Search > Results

You searched for: 2012 (Year of publication)

Showing 151 - 200 of 268

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Isolation method/Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Isolation method/Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV120119 1/2 Homo sapiens Serum (d)(U)C Ciravolo V 2012 14%

Study summary

Full title
All authors
Ciravolo V, Huber V, Ghedini GC, Venturelli E, Bianchi F, Campiglio M, Morelli D, Villa A, Della Mina P, Menard S, Filipazzi P, Rivoltini L, Tagliabue E, Pupa SM
Journal
J Cell Physiol
Abstract
Exosomes are endosome-derived nanovesicles actively released into the extracellular environment and (show more...)Exosomes are endosome-derived nanovesicles actively released into the extracellular environment and biological fluids, both under physiological and pathological conditions, by different cell types. We characterized exosomes constitutively secreted by HER2-overexpressing breast carcinoma cell lines and analyzed in vitro and in vivo their potential role in interfering with the therapeutic activity of the humanized antibody Trastuzumab and the dual tyrosine kinase inhibitor (TKI) Lapatinib anti-HER2 biodrugs. We show that exosomes released by the HER2-overexpressing tumor cell lines SKBR3 and BT474 express a full-length HER2 molecule that is also activated, although to a lesser extent than in the originating cells. Release of these exosomes was significantly modulated by the growth factors EGF and heregulin, two of the known HER2 receptor-activating ligands and naturally present in the surrounding tumor microenvironment. Exosomes secreted either in HER2-positive tumor cell-conditioned supernatants or in breast cancer patients' serum bound to Trastuzumab. Functional assays revealed that both xenogeneic and autologous HER2-positive nanovesicles, but not HER2-negative ones, inhibited Trastuzumab activity on SKBR3 cell proliferation. By contrast, Lapatinib activity on SKBR3 cell proliferation was unaffected by the presence of autologous exosomes. Together, these findings point to the role of HER2-positive exosomes in modulating sensitivity to Trastuzumab, and, consequently, to HER2-driven tumor aggressiveness. (hide)
EV-METRIC
14% (56th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Adj. k-factor
253.9 (pelleting) / 60.38 (washing)
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
SW28
Pelleting: adjusted k-factor
253.9
Wash: Rotor Type
TLA100.3
Wash: adjusted k-factor
60.38
EV120054 1/1 Homo sapiens NAY (d)(U)C
DG
Cho JA 2012 14%

Study summary

Full title
All authors
Cho JA, Park H, Lim EH, Lee KW
Journal
Int J Oncol
Abstract
Exosomes are small membrane vesicles secreted into the extracellular environment by various types of (show more...)Exosomes are small membrane vesicles secreted into the extracellular environment by various types of cells, including tumor cells. Exosomes are enriched with a discrete set of cellular proteins, and therefore expected to exert diverse biological functions according to cell origin. Mesenchymal stem cells (MSCs) possess the potential for differentiation into multilineages and can also function as precursors for tumor stroma including myofibroblast that provides a favorable environment for tumor progression. Although a close relationship between tumor cells and MSCs in a neoplastic tumor microenvironment has already been revealed, how this communication works is poorly understood. In this study, we investigated the influence of tumor cell-derived exosomes on MSCs by treating adipose tissue-derived MSCs (ADSCs) with breast cancer-derived exosomes. The exosome-treated ADSCs exhibited the phenotypes of tumor-associated myofibroblasts with increased expression of ?-SMA. Exosome treatment also induced increased expression of tumor-promoting factors SDF-1, VEGF, CCL5 and TGF?. This phenomenon was correlated with increased expression of TGF? receptor I and II. Analysis of SMAD2, a key player in the TGF? receptor-mediated SMAD pathway, revealed that its phosphorylation was increased by exosome treatment and was inhibited by treatment with SB431542, an inhibitor of the SMAD-mediated pathway, resulting in decreased expression of ?-SMA. Taken together, our results show that tumor-derived exosomes induced the myofibroblastic phenotype and functionality in ADSCs via the SMAD-mediated signaling pathway. In conclusion, this study suggests that tumor-derived exosomes can contribute to progression and malignancy of tumor cells by converting MSCs within tumor stroma into tumor-associated myofibroblasts in the tumor microenvironment. (hide)
EV-METRIC
14% (44th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Density gradient
Only used for validation of main results
Yes
Lowest density fraction
0.25
Highest density fraction
2.5
Orientation
Bottom-up
Speed (g)
100000
EV120115 1/1 Vibrio cholerae Bacteria (d)(U)C
Filtration
Bishop AL 2012 14%

Study summary

Full title
All authors
Bishop AL, Tarique AA, Patimalla B, Calderwood SB, Qadri F, Camilli A
Journal
J Infect Dis
Abstract
BACKGROUND: Vibrio cholerae excreted by cholera patients is hyperinfectious (HI), which can be model (show more...)BACKGROUND: Vibrio cholerae excreted by cholera patients is hyperinfectious (HI), which can be modeled by passage through infant mice. Immunization of adult female mice with V. cholerae outer-membrane vesicles (OMVs) passively protects suckling mice from challenge. Although V. cholerae is unable to colonize protected pups, the bacteria survive passage and have the potential to be transmitted to susceptible individuals. Here, we investigated the impact of OMV immunization and the HI state on V. cholerae transmission. METHODS: Neonatal mice suckled by OMV- or sham-immunized dams were challenged with HI V. cholerae. The infectivity of spatially and temporally separate V. cholerae populations obtained from infected naive or protected pups was tested. Recombination-based in vivo expression technology was used to assess virulence gene expression within these populations. RESULTS: OMV immunization significantly reduced colonization of neonates challenged with HI V. cholerae. Vibrio cholerae that had colonized the naive host was HI, whereas V. cholerae excreted by neonates born to OMV-immunized dams, although viable, was hypoinfectious and failed to fully induce virulence gene expression. CONCLUSIONS: OMV immunization can significantly reduce the V. cholerae burden upon challenge with HI V. cholerae and can also block transmission from immune mice by reducing the infectivity of shed bacteria. (hide)
EV-METRIC
14% (56th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Bacteria
Sample origin
NAY
Focus vesicles
OMV
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Adj. k-factor
182.8 (pelleting)
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Vibrio cholerae
Sample Type
Bacteria
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
240
Pelleting: rotor type
SW32;50.2Ti
Pelleting: adjusted k-factor
182.8
Filtration steps
0.45µm > x > 0.22µm, 0.22µm or 0.2µm
EV210239 1/3 Homo sapiens Blood plasma (d)(U)C Marques FK 2012 13%

