
100% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
cheese manufacturing byproducts
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
tangential flow filtration
Filtration
Protein markers
EV: CD81/ Alix/ CD63/ CD9/ HSP70
non-EV: Integrin-beta/ Histone H3/ ApoB
Proteomics
yes
EV density (g/ml)
1.255
Show all info
Study aim
New methodological development/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
cheese manufacturing byproducts
Separation Method
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
5
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
3
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.22µm or 0.2µm
Other
Name other separation method
tangential flow filtration
EV-subtype
Distinction between multiple subtypes
Size
Used subtypes
M.W. >50 kDa
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
HSP70
Not detected EV-associated proteins
CD81/ CD63/ CD9/ Alix
Not detected contaminants
Histone H3/ Integrin-beta/ ApoB
Proteomics database
No
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing
Database
Yes
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
DLS
Report type
Mean
Reported size (nm)
157+/-122
NTA
Report type
Mean
Reported size (nm)
90.8
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 1.44+/-0.144E09
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV210118 4/4 Bos taurus skim milk DG
(d)(U)C
Sukreet, Sonal 2021 100%

Study summary

Full title
All authors
Sonal Sukreet, Camila Pereira Braga, Thuy T. An, Jiri Adamec, Juan Cui, Benjamin Trible, Janos Zempleni
Journal
Journal of Dairy Science
Abstract
Extracellular vesicles (EV) in milk, particularly exosomes, have attracted considerable attention as (show more...)Extracellular vesicles (EV) in milk, particularly exosomes, have attracted considerable attention as bioactive food compounds and for their use in drug delivery. The utility of small EV in milk (sMEV) as an animal feed additive and in drug delivery would be enhanced by cost-effective large-scale protocols for the enrichment of sMEV from byproducts in dairy plants. Here, we tested the hypothesis that sMEV may be enriched from byproducts of cheesemaking by tangential flow filtration (EV-FF) and that the sMEV have properties similar to sMEV prepared by ultracentrifugation (sMEV-UC). Three fractions of EV were purified from the whey fraction of cottage cheese making by using EV-FF that passed through a membrane with a 50-kDa cutoff (50 penetrate; 50P), and subfractions of 50P that were retained (100 retentate; 100R) or passed through (100 penetrate; 100P) a membrane with a 100-kDa cutoff; sMEV-UC controls were prepared by serial ultracentrifugation. The abundance of sMEV (<200 nm) was less than 0.3% in EV-FF compared with sMEV-UC (1012/mL of milk). Despite the low EV count, the protein content (mg/mL) of 100R (63 ± 0.02; ± standard deviation) was higher than that of 50P (0.75 ± 0.10), 100P (0.65 ± 0.40), and sMEV-UC (27 ± 0.02). There were 17, 14, 35, and 75 distinct proteins detected by nontargeted mass spectrometry analysis in 50P, 100R, 100P, and sMEV-UC, respectively. Exosome markers CD9, CD63, CD81, HSP-70, PDCD6IP, and TSG101 were detected in control sMEV-UC but not in EV-FF by using targeted mass spectrometry and immunoblot analyses. Negative exosome markers, APOB, β-integrin, and histone H3 were below the limit of detection in EV-FF and control sMEV-UC analyzed by immunoblotting. The abundance of the major milk fat globule protein butyrophilin showed the following pattern: 100R ≫ 100P = 50P > sMEV-UC. More than 100 mature microRNA were detected in sMEV-UC by using sequencing analysis, compared with 36 to 60 microRNA in EV-FF. Only 100R and sMEV-UC yielded mRNA in quantities and qualities sufficient for sequencing analysis; an average of 276,000 and 838,000 reads were mapped to approximately 14,600 and 18,500 genes in 100R and sMEV-UC, respectively. In principal component analysis, microRNA, mRNA, and protein in EV-FF preparations clustered separately from control sMEV-UC. We conclude that under the conditions used here, flow filtration yields a heterogeneous population of milk EV. (hide)
EV-METRIC
100% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
skim milk
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
(d)(U)C
Protein markers
EV: TSG101/ CD63/ CD81/ Alix/ HSP70/ CD9
non-EV: Integrin-beta/ Histone H3/ ApoB
Proteomics
yes
EV density (g/ml)
1.255
Show all info
Study aim
New methodological development/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
skim milk
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
F37L-8x100
Pelleting: speed (g)
120000
Wash: volume per pellet (ml)
1
Wash: time (min)
90
Wash: Rotor Type
F37L-8x100
Wash: speed (g)
120000
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
5
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
3
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
Alix/ CD9/ CD63/ TSG101/ HSP70/ CD81
Not detected contaminants
Histone H3/ Integrin-beta/ ApoB
Proteomics database
No
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing
Database
Yes
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
DLS
Report type
Mean
Reported size (nm)
115+/-31
NTA
Report type
Mean
Reported size (nm)
106.6
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 1.42+/-0.0536E14
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
1 - 4 of 4
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV210118
species
Bos taurus
sample type
cheese
manufacturing byproducts
cheese
manufacturing byproducts
cheese
manufacturing byproducts
skim milk
condition
Control condition
Control condition
Control condition
Control condition
separation protocol
DG
tangential flow filtration
Filtration
DG
tangential flow filtration
Filtration
DG
tangential flow filtration
Filtration
DG
(d)(U)C
EV subtype
M.W. >100 kDa
M.W.
50 kDa to 100 kDa
M.W. >50 kDa
NA
Exp. nr.
1
2
3
4
EV-METRIC %
100
100
100
100