Search > Results

You searched for: EV210143 (EV-TRACK ID)

Showing 1 - 6 of 6

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV210143 1/6 Homo sapiens SKBR3 (d)(U)C Martinez-Pacheco, Sarai 2021 78%

Study summary

Full title
All authors
Sarai Martinez-Pacheco and Lorraine O’Driscoll
Journal
Cancers
Abstract
To study and exploit extracellular vesicles (EVs) for clinical benefit as biomarkers, therapeutics, (show more...)To study and exploit extracellular vesicles (EVs) for clinical benefit as biomarkers, therapeutics, or drug delivery vehicles in diseases such as cancer, typically we need to separate them from the biofluid into which they have been released by their cells of origin. For cultured cells, this fluid is conditioned medium (CM). Previous studies comparing EV separation approaches have typically focused on CM from one cell line or pooled samples of other biofluids. We hypothesize that this is inadequate and that extrapolating from a single source of EVs may not be informative. Thus, in our study of methods not previous compared (i.e., the original differential ultracentrifugation (dUC) method and a PEG followed by ultracentrifugation (PEG + UC) method), we analyzed CM from three different HER2-positive breast cancer cell lines (SKBR3, EFM192A, HCC1954) that grow in the same culture medium type. CM from each was collected and equally divided between both protocols. The resulting isolates were compared on seven characteristics/parameters including particle size, concentration, structure/morphology, protein content, purity, detection of five EV markers, and presence of HER2. Both dUC and PEG + UC generated reproducible data for any given breast cancer cell lines’ CM. However, the seven characteristics of the EV isolates were cell line- and method-dependent. This suggests the need to include more than one EV source, rather than a single or pooled sample, when selecting an EV separation method to be advanced for either research or clinical purposes (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: CD63/ CD9/ Syntenin
non-EV: Calnexin/ GRP94
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SKBR3
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
94
Cell count
1.90E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
39
Wash: time (min)
70
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Yield (µg)
Yes, per million cells 0.09
Western Blot
Detected EV-associated proteins
CD9/ CD63/ Syntenin
Not detected contaminants
Calnexin/ GRP94
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
125.7
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 2296296296
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV210143 2/6 Homo sapiens SKBR3 PEG precipitation
(d)(U)C
Filtration
Martinez-Pacheco, Sarai 2021 78%

Study summary

Full title
All authors
Sarai Martinez-Pacheco and Lorraine O’Driscoll
Journal
Cancers
Abstract
To study and exploit extracellular vesicles (EVs) for clinical benefit as biomarkers, therapeutics, (show more...)To study and exploit extracellular vesicles (EVs) for clinical benefit as biomarkers, therapeutics, or drug delivery vehicles in diseases such as cancer, typically we need to separate them from the biofluid into which they have been released by their cells of origin. For cultured cells, this fluid is conditioned medium (CM). Previous studies comparing EV separation approaches have typically focused on CM from one cell line or pooled samples of other biofluids. We hypothesize that this is inadequate and that extrapolating from a single source of EVs may not be informative. Thus, in our study of methods not previous compared (i.e., the original differential ultracentrifugation (dUC) method and a PEG followed by ultracentrifugation (PEG + UC) method), we analyzed CM from three different HER2-positive breast cancer cell lines (SKBR3, EFM192A, HCC1954) that grow in the same culture medium type. CM from each was collected and equally divided between both protocols. The resulting isolates were compared on seven characteristics/parameters including particle size, concentration, structure/morphology, protein content, purity, detection of five EV markers, and presence of HER2. Both dUC and PEG + UC generated reproducible data for any given breast cancer cell lines’ CM. However, the seven characteristics of the EV isolates were cell line- and method-dependent. This suggests the need to include more than one EV source, rather than a single or pooled sample, when selecting an EV separation method to be advanced for either research or clinical purposes (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
PEG precipitation
(d)(U)C
Filtration
Protein markers
EV: CD63/ CD9/ Syntenin
non-EV: Calnexin/ GRP94
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SKBR3
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
94
Cell count
1.90E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
130
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Other
Name other separation method
PEG precipitation
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Yield (µg)
Yes, per cell 0.14
Western Blot
Detected EV-associated proteins
CD9/ CD63/ Syntenin
Not detected contaminants
Calnexin/ GRP94
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
110.2
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 6314814815
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV210143 3/6 Homo sapiens HCC1954 (d)(U)C Martinez-Pacheco, Sarai 2021 78%