Study summary

Full title
All authors
Marques FK, Campos FM, Filho OA, Carvalho AT, Dusse LM, Gomes KB
Journal
Clin Chim Acta
Abstract
The present study aimed to evaluate microparticles (MPs) from different sources in women with severe (show more...)The present study aimed to evaluate microparticles (MPs) from different sources in women with severe preeclampsia (PE) compared with normotensive pregnant women and non-pregnant women. This case-control study evaluated 28 pregnant women with severe PE, 30 normotensive pregnant women, and 29 non-pregnant women. MPs from neutrophils, endothelial cells, monocytes, platelets, leukocytes, erythrocytes, and syncytiotrophoblast were evaluated using flow cytometry. A higher total number of MPs were observed in women with severe PE compared with normotensive pregnant women and non-pregnant women (P=0.004 and P=0.001, respectively). MPs derived from erythrocytes were increased in women with severe PE compared with normotensive pregnant women (P=0.002). A trend towards association was observed between platelet count and the number of MPs derived from platelets (P=0.09) in severe PE group. A positive correlation was also found between the number of endothelial cell-derived MPs and the number of platelet-derived MPs, leukocyte-derived MPs, neutrophil-derived MPs, and lymphocyte-derived MPs (P<0.05) in severe PE pregnant women. MP counts can be increased in severe PE, and erythrocyte and endothelial cell-derived MPs seem to be associated to severe PE. (hide)
EV-METRIC
13% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Healthy non-pregnant
Focus vesicles
microparticle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: CD66/ CD51/ CD14/ CD41/ CD45/ CD235a/ CD3
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Not specified
Pelleting: speed (g)
14000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Flow cytometry aspecific beads
Antibody details provided?
Yes
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Detected EV-associated proteins
CD66/ CD51/ CD14/ CD41/ CD45/ CD235a/ CD3
Characterization: Lipid analysis
No
EV210239 2/3 Homo sapiens Blood plasma (d)(U)C Marques FK 2012 13%

Study summary

Full title
All authors
Marques FK, Campos FM, Filho OA, Carvalho AT, Dusse LM, Gomes KB
Journal
Clin Chim Acta
Abstract
The present study aimed to evaluate microparticles (MPs) from different sources in women with severe (show more...)The present study aimed to evaluate microparticles (MPs) from different sources in women with severe preeclampsia (PE) compared with normotensive pregnant women and non-pregnant women. This case-control study evaluated 28 pregnant women with severe PE, 30 normotensive pregnant women, and 29 non-pregnant women. MPs from neutrophils, endothelial cells, monocytes, platelets, leukocytes, erythrocytes, and syncytiotrophoblast were evaluated using flow cytometry. A higher total number of MPs were observed in women with severe PE compared with normotensive pregnant women and non-pregnant women (P=0.004 and P=0.001, respectively). MPs derived from erythrocytes were increased in women with severe PE compared with normotensive pregnant women (P=0.002). A trend towards association was observed between platelet count and the number of MPs derived from platelets (P=0.09) in severe PE group. A positive correlation was also found between the number of endothelial cell-derived MPs and the number of platelet-derived MPs, leukocyte-derived MPs, neutrophil-derived MPs, and lymphocyte-derived MPs (P<0.05) in severe PE pregnant women. MP counts can be increased in severe PE, and erythrocyte and endothelial cell-derived MPs seem to be associated to severe PE. (hide)
EV-METRIC
13% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Healthy pregnant
Focus vesicles
microparticle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: CD66/ CD51/ CD14/ CD41/ CD45/ CD235a/ CD3
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Not specified
Pelleting: speed (g)
14000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Flow cytometry aspecific beads
Antibody details provided?
Yes
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Detected EV-associated proteins
CD66/ CD51/ CD14/ CD41/ CD45/ CD235a/ CD3
Characterization: Lipid analysis
No
EV210239 3/3 Homo sapiens Blood plasma (d)(U)C Marques FK 2012 13%

Study summary

Full title
All authors
Marques FK, Campos FM, Filho OA, Carvalho AT, Dusse LM, Gomes KB
Journal
Clin Chim Acta
Abstract
The present study aimed to evaluate microparticles (MPs) from different sources in women with severe (show more...)The present study aimed to evaluate microparticles (MPs) from different sources in women with severe preeclampsia (PE) compared with normotensive pregnant women and non-pregnant women. This case-control study evaluated 28 pregnant women with severe PE, 30 normotensive pregnant women, and 29 non-pregnant women. MPs from neutrophils, endothelial cells, monocytes, platelets, leukocytes, erythrocytes, and syncytiotrophoblast were evaluated using flow cytometry. A higher total number of MPs were observed in women with severe PE compared with normotensive pregnant women and non-pregnant women (P=0.004 and P=0.001, respectively). MPs derived from erythrocytes were increased in women with severe PE compared with normotensive pregnant women (P=0.002). A trend towards association was observed between platelet count and the number of MPs derived from platelets (P=0.09) in severe PE group. A positive correlation was also found between the number of endothelial cell-derived MPs and the number of platelet-derived MPs, leukocyte-derived MPs, neutrophil-derived MPs, and lymphocyte-derived MPs (P<0.05) in severe PE pregnant women. MP counts can be increased in severe PE, and erythrocyte and endothelial cell-derived MPs seem to be associated to severe PE. (hide)
EV-METRIC
13% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Pregnant, severe preeclampsia
Focus vesicles
microparticle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: CD66/ CD51/ CD14/ CD41/ CD45/ CD235a/ CD3
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Not specified
Pelleting: speed (g)
14000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Flow cytometry aspecific beads
Antibody details provided?
Yes
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Detected EV-associated proteins
CD66/ CD51/ CD14/ CD41/ CD45/ CD235a/ CD3
Characterization: Lipid analysis
No
EV120102 2/2 Mus musculus Blood plasma Microfluidics Davies RT 2012 13%

Study summary

Full title
All authors
Davies RT, Kim J, Jang SC, Choi EJ, Gho YS, Park J
Journal
Lab Chip
Abstract
Extracellular vesicles are released by various cell types, particularly tumor cells, and may be pote (show more...)Extracellular vesicles are released by various cell types, particularly tumor cells, and may be potential targets for blood-based cancer diagnosis. However, studies performed on blood-borne vesicles to date have been limited by lack of effective, standardized purification strategies. Using in situ prepared nanoporous membranes, we present a simple strategy employing a microfluidic filtration system to isolate vesicles from whole blood samples. This method can be applied to purify nano-sized particles from blood allowing isolation of intact extracellular vesicles, avoiding the need for laborious and potentially damaging centrifugation steps or overly specific antibody-based affinity purification. Porous polymer monoliths were integrated as membranes into poly(methyl methacrylate) microfluidic chips by benchtop UV photopolymerization through a mask, allowing precise positioning of membrane elements while preserving simplicity of device preparation. Pore size could be manipulated by changing the ratio of porogenic solvent to prepolymer solution, and was tuned to a size proper for extraction of vesicles. Using the membrane as a size exclusion filter, we separated vesicles from cells and large debris by injecting whole blood under pressure through the microfluidic device. To enhance isolation purity, DC electrophoresis was employed as an alternative driving force to propel particles across the filter and increase the separation efficiency of vesicles from proteins. From the whole blood of melanoma-grown mice, we isolated extracellular vesicles and performed RT-PCR to verify their contents of RNA. Melan A mRNA derived from melanoma tumor cells were found enriched in filtered samples, confirming the recovery of vesicles via their cargo. This filtration system can be incorporated into other on-chip processes enabling integrated sample preparation for the downstream analysis of blood-based extracellular vesicles. (hide)
EV-METRIC
13% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Microfluidics
Protein markers
EV: CD9
non-EV:
Proteomics
no
Show all info
Study aim
Technical
Sample
Species
Mus musculus
Sample Type
Blood plasma
Separation Method
Other
Name other separation method
Microfluidics
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV120167 1/2 Mus musculus NAY ExoQuick Wang G 2012 13%

