Search > Results

You searched for: EV210179 (EV-TRACK ID)

Showing 1 - 6 of 6

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV210179 2/6 Mus musculus Renca (d)(U)C
DG
Samoylenko, Anatoliy 2021 88%

Study summary

Full title
All authors
Anatoliy Samoylenko, Martin Kögler, Artem Zhyvolozhnyi, Olha Makieieva, Geneviève Bart, Sampson S. Andoh, Matthieu Roussey, Seppo J. Vainio, and Jussi Hiltunen
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) represent a diverse group of small membrane-encapsulated particles invo (show more...)Extracellular vesicles (EVs) represent a diverse group of small membrane-encapsulated particles involved in cell–cell communication, but the technologies to characterize EVs are still limited. Hypoxia is a typical condition in solid tumors, and cancer-derived EVs support tumor growth and invasion of tissues by tumor cells. We found that exposure of renal adenocarcinoma cells to hypoxia induced EV secretion and led to notable changes in the EV protein cargo in comparison to normoxia. Proteomics analysis showed overrepresentation of proteins involved in adhesion, such as integrins, in hypoxic EV samples. We further assessed the efficacy of time-gated Raman spectroscopy (TG-RS) and surface-enhanced time-gated Raman spectroscopy (TG-SERS) to characterize EVs. While the conventional continuous wave excitation Raman spectroscopy did not provide a notable signal, prominent signals were obtained with the TG-RS that were further enhanced in the TG-SERS. The Raman signal showed characteristic changes in the amide regions due to alteration in the chemical bonds of the EV proteins. The results illustrate that the TG-RS and the TG-SERS are promising label free technologies to study cellular impact of external stimuli, such as oxygen deficiency, on EV production, as well as differences arising from distinct EV purification protocols. (hide)
EV-METRIC
88% (98th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
Protein markers
EV: TSG101/ Alix/ CD9/ CD81
non-EV: Argonaute2/ GM130
Proteomics
no
EV density (g/ml)
1.07-1.12
Show all info
Study aim
New methodological development/Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
Renca
EV-harvesting Medium
Serum free medium
Cell viability (%)
97
Cell count
Not reported
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Density gradient
Type
Continuous
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
2
Orientation
Top-down
Rotor type
TH-641
Speed (g)
100000
Duration (min)
900
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
10
Pelleting: duration (min)
900
Pelleting: rotor type
TH-641
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
Yes, per cell 0.17
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ TSG101/ Alix/ CD81
Not detected contaminants
GM130/ Argonaute2
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
108
EV concentration
Yes
Particle yield
Yes, as number of particles per million cells 9.96E+06
EM
EM-type
Immuno-EM/ Transmission-EM
EM protein
CD63
Image type
Wide-field
Report size (nm)
30-200
EV210179 4/6 Mus musculus Renca (d)(U)C
DG
Samoylenko, Anatoliy 2021 88%