Study summary

Full title
All authors
Sarai Martinez-Pacheco and Lorraine O’Driscoll
Journal
Cancers
Abstract
To study and exploit extracellular vesicles (EVs) for clinical benefit as biomarkers, therapeutics, (show more...)To study and exploit extracellular vesicles (EVs) for clinical benefit as biomarkers, therapeutics, or drug delivery vehicles in diseases such as cancer, typically we need to separate them from the biofluid into which they have been released by their cells of origin. For cultured cells, this fluid is conditioned medium (CM). Previous studies comparing EV separation approaches have typically focused on CM from one cell line or pooled samples of other biofluids. We hypothesize that this is inadequate and that extrapolating from a single source of EVs may not be informative. Thus, in our study of methods not previous compared (i.e., the original differential ultracentrifugation (dUC) method and a PEG followed by ultracentrifugation (PEG + UC) method), we analyzed CM from three different HER2-positive breast cancer cell lines (SKBR3, EFM192A, HCC1954) that grow in the same culture medium type. CM from each was collected and equally divided between both protocols. The resulting isolates were compared on seven characteristics/parameters including particle size, concentration, structure/morphology, protein content, purity, detection of five EV markers, and presence of HER2. Both dUC and PEG + UC generated reproducible data for any given breast cancer cell lines’ CM. However, the seven characteristics of the EV isolates were cell line- and method-dependent. This suggests the need to include more than one EV source, rather than a single or pooled sample, when selecting an EV separation method to be advanced for either research or clinical purposes (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: CD63/ CD9/ Syntenin
non-EV: Calnexin/ GRP94
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HCC1954
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
93
Cell count
2.10E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
39
Wash: time (min)
70
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Yield (µg)
Yes, per cell 0.03
Western Blot
Detected EV-associated proteins
CD9/ CD63/ Syntenin
Not detected contaminants
Calnexin/ GRP94
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
129.4
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 7703703703
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV210143 4/6 Homo sapiens HCC1954 PEG precipitation
(d)(U)C
Filtration
Martinez-Pacheco, Sarai 2021 78%

Study summary

Full title
All authors
Sarai Martinez-Pacheco and Lorraine O’Driscoll
Journal
Cancers
Abstract
To study and exploit extracellular vesicles (EVs) for clinical benefit as biomarkers, therapeutics, (show more...)To study and exploit extracellular vesicles (EVs) for clinical benefit as biomarkers, therapeutics, or drug delivery vehicles in diseases such as cancer, typically we need to separate them from the biofluid into which they have been released by their cells of origin. For cultured cells, this fluid is conditioned medium (CM). Previous studies comparing EV separation approaches have typically focused on CM from one cell line or pooled samples of other biofluids. We hypothesize that this is inadequate and that extrapolating from a single source of EVs may not be informative. Thus, in our study of methods not previous compared (i.e., the original differential ultracentrifugation (dUC) method and a PEG followed by ultracentrifugation (PEG + UC) method), we analyzed CM from three different HER2-positive breast cancer cell lines (SKBR3, EFM192A, HCC1954) that grow in the same culture medium type. CM from each was collected and equally divided between both protocols. The resulting isolates were compared on seven characteristics/parameters including particle size, concentration, structure/morphology, protein content, purity, detection of five EV markers, and presence of HER2. Both dUC and PEG + UC generated reproducible data for any given breast cancer cell lines’ CM. However, the seven characteristics of the EV isolates were cell line- and method-dependent. This suggests the need to include more than one EV source, rather than a single or pooled sample, when selecting an EV separation method to be advanced for either research or clinical purposes (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
PEG precipitation
(d)(U)C
Filtration
Protein markers
EV: CD63/ CD9/ Syntenin
non-EV: Calnexin/ GRP94
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HCC1954
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
93
Cell count
2.10E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
130
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Other
Name other separation method
PEG precipitation
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Yield (µg)
Yes, per cell 0.1
Western Blot
Detected EV-associated proteins
Syntenin/ CD9/ CD63
Not detected contaminants
Calnexin/ GRP94
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
119.3
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 8518481482
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV210143 5/6 Homo sapiens EFM192A (d)(U)C Martinez-Pacheco, Sarai 2021 78%