Study summary

Full title
All authors
Wang G, Dinkins M, He Q, Zhu G, Poirier C, Campbell A, Mayer-Proschel M, Bieberich E
Journal
J Biol Chem
Abstract
Amyloid protein is well known to induce neuronal cell death, whereas only little is known about its (show more...)Amyloid protein is well known to induce neuronal cell death, whereas only little is known about its effect on astrocytes. We found that amyloid peptides activated caspase 3 and induced apoptosis in primary cultured astrocytes, which was prevented by caspase 3 inhibition. Apoptosis was also prevented by shRNA-mediated down-regulation of PAR-4, a protein sensitizing cells to the sphingolipid ceramide. Consistent with a potentially proapoptotic effect of PAR-4 and ceramide, astrocytes surrounding amyloid plaques in brain sections of the 5xFAD mouse (and Alzheimer disease patient brain) showed caspase 3 activation and were apoptotic when co-expressing PAR-4 and ceramide. Apoptosis was not observed in astrocytes with deficient neutral sphingomyelinase 2 (nSMase2), indicating that ceramide generated by nSMase2 is critical for amyloid-induced apoptosis. Antibodies against PAR-4 and ceramide prevented amyloid-induced apoptosis in vitro and in vivo, suggesting that apoptosis was mediated by exogenous PAR-4 and ceramide, potentially associated with secreted lipid vesicles. This was confirmed by the analysis of lipid vesicles from conditioned medium showing that amyloid peptide induced the secretion of PAR-4 and C18 ceramide-enriched exosomes. Exosomes were not secreted by nSMase2-deficient astrocytes, indicating that ceramide generated by nSMase2 is critical for exosome secretion. Consistent with the ceramide composition in amyloid-induced exosomes, exogenously added C18 ceramide restored PAR-4-containing exosome secretion in nSMase2-deficient astrocytes. Moreover, isolated PAR-4/ceramide-enriched exosomes were taken up by astrocytes and induced apoptosis in the absence of amyloid peptide. Taken together, we report a novel mechanism of apoptosis induction by PAR-4/ceramide-enriched exosomes, which may critically contribute to Alzheimer disease. (hide)
EV-METRIC
13% (34th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
ExoQuick
Protein markers
EV: Alix/ PKC/ TSG101/ PAR-4
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
Commercial kit
ExoQuick
Other
Name other separation method
ExoQuick
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix/ TSG101/ PAR-4/ PKC
ELISA
Antibody details provided?
No
Detected EV-associated proteins
PAR-4/ PKC
Characterization: Particle analysis
None
EV120087 3/3 Mus musculus Serum ExoQuick Singh PP 2012 13%

Study summary

Full title
All authors
Singh PP, Smith VL, Karakousis PC, Schorey JS
Journal
J Immunol
Abstract
More than 2 billion people are infected with Mycobacterium. tuberculosis; however, only 5-10% of tho (show more...)More than 2 billion people are infected with Mycobacterium. tuberculosis; however, only 5-10% of those infected will develop active disease. Recent data suggest that containment is controlled locally at the level of the granuloma and that granuloma architecture may differ even within a single infected individual. Formation of a granuloma likely requires exposure to mycobacterial components released from infected macrophages, but the mechanism of their release is still unclear. We hypothesize that exosomes, which are small membrane vesicles containing mycobacterial components released from infected macrophages, could promote cellular recruitment during granuloma formation. In support of this hypothesis, we found that C57BL/6 mouse-derived bone marrow macrophages treated with exosomes released from M. tuberculosis-infected RAW264.7 cells secrete significant levels of chemokines and can induce migration of CFSE-labeled macrophages and splenocytes. Exosomes isolated from the serum of M. bovis bacillus Calmette-Guérin-infected mice could also stimulate macrophage production of chemokines and cytokines ex vivo, but the level and type differed during the course of a 60-d infection. Of interest, the exosome concentration in serum correlated strongly with mouse bacterial load, suggesting some role in immune regulation. Finally, hollow fiber-based experiments indicated that macrophages treated with exosomes released from M. tuberculosis-infected cells could promote macrophage recruitment in vivo. Exosomes injected intranasally could also recruit CD11b(+) cells into the lung. Overall, our study suggests that exosomes may play an important role in recruiting and regulating host cells during an M. tuberculosis infection. (hide)
EV-METRIC
13% (47th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
ExoQuick
Protein markers
EV: CD63/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Serum
Separation Method
Commercial kit
ExoQuick
Other
Name other separation method
ExoQuick
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ CD9
Characterization: Particle analysis
NTA
EM
EM-type
transmission EM
Image type
Wide-field
EV120153 1/1 Mus musculus NAY DC
Filtration
UF
Qi H 2012 13%

Study summary

Full title
All authors
Qi H, Liu JP, Deng CY, Zhou HX, Deng SP, Li FR
Journal
Immunol Res
Abstract
Selective interference with CD45RB isoform by monoclonal antibody (anti-CD45RBmAb) reliably induces (show more...)Selective interference with CD45RB isoform by monoclonal antibody (anti-CD45RBmAb) reliably induces donor-specific tolerance. Dendritic cells (DCs) are the most potent antigen-presenting cells that are capable of activating naïve T cells. The purposes of the present study were to investigate the roles of anti-CD45RBmAb on the phenotypes and functioning of DCs and to further illustrate the mechanism of anti-CD45RBmAb-inducing immunologic tolerance. DCs from C57BL/6 mice were cultured and treated with various doses of anti-CD45RB monoclonal antibody. Cell phenotype, cycle and phagocytic ability were detected by flow cytometry. The production of IL-10 and IL-12 in the supernatants of mature DCs was measured with ELISA. Exosomes (Dex) were recovered from the supernatant of DCs cultured for 6 days in depleted medium, and effects of DCs and Dex on the ability of T-cell proliferation were detected by mixed lymphocyte culture. Anti-CD45RBmAb could inhibit DCs maturation in a dose-dependent manner, and the effects of exosomes (Dex) on DCs enhance or inhibition proliferation of T cells were also in a dose-dependent manner. Anti-CD45RBmAb could profoundly inhibit the maturation and functioning of DCs and generate tolerogenic dendritic cells (tDCs) as well as Dex, suggesting mechanistic contributions to tolerance development from the DCs through interactions with T cells. (hide)
EV-METRIC
13% (34th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DC
Filtration
UF
Protein markers
EV: CD80/ CD83/ MHC2/ CD86
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
Separation Method
Filtration steps
> 0.45 µm,
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD80/ CD83/ CD86/ MHC2
ELISA
Antibody details provided?
No
Detected EV-associated proteins
CD80/ CD83/ CD86/ MHC2
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV120072 1/1 Mus musculus NAY (d)(U)C
DC
UF
Li X 2012 13%