Study summary

Full title
All authors
Anatoliy Samoylenko, Martin Kögler, Artem Zhyvolozhnyi, Olha Makieieva, Geneviève Bart, Sampson S. Andoh, Matthieu Roussey, Seppo J. Vainio, and Jussi Hiltunen
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) represent a diverse group of small membrane-encapsulated particles invo (show more...)Extracellular vesicles (EVs) represent a diverse group of small membrane-encapsulated particles involved in cell–cell communication, but the technologies to characterize EVs are still limited. Hypoxia is a typical condition in solid tumors, and cancer-derived EVs support tumor growth and invasion of tissues by tumor cells. We found that exposure of renal adenocarcinoma cells to hypoxia induced EV secretion and led to notable changes in the EV protein cargo in comparison to normoxia. Proteomics analysis showed overrepresentation of proteins involved in adhesion, such as integrins, in hypoxic EV samples. We further assessed the efficacy of time-gated Raman spectroscopy (TG-RS) and surface-enhanced time-gated Raman spectroscopy (TG-SERS) to characterize EVs. While the conventional continuous wave excitation Raman spectroscopy did not provide a notable signal, prominent signals were obtained with the TG-RS that were further enhanced in the TG-SERS. The Raman signal showed characteristic changes in the amide regions due to alteration in the chemical bonds of the EV proteins. The results illustrate that the TG-RS and the TG-SERS are promising label free technologies to study cellular impact of external stimuli, such as oxygen deficiency, on EV production, as well as differences arising from distinct EV purification protocols. (hide)
EV-METRIC
88% (98th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
hypoxia
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
Protein markers
EV: Alix/ TSG101/ CD9/ CD81
non-EV: Argonaute2/ GM130
Proteomics
no
EV density (g/ml)
1.07-1.12
Show all info
Study aim
New methodological development/Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
Renca
EV-harvesting Medium
Serum free medium
Cell viability (%)
97
Cell count
Not reported
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Density gradient
Type
Continuous
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
2
Orientation
Top-down
Rotor type
TH-641
Speed (g)
100000
Duration (min)
900
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
10
Pelleting: duration (min)
900
Pelleting: rotor type
TH-641
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
Yes, per cell 0.185
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix/ CD9/ TSG101/ CD81
Not detected contaminants
GM130/ Argonaute2
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
128
EV concentration
Yes
Particle yield
Yes, as number of particles per million cells 2.10E+07
EM
EM-type
Immuno-EM/ Transmission-EM
EM protein
CD63
Image type
Wide-field
Report size (nm)
30-200
EV210179 1/6 Mus musculus Renca (d)(U)C
Exo-Spin
Samoylenko, Anatoliy 2021 67%

Study summary

Full title
All authors
Anatoliy Samoylenko, Martin Kögler, Artem Zhyvolozhnyi, Olha Makieieva, Geneviève Bart, Sampson S. Andoh, Matthieu Roussey, Seppo J. Vainio, and Jussi Hiltunen
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) represent a diverse group of small membrane-encapsulated particles invo (show more...)Extracellular vesicles (EVs) represent a diverse group of small membrane-encapsulated particles involved in cell–cell communication, but the technologies to characterize EVs are still limited. Hypoxia is a typical condition in solid tumors, and cancer-derived EVs support tumor growth and invasion of tissues by tumor cells. We found that exposure of renal adenocarcinoma cells to hypoxia induced EV secretion and led to notable changes in the EV protein cargo in comparison to normoxia. Proteomics analysis showed overrepresentation of proteins involved in adhesion, such as integrins, in hypoxic EV samples. We further assessed the efficacy of time-gated Raman spectroscopy (TG-RS) and surface-enhanced time-gated Raman spectroscopy (TG-SERS) to characterize EVs. While the conventional continuous wave excitation Raman spectroscopy did not provide a notable signal, prominent signals were obtained with the TG-RS that were further enhanced in the TG-SERS. The Raman signal showed characteristic changes in the amide regions due to alteration in the chemical bonds of the EV proteins. The results illustrate that the TG-RS and the TG-SERS are promising label free technologies to study cellular impact of external stimuli, such as oxygen deficiency, on EV production, as well as differences arising from distinct EV purification protocols. (hide)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Commercial method
Protein markers
EV: CD81/ TSG101/ CD9/ Alix
non-EV: Argonaute2/ GM130
Proteomics
yes
Show all info
Study aim
New methodological development/Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
Renca
EV-harvesting Medium
Serum free medium
Cell viability (%)
97
Cell count
Not reported
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
900
Pelleting: rotor type
TH-641
Pelleting: speed (g)
100000
Commercial kit
Exo-Spin
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
Yes, per million cells 1.15
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ TSG101/ Alix/ CD81
Not detected contaminants
GM130/ Argonaute2
Proteomics database
Yes:
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
131
EV concentration
Yes
Particle yield
Yes, as number of particles per million cells 9.07E+07
EM
EM-type
Immuno-EM/ Transmission-EM
EM protein
CD63
Image type
Wide-field
Report size (nm)
30-200
EV210179 3/6 Mus musculus Renca (d)(U)C
Exo-Spin
Samoylenko, Anatoliy 2021 67%