Study summary

Full title
All authors
Sarai Martinez-Pacheco and Lorraine O’Driscoll
Journal
Cancers
Abstract
To study and exploit extracellular vesicles (EVs) for clinical benefit as biomarkers, therapeutics, (show more...)To study and exploit extracellular vesicles (EVs) for clinical benefit as biomarkers, therapeutics, or drug delivery vehicles in diseases such as cancer, typically we need to separate them from the biofluid into which they have been released by their cells of origin. For cultured cells, this fluid is conditioned medium (CM). Previous studies comparing EV separation approaches have typically focused on CM from one cell line or pooled samples of other biofluids. We hypothesize that this is inadequate and that extrapolating from a single source of EVs may not be informative. Thus, in our study of methods not previous compared (i.e., the original differential ultracentrifugation (dUC) method and a PEG followed by ultracentrifugation (PEG + UC) method), we analyzed CM from three different HER2-positive breast cancer cell lines (SKBR3, EFM192A, HCC1954) that grow in the same culture medium type. CM from each was collected and equally divided between both protocols. The resulting isolates were compared on seven characteristics/parameters including particle size, concentration, structure/morphology, protein content, purity, detection of five EV markers, and presence of HER2. Both dUC and PEG + UC generated reproducible data for any given breast cancer cell lines’ CM. However, the seven characteristics of the EV isolates were cell line- and method-dependent. This suggests the need to include more than one EV source, rather than a single or pooled sample, when selecting an EV separation method to be advanced for either research or clinical purposes (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: CD63/ CD9/ Syntenin
non-EV: Calnexin/ GRP94
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
EFM192A
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
98
Cell count
3.60E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
39
Wash: time (min)
70
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Yield (µg)
Yes, per cell 0.01
Western Blot
Detected EV-associated proteins
Syntenin/ CD63/ CD81
Not detected contaminants
Calnexin/ GRP94
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
131.7
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 727777778
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV210143 6/6 Homo sapiens EFM192A PEG precipitation
(d)(U)C
Filtration
Martinez-Pacheco, Sarai 2021 78%

Study summary

Full title
All authors
Sarai Martinez-Pacheco and Lorraine O’Driscoll
Journal
Cancers
Abstract
To study and exploit extracellular vesicles (EVs) for clinical benefit as biomarkers, therapeutics, (show more...)To study and exploit extracellular vesicles (EVs) for clinical benefit as biomarkers, therapeutics, or drug delivery vehicles in diseases such as cancer, typically we need to separate them from the biofluid into which they have been released by their cells of origin. For cultured cells, this fluid is conditioned medium (CM). Previous studies comparing EV separation approaches have typically focused on CM from one cell line or pooled samples of other biofluids. We hypothesize that this is inadequate and that extrapolating from a single source of EVs may not be informative. Thus, in our study of methods not previous compared (i.e., the original differential ultracentrifugation (dUC) method and a PEG followed by ultracentrifugation (PEG + UC) method), we analyzed CM from three different HER2-positive breast cancer cell lines (SKBR3, EFM192A, HCC1954) that grow in the same culture medium type. CM from each was collected and equally divided between both protocols. The resulting isolates were compared on seven characteristics/parameters including particle size, concentration, structure/morphology, protein content, purity, detection of five EV markers, and presence of HER2. Both dUC and PEG + UC generated reproducible data for any given breast cancer cell lines’ CM. However, the seven characteristics of the EV isolates were cell line- and method-dependent. This suggests the need to include more than one EV source, rather than a single or pooled sample, when selecting an EV separation method to be advanced for either research or clinical purposes (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
PEG precipitation
(d)(U)C
Filtration
Protein markers
EV: CD63/ CD9/ Syntenin
non-EV: Calnexin/ GRP94
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
EFM192A
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
98
Cell count
3.60E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
130
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Other
Name other separation method
PEG precipitation
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Yield (µg)
Yes, per cell 0.11
Western Blot
Detected EV-associated proteins
Syntenin/ CD63/ CD81
Not detected contaminants
Calnexin/ GRP94
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
117.7
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 5018518518
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
1 - 6 of 6
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV210143
species
Homo
sapiens
sample type
Cell
culture
cell type
SKBR3
SKBR3
HCC1954
HCC1954
EFM192A
EFM192A
condition
Control
condition
Control
condition
Control
condition
Control
condition
Control
condition
Control
condition
separation protocol
(d)(U)C
PEG
precipitation
(d)(U)C
Filtration
(d)(U)C
PEG
precipitation
(d)(U)C
Filtration
(d)(U)C
PEG
precipitation
(d)(U)C
Filtration
Exp. nr.
1
2
3
4
5
6
EV-METRIC %
78
78
78
78
78
78