Study summary

Full title
All authors
Li X, Li JJ, Yang JY, Wang DS, Zhao W, Song WJ, Li WM, Wang JF, Han W, Zhang ZC, Yu Y, Cao DY, Dou KF
Journal
PLoS One
Abstract
BACKGROUND: Dendritic cells (DCs) release bioactive exosomes that play an important role in immune r (show more...)BACKGROUND: Dendritic cells (DCs) release bioactive exosomes that play an important role in immune regulation. Because they express low levels of class I major histocompatibility complex (MHC) and co-stimulatory molecules, exosomes derived from donor immature DCs (imDex) prolong allograft survival by inhibiting T-cell activation. However, this effect is limited and does not induce immunological tolerance when imDex are administered alone. Thus, we tested the effect of combined treatment with donor imDex and low-dose rapamycin on inducing tolerance in a mouse cardiac transplantation model. METHODS: ImDex were obtained from the culture supernatant of immature DCs derived from donor mouse (C57BL/6) bone marrow and were injected with suboptimal doses of rapamycin into recipient mouse (BALB/c) before and after transplantation. The capacity of this treatment to induce immune tolerance was analyzed in vitro and in vivo using the mouse cardiac transplantation model. RESULTS: Donor imDex expressed moderate levels of MHC class II and low levels of MHC class I and co-stimulatory molecules, but neither imDex nor subtherapeutic rapamycin dose alone induced cardiac allograft tolerance. Combined treatment with imDex and rapamycin, however, led to donor specific cardiac allograft tolerance. This effect was accompanied by decreased anti-donor antigen cellular response and an increased percentage of spleen CD4(+)CD25(+) T cells in recipients. Furthermore, this donor specific tolerance could be further transferred to naïve allograft recipients through injection of splenocytes, but not serum, from tolerant recipients. CONCLUSION: Combined with immunosuppressive treatment, donor imDex can prolong cardiac allograft survival and induce donor specific allograft tolerance. (hide)
EV-METRIC
13% (34th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DC
UF
Protein markers
EV: MFGE8/ CD80/ HSP90/ CD86/ ICAM1/ HSP70/ Beta-actin/ MHC2/ MHC1
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
HSP90/ HSP70/ Beta-actin/ MFGE8/ MHC1/ MHC2/ CD80/ CD86/ ICAM1
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Beta-actin/ MFGE8/ MHC1/ MHC2/ CD80/ CD86/ ICAM1
Characterization: Particle analysis
EM
EM-type
transmission EM
EV120031 1/2 Homo sapiens Serum ExoQuick Epple LM 2012 13%

Study summary

Full title
All authors
Epple LM, Griffiths SG, Dechkovskaia AM, Dusto NL, White J, Ouellette RJ, Anchordoquy TJ, Bemis LT, Graner MW
Journal
PLoS One
Abstract
Medulloblastomas are the most prevalent malignant pediatric brain tumors. Survival for these patient (show more...)Medulloblastomas are the most prevalent malignant pediatric brain tumors. Survival for these patients has remained largely the same for approximately 20 years, and our therapies for these cancers cause significant health, cognitive, behavioral and developmental sequelae for those who survive the tumor and their treatments. We obviously need a better understanding of the biology of these tumors, particularly with regard to their migratory/invasive behaviors, their proliferative propensity, and their abilities to deflect immune responses. Exosomes, virus-sized membrane vesicles released extracellularly from cells after formation in, and transit thru, the endosomal pathway, may play roles in medulloblastoma pathogenesis but are as yet unstudied in this disease. Here we characterized exosomes from a medulloblastoma cell line with biochemical and proteomic analyses, and included characterization of patient serum exosomes. Further scrutiny of the proteomic data suggested functional properties of the exosomes that are relevant to medulloblastoma tumor biology, including their roles as proliferation stimulants, their activities as attractants for tumor cell migration, and their immune modulatory impacts on lymphocytes. Aspects of this held true for exosomes from other medulloblastoma cell lines as well. Additionally, pathway analyses suggested a possible role for the transcription factor hepatocyte nuclear factor 4 alpha (HNF4A); however, inhibition of the protein's activity actually increased D283MED cell proliferation/clonogenecity, suggesting that HNF4A may act as a tumor suppressor in this cell line. Our work demonstrates that relevant functional properties of exosomes may be derived from appropriate proteomic analyses, which translate into mechanisms of tumor pathophysiology harbored in these extracellular vesicles. (hide)
EV-METRIC
13% (47th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
NAY
Focus vesicles
exosomes / extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
ExoQuick
Protein markers
EV: HSP70/ CD63/ CD9/ HSC70
non-EV:
Proteomics
no
Show all info
Study aim
Omics
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
Commercial kit
ExoQuick
Other
Name other separation method
ExoQuick
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ CD9/ HSP70/ HSC70
ELISA
Antibody details provided?
No
Detected EV-associated proteins
HSC70
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV120056 1/1 Mus musculus NAY Deng Z 2012 13%

Study summary

Full title
All authors
Deng Z, Cheng Z, Xiang X, Yan J, Zhuang X, Liu C, Jiang H, Ju S, Zhang L, Grizzle W, Mobley J, Roman J, Miller D, Zhang HG
Journal
Am J Pathol
Abstract
Exosomes participate in intercellular communication, but most data published are based on exosomes r (show more...)Exosomes participate in intercellular communication, but most data published are based on exosomes released from in vitro cultured cells that do not communicate with neighboring cells located in the same microenvironment as the exosomal-producing cells in vivo. In this study, our data show that co-culture of leukocytes isolated from breast tumor tissue leads to uptake of fibronectin (FN) on or in the tumor exosomes (Exo(fib+)). The induction of FN and exosomal uptake is tumor tissue derived and leukocyte specific, because leukocytes isolated from the peripheral blood of naïve mice failed to induce FN uptake by tumor exosomes. Furthermore, depletion of both CD25(+) cells and Gr-1(+) cells from tumor-associated leukocytes causes a reduction of Exo(fib+), suggesting that tumor-associated CD25(+) cells and Gr-1(+) cells participate in FN production and uptake by tumor exosomes, resulting in Exo(fib+). As a result of tumor cells absorbing Exo(fib+), two major events are induced: focal adhesion kinase/Src-dependent signaling pathways are activated, and the production of proinflammatory cytokines and metalloproteinase 9 is enhanced in response to absorbing exosomes. This, in turn, enhances tumor cell invasion in vitro and in vivo. Collectively, our findings provide evidence that exosomes released from freshly excised tumor tissue cells that have communicated/interacted with immune cells gain new immune evasion capacity. (hide)
EV-METRIC
13% (34th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Protein markers
EV: TSG101/ CD63/ CD9
non-EV:
Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
Separation Method
Other
Name other separation method
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ CD9/ TSG101
Characterization: Particle analysis
None
EV120102 1/2 Mus musculus Blood plasma (d)(U)C Davies RT 2012 11%