Study summary

Full title
All authors
Anatoliy Samoylenko, Martin Kögler, Artem Zhyvolozhnyi, Olha Makieieva, Geneviève Bart, Sampson S. Andoh, Matthieu Roussey, Seppo J. Vainio, and Jussi Hiltunen
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) represent a diverse group of small membrane-encapsulated particles invo (show more...)Extracellular vesicles (EVs) represent a diverse group of small membrane-encapsulated particles involved in cell–cell communication, but the technologies to characterize EVs are still limited. Hypoxia is a typical condition in solid tumors, and cancer-derived EVs support tumor growth and invasion of tissues by tumor cells. We found that exposure of renal adenocarcinoma cells to hypoxia induced EV secretion and led to notable changes in the EV protein cargo in comparison to normoxia. Proteomics analysis showed overrepresentation of proteins involved in adhesion, such as integrins, in hypoxic EV samples. We further assessed the efficacy of time-gated Raman spectroscopy (TG-RS) and surface-enhanced time-gated Raman spectroscopy (TG-SERS) to characterize EVs. While the conventional continuous wave excitation Raman spectroscopy did not provide a notable signal, prominent signals were obtained with the TG-RS that were further enhanced in the TG-SERS. The Raman signal showed characteristic changes in the amide regions due to alteration in the chemical bonds of the EV proteins. The results illustrate that the TG-RS and the TG-SERS are promising label free technologies to study cellular impact of external stimuli, such as oxygen deficiency, on EV production, as well as differences arising from distinct EV purification protocols. (hide)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
hypoxia
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Commercial method
Protein markers
EV: CD81/ TSG101/ CD9/ Alix
non-EV: Argonaute2/ GM130
Proteomics
yes
Show all info
Study aim
New methodological development/Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
Renca
EV-harvesting Medium
Serum free medium
Cell viability (%)
97
Cell count
Not reported
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
900
Pelleting: rotor type
TH-641
Pelleting: speed (g)
100000
Commercial kit
Exo-Spin
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
Yes, per cell 1.53
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix/ CD9/ TSG101/ CD81
Not detected contaminants
GM130/ Argonaute2
Proteomics database
Yes:
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
168
EV concentration
Yes
Particle yield
Yes, as number of particles per million cells 1.73E+08
EM
EM-type
Immuno-EM/ Transmission-EM
EM protein
CD63
Image type
Wide-field
Report size (nm)
30-200
EV210179 5/6 Homo sapiens 786-O (d)(U)C
Exo-Spin
Samoylenko, Anatoliy 2021 56%

Study summary

Full title
All authors
Anatoliy Samoylenko, Martin Kögler, Artem Zhyvolozhnyi, Olha Makieieva, Geneviève Bart, Sampson S. Andoh, Matthieu Roussey, Seppo J. Vainio, and Jussi Hiltunen
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) represent a diverse group of small membrane-encapsulated particles invo (show more...)Extracellular vesicles (EVs) represent a diverse group of small membrane-encapsulated particles involved in cell–cell communication, but the technologies to characterize EVs are still limited. Hypoxia is a typical condition in solid tumors, and cancer-derived EVs support tumor growth and invasion of tissues by tumor cells. We found that exposure of renal adenocarcinoma cells to hypoxia induced EV secretion and led to notable changes in the EV protein cargo in comparison to normoxia. Proteomics analysis showed overrepresentation of proteins involved in adhesion, such as integrins, in hypoxic EV samples. We further assessed the efficacy of time-gated Raman spectroscopy (TG-RS) and surface-enhanced time-gated Raman spectroscopy (TG-SERS) to characterize EVs. While the conventional continuous wave excitation Raman spectroscopy did not provide a notable signal, prominent signals were obtained with the TG-RS that were further enhanced in the TG-SERS. The Raman signal showed characteristic changes in the amide regions due to alteration in the chemical bonds of the EV proteins. The results illustrate that the TG-RS and the TG-SERS are promising label free technologies to study cellular impact of external stimuli, such as oxygen deficiency, on EV production, as well as differences arising from distinct EV purification protocols. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Commercial method
Protein markers
EV: CD81
non-EV: GM130
Proteomics
no
Show all info
Study aim
New methodological development/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
786-O
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Cell count
Not reported
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
900
Pelleting: rotor type
TH-641
Pelleting: speed (g)
100000
Commercial kit
Exo-Spin
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
Yes, per cell 1.18
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD81
Not detected contaminants
GM130
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
177.5
EV concentration
Yes
Particle yield
Yes, as number of particles per million cells 3.74E+07
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
30-200
EV210179 6/6 Homo sapiens 786-O (d)(U)C
Exo-Spin
Samoylenko, Anatoliy 2021 56%