Study summary

Full title
All authors
Davies RT, Kim J, Jang SC, Choi EJ, Gho YS, Park J
Journal
Lab Chip
Abstract
Extracellular vesicles are released by various cell types, particularly tumor cells, and may be pote (show more...)Extracellular vesicles are released by various cell types, particularly tumor cells, and may be potential targets for blood-based cancer diagnosis. However, studies performed on blood-borne vesicles to date have been limited by lack of effective, standardized purification strategies. Using in situ prepared nanoporous membranes, we present a simple strategy employing a microfluidic filtration system to isolate vesicles from whole blood samples. This method can be applied to purify nano-sized particles from blood allowing isolation of intact extracellular vesicles, avoiding the need for laborious and potentially damaging centrifugation steps or overly specific antibody-based affinity purification. Porous polymer monoliths were integrated as membranes into poly(methyl methacrylate) microfluidic chips by benchtop UV photopolymerization through a mask, allowing precise positioning of membrane elements while preserving simplicity of device preparation. Pore size could be manipulated by changing the ratio of porogenic solvent to prepolymer solution, and was tuned to a size proper for extraction of vesicles. Using the membrane as a size exclusion filter, we separated vesicles from cells and large debris by injecting whole blood under pressure through the microfluidic device. To enhance isolation purity, DC electrophoresis was employed as an alternative driving force to propel particles across the filter and increase the separation efficiency of vesicles from proteins. From the whole blood of melanoma-grown mice, we isolated extracellular vesicles and performed RT-PCR to verify their contents of RNA. Melan A mRNA derived from melanoma tumor cells were found enriched in filtered samples, confirming the recovery of vesicles via their cargo. This filtration system can be incorporated into other on-chip processes enabling integrated sample preparation for the downstream analysis of blood-based extracellular vesicles. (hide)
EV-METRIC
11% (26th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: CD9
non-EV:
Proteomics
no
Show all info
Study aim
Technical
Sample
Species
Mus musculus
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV120100 1/1 Mus musculus BALF (d)(U)C Zhu M 2012 11%

Study summary

Full title
All authors
Zhu M, Li Y, Shi J, Feng W, Nie G, Zhao Y
Journal
Small
Abstract
Evaluation of systemic biosafety of nanomaterials urgently demands a comprehensive understanding of (show more...)Evaluation of systemic biosafety of nanomaterials urgently demands a comprehensive understanding of the mechanisms of the undesirable interference and systemic signaling that arises between man-made nanomaterials and biological systems. It is shown that exosomes may act as signal conveyors for nanoparticle-induced systemic immune responses. Exosomes are extracellularly secreted membrane vesicles which act as Trojan horses for the dissemination and intercellular communication of natural nanosized particles (like viruses). Upon exposure to magnetic iron oxide nanoparticles (MIONs), it is possible to dose-dependently generate a significant number of exosomes in the alveolar region of BALB/c mice. These exosomes are quickly eliminated from alveoli into systemic circulation and largely transfer their signals to the immune system. Maturation of dendritic cells and activation of splenic T cells are significantly induced by these exosomes. Furthermore, exosome-induced T-cell activation is more efficient toward sensitized T cells and in ovalbumin (OVA)-sensitized mice than in the unsensitized counterparts. Activation of systemic T cells reveals a T helper 1 polarization and aggravated inflammation, which poses potential hazards to the deterioration of allergic diseases in OVA-sensitized mice. The studies suggest that exosomes may act as conveyors for extrapulmonary signal transduction in nanoparticle-induced immune systemic responses, which are the key in vivo processes of manufactured nanoparticles executing either biomedical functions or toxic responses. (hide)
EV-METRIC
11% (35th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
BALF
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: TSG101/ CD80/ MHC2/ MHC1
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
BALF
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
TSG101/ MHC1/ MHC2/ CD80
ELISA
Antibody details provided?
No
Detected EV-associated proteins
MHC1/ MHC2/ CD80
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV120099 1/2 Mus musculus NAY (d)(U)C Yuyama K 2012 11%

Study summary

Full title
All authors
Yuyama K, Sun H, Mitsutake S, Igarashi Y
Journal
J Biol Chem
Abstract
Amyloid ?-peptide (A?), the pathogenic agent of Alzheimer disease, is a physiological metabolite who (show more...)Amyloid ?-peptide (A?), the pathogenic agent of Alzheimer disease, is a physiological metabolite whose levels are constantly controlled in normal brain. Recent studies have demonstrated that a fraction of extracellular A? is associated with exosomes, small membrane vesicles of endosomal origin, although the fate of A? in association with exosome is largely unknown. In this study, we identified novel roles for neuron-derived exosomes acting on extracellular A?, i.e. exosomes drive conformational changes in A? to form nontoxic amyloid fibrils and promote uptake of A? by microglia. The A? internalized together with exosomes was further transported to lysosomes and degraded. We also found that blockade of phosphatidylserine on the surface of exosomes by annexin V not only prevented exosome uptake but also suppressed A? incorporation into microglia. In addition, we demonstrated that secretion of neuron-derived exosomes was modulated by the activities of sphingolipid-metabolizing enzymes, including neutral sphingomyelinase 2 (nSMase2) and sphingomyelin synthase 2 (SMS2). In transwell experiments, up-regulation of exosome secretion from neuronal cells by treatment with SMS2 siRNA enhanced A? uptake into microglial cells and significantly decreased extracellular levels of A?. Our findings indicate a novel mechanism responsible for clearance of A? through its association with exosomes. The modulation of the vesicle release and/or elimination may alter the risk of AD. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: Alix/ TSG101/ GM1
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix/ TSG101/ GM1
ELISA
Antibody details provided?
No
Detected EV-associated proteins
GM1
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV120098 1/2 Mus musculus Blood plasma (d)(U)C
IAF
Yang C 2012 11%

Study summary

Full title
All authors
Yang C, Ruffner MA, Kim SH, Robbins PD
Journal
Eur J Immunol
Abstract
Tumor-specific immunosuppression is frequently observed in tumor-bearing hosts. Exosomes are nano-si (show more...)Tumor-specific immunosuppression is frequently observed in tumor-bearing hosts. Exosomes are nano-sized, endosomal-derived membrane vesicles secreted by most tumor and hematopoietic cells and have been shown to actively participate in immune regulation. We previously demonstrated that antigen-specific immunosuppressive exosomes could be isolated from the blood plasma of antigen-immunized mice. Here, we demonstrate that plasma-derived exosomes isolated from mice bearing OVA-expressing tumors were able to suppress OVA-specific immune responses in a mouse delayed-type hypersensitivity model. Enrichment of tumor-derived exosomes in the plasma of mice bearing subcutaneous melanoma was not detected using an exosome-tagging approach. Instead, depletion of MHC class II(+) vesicles from plasma-derived exosomes or using plasma-derived exosomes isolated from MHC class II-deficient mice resulted in significant abrogation of the suppressive effect. These results demonstrate that circulating host-derived, MHC class II(+) exosomes in tumor-bearing hosts are able to suppress the immune response specific to tumor antigens. (hide)
EV-METRIC
11% (26th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
IAF
Protein markers
EV: MHC2/ CD9/ MFGE8
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Immunoaffinity capture
Selected surface protein(s)
MHC2
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ MFGE8/ MHC2
ELISA
Antibody details provided?
No
Detected EV-associated proteins
CD9/ MFGE8/ MHC2
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV120098 2/2 Mus musculus NAY (d)(U)C
Filtration
UF
Yang C 2012 11%

Study summary

Full title
All authors
Yang C, Ruffner MA, Kim SH, Robbins PD
Journal
Eur J Immunol
Abstract
Tumor-specific immunosuppression is frequently observed in tumor-bearing hosts. Exosomes are nano-si (show more...)Tumor-specific immunosuppression is frequently observed in tumor-bearing hosts. Exosomes are nano-sized, endosomal-derived membrane vesicles secreted by most tumor and hematopoietic cells and have been shown to actively participate in immune regulation. We previously demonstrated that antigen-specific immunosuppressive exosomes could be isolated from the blood plasma of antigen-immunized mice. Here, we demonstrate that plasma-derived exosomes isolated from mice bearing OVA-expressing tumors were able to suppress OVA-specific immune responses in a mouse delayed-type hypersensitivity model. Enrichment of tumor-derived exosomes in the plasma of mice bearing subcutaneous melanoma was not detected using an exosome-tagging approach. Instead, depletion of MHC class II(+) vesicles from plasma-derived exosomes or using plasma-derived exosomes isolated from MHC class II-deficient mice resulted in significant abrogation of the suppressive effect. These results demonstrate that circulating host-derived, MHC class II(+) exosomes in tumor-bearing hosts are able to suppress the immune response specific to tumor antigens. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
UF
Protein markers
EV: Alix/ MHC2/ MFGE8
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix/ MFGE8/ MHC2
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Alix/ MFGE8/ MHC2
Characterization: Particle analysis
None
EV120096 1/2 Homo sapiens Serum (d)(U)C Welker MW 2012 11%

Study summary

Full title
All authors
Welker MW, Reichert D, Susser S, Sarrazin C, Martinez Y, Herrmann E, Zeuzem S, Piiper A, Kronenberger B
Journal
PLoS One
Abstract
AIM: Cellular CD81 is a well characterized hepatitis C virus (HCV) entry factor, while the relevance (show more...)AIM: Cellular CD81 is a well characterized hepatitis C virus (HCV) entry factor, while the relevance of soluble exosomal CD81 in HCV pathogenesis is poorly defined. We performed a case-control study to investigate whether soluble CD81 in the exosomal serum fraction is associated with HCV replication and inflammatory activity. PATIENTS AND METHODS: Four cohorts were investigated, patients with chronic hepatitis C (n = 37), patients with chronic HCV infection and persistently normal ALT levels (n = 24), patients with long term sustained virologic response (SVR, n = 7), and healthy volunteers (n = 23). Concentration of soluble CD81 was assessed semi-quantitatively after differential centrifugation ranging from 200 g to 100,000 g in the fifth centrifugation fraction by immunoblotting and densitometry. RESULTS: Soluble CD81 was increased in patients with chronic hepatitis C compared to healthy subjects (p = 0.03) and cured patients (p = 0.017). Patients with chronic HCV infection and persistently normal ALT levels and patients with long term SVR had similar soluble CD81 levels as healthy controls (p>0.2). Overall, soluble CD81 levels were associated with ALT levels (r = 0.334, p = 0.016) and severe liver fibrosis (p = 0.027). CONCLUSION: CD81 is increased in the exosomal serum fraction in patients with chronic hepatitis C and appears to be associated with inflammatory activity and severity of fibrosis. (hide)
EV-METRIC
11% (40th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: CD81
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
30
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD81
Characterization: Particle analysis
None
EV120096 2/2 Homo sapiens Blood plasma (d)(U)C Welker MW 2012 11%

Study summary

Full title
All authors
Welker MW, Reichert D, Susser S, Sarrazin C, Martinez Y, Herrmann E, Zeuzem S, Piiper A, Kronenberger B
Journal
PLoS One
Abstract
AIM: Cellular CD81 is a well characterized hepatitis C virus (HCV) entry factor, while the relevance (show more...)AIM: Cellular CD81 is a well characterized hepatitis C virus (HCV) entry factor, while the relevance of soluble exosomal CD81 in HCV pathogenesis is poorly defined. We performed a case-control study to investigate whether soluble CD81 in the exosomal serum fraction is associated with HCV replication and inflammatory activity. PATIENTS AND METHODS: Four cohorts were investigated, patients with chronic hepatitis C (n = 37), patients with chronic HCV infection and persistently normal ALT levels (n = 24), patients with long term sustained virologic response (SVR, n = 7), and healthy volunteers (n = 23). Concentration of soluble CD81 was assessed semi-quantitatively after differential centrifugation ranging from 200 g to 100,000 g in the fifth centrifugation fraction by immunoblotting and densitometry. RESULTS: Soluble CD81 was increased in patients with chronic hepatitis C compared to healthy subjects (p = 0.03) and cured patients (p = 0.017). Patients with chronic HCV infection and persistently normal ALT levels and patients with long term SVR had similar soluble CD81 levels as healthy controls (p>0.2). Overall, soluble CD81 levels were associated with ALT levels (r = 0.334, p = 0.016) and severe liver fibrosis (p = 0.027). CONCLUSION: CD81 is increased in the exosomal serum fraction in patients with chronic hepatitis C and appears to be associated with inflammatory activity and severity of fibrosis. (hide)
EV-METRIC
11% (26th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: CD81
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
30
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD81
Characterization: Particle analysis
None
EV120167 2/2 Mus musculus NAY (d)(U)C
Filtration
IAF
Wang G 2012 11%