Study summary

Full title
All authors
Anatoliy Samoylenko, Martin Kögler, Artem Zhyvolozhnyi, Olha Makieieva, Geneviève Bart, Sampson S. Andoh, Matthieu Roussey, Seppo J. Vainio, and Jussi Hiltunen
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) represent a diverse group of small membrane-encapsulated particles invo (show more...)Extracellular vesicles (EVs) represent a diverse group of small membrane-encapsulated particles involved in cell–cell communication, but the technologies to characterize EVs are still limited. Hypoxia is a typical condition in solid tumors, and cancer-derived EVs support tumor growth and invasion of tissues by tumor cells. We found that exposure of renal adenocarcinoma cells to hypoxia induced EV secretion and led to notable changes in the EV protein cargo in comparison to normoxia. Proteomics analysis showed overrepresentation of proteins involved in adhesion, such as integrins, in hypoxic EV samples. We further assessed the efficacy of time-gated Raman spectroscopy (TG-RS) and surface-enhanced time-gated Raman spectroscopy (TG-SERS) to characterize EVs. While the conventional continuous wave excitation Raman spectroscopy did not provide a notable signal, prominent signals were obtained with the TG-RS that were further enhanced in the TG-SERS. The Raman signal showed characteristic changes in the amide regions due to alteration in the chemical bonds of the EV proteins. The results illustrate that the TG-RS and the TG-SERS are promising label free technologies to study cellular impact of external stimuli, such as oxygen deficiency, on EV production, as well as differences arising from distinct EV purification protocols. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
hypoxia
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Commercial method
Protein markers
EV: CD81
non-EV: GM130
Proteomics
no
Show all info
Study aim
New methodological development/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
786-O
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Cell count
Not reported
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
900
Pelleting: rotor type
TH-641
Pelleting: speed (g)
100000
Commercial kit
Exo-Spin
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
Yes, per cell 1.43
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD81
Not detected contaminants
GM130
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
153.5
EV concentration
Yes
Particle yield
Yes, as number of particles per million cells 7.27E+07
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
30-200
1 - 6 of 6
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV210179
species
Mus
musculus
Mus
musculus
Mus
musculus
Mus
musculus
Homo
sapiens
Homo
sapiens
sample type
Cell
culture
Cell
culture
Cell
culture
Cell
culture
Cell
culture
Cell
culture
cell type
Renca
Renca
Renca
Renca
786-O
786-O
condition
Control
condition
hypoxia
Control
condition
hypoxia
Control
condition
hypoxia
separation protocol
(d)(U)C
DG
(d)(U)C
DG
(d)(U)C
Exo-Spin
(d)(U)C
Exo-Spin
(d)(U)C
Exo-Spin
(d)(U)C
Exo-Spin
Exp. nr.
2
4
1
3
5
6
EV-METRIC %
88
88
67
67
56
56