Study summary

Full title
All authors
Wang G, Dinkins M, He Q, Zhu G, Poirier C, Campbell A, Mayer-Proschel M, Bieberich E
Journal
J Biol Chem
Abstract
Amyloid protein is well known to induce neuronal cell death, whereas only little is known about its (show more...)Amyloid protein is well known to induce neuronal cell death, whereas only little is known about its effect on astrocytes. We found that amyloid peptides activated caspase 3 and induced apoptosis in primary cultured astrocytes, which was prevented by caspase 3 inhibition. Apoptosis was also prevented by shRNA-mediated down-regulation of PAR-4, a protein sensitizing cells to the sphingolipid ceramide. Consistent with a potentially proapoptotic effect of PAR-4 and ceramide, astrocytes surrounding amyloid plaques in brain sections of the 5xFAD mouse (and Alzheimer disease patient brain) showed caspase 3 activation and were apoptotic when co-expressing PAR-4 and ceramide. Apoptosis was not observed in astrocytes with deficient neutral sphingomyelinase 2 (nSMase2), indicating that ceramide generated by nSMase2 is critical for amyloid-induced apoptosis. Antibodies against PAR-4 and ceramide prevented amyloid-induced apoptosis in vitro and in vivo, suggesting that apoptosis was mediated by exogenous PAR-4 and ceramide, potentially associated with secreted lipid vesicles. This was confirmed by the analysis of lipid vesicles from conditioned medium showing that amyloid peptide induced the secretion of PAR-4 and C18 ceramide-enriched exosomes. Exosomes were not secreted by nSMase2-deficient astrocytes, indicating that ceramide generated by nSMase2 is critical for exosome secretion. Consistent with the ceramide composition in amyloid-induced exosomes, exogenously added C18 ceramide restored PAR-4-containing exosome secretion in nSMase2-deficient astrocytes. Moreover, isolated PAR-4/ceramide-enriched exosomes were taken up by astrocytes and induced apoptosis in the absence of amyloid peptide. Taken together, we report a novel mechanism of apoptosis induction by PAR-4/ceramide-enriched exosomes, which may critically contribute to Alzheimer disease. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
IAF
Protein markers
EV: TSG101/ PAR-4
non-EV: Actin/ GAPDH
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Filtration steps
0.22µm or 0.2µm
Immunoaffinity capture
Selected surface protein(s)
ceramide, CD9
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
TSG101/ PAR-4
Detected contaminants
GAPDH/ Actin
ELISA
Antibody details provided?
No
Detected EV-associated proteins
PAR-4
Characterization: Particle analysis
None
EV120094 2/2 Homo sapiens Blood plasma (d)(U)C
Filtration
Wahlgren J 2012 11%

Study summary

Full title
All authors
Wahlgren J, De L Karlson T, Brisslert M, Vaziri Sani F, Telemo E, Sunnerhagen P, Valadi H
Journal
Nucleic Acids Res
Abstract
Despite the promise of RNA interference (RNAi) and its potential, e.g. for use in cancer therapy, se (show more...)Despite the promise of RNA interference (RNAi) and its potential, e.g. for use in cancer therapy, several technical obstacles must first be overcome. The major hurdle of RNAi-based therapeutics is to deliver nucleic acids across the cell's plasma membrane. This study demonstrates that exosome vesicles derived from humans can deliver short interfering RNA (siRNA) to human mononuclear blood cells. Exosomes are nano-sized vesicles of endocytic origin that are involved in cell-to-cell communication, i.e. antigen presentation, tolerance development and shuttle RNA (mainly mRNA and microRNA). Having tested different strategies, an optimized method (electroporation) was used to introduce siRNA into human exosomes of various origins. Plasma exosomes (exosomes from peripheral blood) were used as gene delivery vector (GDV) to transport exogenous siRNA to human blood cells. The vesicles effectively delivered the administered siRNA into monocytes and lymphocytes, causing selective gene silencing of mitogen-activated protein kinase 1. These data suggest that human exosomes can be used as a GDV to provide cells with heterologous nucleic acids such as therapeutic siRNAs. (hide)
EV-METRIC
11% (26th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: CD81/ CD63/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ CD81/ CD9
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Selected surface protein(s)
Yes
Characterization: Particle analysis
DLS
EV120163 1/1 Homo sapiens NAY (d)(U)C
DC
Truman JP 2012 11%

Study summary

Full title
All authors
Truman JP, Al Gadban MM, Smith KJ, Jenkins RW, Mayroo N, Virella G, Lopes-Virella MF, Bielawska A, Hannun YA, Hammad SM
Journal
Immunology
Abstract
Oxidized low-density lipoprotein (oxLDL) and oxLDL-containing immune complexes (oxLDL-IC) contribute (show more...)Oxidized low-density lipoprotein (oxLDL) and oxLDL-containing immune complexes (oxLDL-IC) contribute to the formation of lipid-laden macrophages (foam cells). Fc? receptors mediate uptake of oxLDL-IC, whereas scavenger receptors internalize oxLDL. We have previously reported that oxLDL-IC, but not free oxLDL, activate macrophages and prolong their survival. Sphingomyelin is a major constituent of cell membranes and lipoprotein particles and acid sphingomyelinase (ASMase) hydrolyses sphingomyelin to generate the bioactive lipid ceramide. ASMase exists in two forms: lysosomal (L-ASMase) and secretory (S-ASMase). In this study we examined whether oxLDL and oxLDL-IC regulate ASMase differently, and whether ASMase mediates monocyte/macrophage activation and cytokine release. The oxLDL-IC, but not oxLDL, induced early and consistent release of catalytically active S-ASMase. The oxLDL-IC also consistently stimulated L-ASMase activity, whereas oxLDL induced a rapid transient increase in L-ASMase activity before it steadily declined below baseline. Prolonged exposure to oxLDL increased L-ASMase activity; however, activity remained significantly lower than that induced by oxLDL-IC. Further studies were aimed at defining the function of the activated ASMase. In response to oxLDL-IC, heat-shock protein 70B' (HSP70B') was up-regulated and localized with redistributed ASMase in the endosomal compartment outside the lysosome. Treatment with oxLDL-IC induced the formation and release of HSP70-containing and IL-1?-containing exosomes via an ASMase-dependent mechanism. Taken together, the results suggest that oxLDL and oxLDL-IC differentially regulate ASMase activity, and the pro-inflammatory responses to oxLDL-IC are mediated by prolonged activation of ASMase. These findings may contribute to increased understanding of mechanisms mediating macrophage involvement in atherosclerosis. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DC
Adj. k-factor
255.8 (pelleting)
Protein markers
EV: HSP70
non-EV:
Proteomics
no
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
240
Pelleting: rotor type
SW41
Pelleting: adjusted k-factor
255.8
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
HSP70
Characterization: Particle analysis
None
EV120091 1/1 Homo sapiens BALF (d)(U)C
IAF
Torregrosa Paredes P 2012 11%

Study summary

Full title
All authors
Torregrosa Paredes P, Esser J, Admyre C, Nord M, Rahman QK, Lukic A, Rådmark O, Grönneberg R, Grunewald J, Eklund A, Scheynius A, Gabrielsson S
Journal
Allergy
Abstract
BACKGROUND: Leukotrienes (LTs) are potent pro-inflammatory mediators involved in asthma. Exosomes, n (show more...)BACKGROUND: Leukotrienes (LTs) are potent pro-inflammatory mediators involved in asthma. Exosomes, nanosized vesicles released from various cells, can stimulate or down-regulate immune responses, depending on the state and nature of the originating cell. We have recently shown an altered exosome profile in bronchoalveolar lavage fluid (BALF) of patients with sarcoidosis, but their role in asthma is unknown. Our aims were to investigate whether exosomes from BALF have LT biosynthetic capacity and to explore phenotypic and functional characteristics of BALF exosomes in asthma. METHODS: Bronchoalveolar lavage fluid exosomes were collected from healthy individuals (n = 13) and patients with mild allergic asthma to birch pollen (n = 12) before and after birch allergen provocation. Exosomes were characterized by flow cytometry and Western blot. Their capacity to induce IL-8 and LT production in the human bronchial epithelial cell (BEC) line 16HB14o- was measured by ELISA and reverse-phase HPLC, respectively. RESULTS: Compared to BALF exosomes from healthy individuals, BALF exosomes from asthmatics displayed higher levels of exosome-associated markers, such as the tetraspanins CD63 and CD81 and the scavenger receptor CD36. No major differences were observed between BALF exosomes from before and after allergen provocation. Furthermore, we show that BALF exosomes contain enzymes for LT biosynthesis. The effect of exosomes to promote LTC(4) and IL-8 release in BEC was significantly increased for exosomes from asthmatics, and the CysLT(1) receptor antagonist Montelukast reduced exosome-induced IL-8 secretion. CONCLUSIONS: Bronchoalveolar lavage fluid exosomes from asthmatic and healthy individuals exhibit distinct phenotypes and functions. BALF exosomes from asthmatics might contribute to subclinical inflammation by increasing cytokine and LTC(4) generation in airway epithelium. (hide)
EV-METRIC
11% (35th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
BALF
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
IAF
Protein markers
EV: CD63/ CD81/ CD86/ CD107a/ Beta-actin/ MHC2
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
BALF
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Immunoaffinity capture
Selected surface protein(s)
MHC2
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ CD81/ CD86/ CD107a/ MHC2/ Beta-actin
ELISA
Antibody details provided?
No
Detected EV-associated proteins
CD86/ CD107a/ MHC2/ Beta-actin
Characterization: Particle analysis
None
EV120090 1/3 Homo sapiens NAY (d)(U)C Tolosa JM 2012 11%

Study summary

Full title
All authors
Tolosa JM, Schjenken JE, Clifton VL, Vargas A, Barbeau B, Lowry P, Maiti K, Smith R
Journal
Placenta
Abstract
OBJECTIVES: To examine whether syncytin-1 has immune regulatory functions and is carried by human pl (show more...)OBJECTIVES: To examine whether syncytin-1 has immune regulatory functions and is carried by human placental exosomes. Further, to examine whether corticotropin-releasing hormone (CRH) can induce the production of syncytin-1. STUDY DESIGN: Human placental exosomes were isolated from placental explant, primary trophoblast and BeWo cell cultures. The presence of exosomes was confirmed by transmission electron microscopy and western blotting. Exosomal protein was probed with 3 separate antibodies targeting syncytin-1. Syncytin-1 immunosuppression was tested, using either a syncytin-1 recombinant ectodomain protein or a synthetic peptide with the human syncytin-1 immunosuppressive domain sequence, in an in vitro human blood culture system immune challenged with LPS or PHA. The inhibition of cytokine production by syncytin-1 was determined by ELISA of TNF-?, IFN-? and CXCL10. BeWo cells were stimulated with CRH or vehicle for 24 h. mRNA and Protein was extracted from the cells for real-time PCR and western blotting analysis while exosomes were extracted from conditioned media for analysis by western blotting. RESULTS: Protein expression of syncytin-1 was detected in exosomes isolated from placental explants, primary trophoblast and BeWo cell cultures. Syncytin-1 recombinant ectodomain was also shown to inhibit the production of the Th1 cytokines TNF-? and IFN-? as well as the chemokine, CXCL10 in human blood cells. Finally, this study showed that syncytin-1 can be stimulated by CRH. CONCLUSIONS: The presence of syncytin-1 in placental exosomes provides a mechanism for syncytin-1 to reach and interact with target cells of the maternal immune system and represents a novel mechanism of endogenous retroviral mediated immunosuppression that may be relevant for maternal immune tolerance. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: TSG101
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
No
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
TSG101
Characterization: Particle analysis
None
EV120160 1/2 Homo sapiens NAY (d)(U)C
DC
Filtration
Taverna S 2012 11%

Study summary

Full title
All authors
Taverna S, Flugy A, Saieva L, Kohn EC, Santoro A, Meraviglia S, De Leo G, Alessandro R
Journal
Int J Cancer
Abstract
Our study is designed to assess if exosomes released from chronic myelogenous leukemia (CML) cells m (show more...)Our study is designed to assess if exosomes released from chronic myelogenous leukemia (CML) cells may modulate angiogenesis. We have isolated and characterized the exosomes generated from LAMA84 CML cells and demonstrated that addition of exosomes to human vascular endothelial cells (HUVEC) induces an increase of both ICAM-1 and VCAM-1 cell adhesion molecules and interleukin-8 expression. The stimulation of cell-cell adhesion molecules was paralleled by a dose-dependent increase of adhesion of CML cells to a HUVEC monolayer. We further showed that the treatment with exosomes from CML cells caused an increase in endothelial cell motility accompanied by a loss of VE-cadherin and ?-catenin from the endothelial cell surface. Functional characterization of exosomes isolated from CML patients confirmed the data obtained with exosomes derived from CML cell line. CML exosomes caused reorganization into tubes of HUVEC cells cultured on Matrigel. When added to Matrigel plugs in vivo, exosomes induced ingrowth of murine endothelial cells and vascularization of the Matrigel plugs. Our results suggest for the first time that exosomes released from CML cells directly affect endothelial cells modulating the process of neovascularization. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DC
Filtration
Protein markers
EV: AChE/ CD63/ HSC70
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ HSC70/ AChE
ELISA
Antibody details provided?
No
Detected EV-associated proteins
HSC70/ AChE
Characterization: Particle analysis
EM
EM-type
scanning EM
Image type
Wide-field
Report size (nm)
Not reported
EV120107 1/2 Homo sapiens NAY (d)(U)C Saman S 2012 11%

Study summary

Full title
All authors
Saman S, Kim W, Raya M, Visnick Y, Miro S, Saman S, Jackson B, McKee AC, Alvarez VE, Lee NC, Hall GF
Journal
J Biol Chem
Abstract
Recent demonstrations that the secretion, uptake, and interneuronal transfer of tau can be modulated (show more...)Recent demonstrations that the secretion, uptake, and interneuronal transfer of tau can be modulated by disease-associated tau modifications suggest that secretion may be an important element in tau-induced neurodegeneration. Here, we show that much of the tau secreted by M1C cells occurs via exosomal release, a widely characterized mechanism that mediates unconventional secretion of other aggregation-prone proteins (?-synuclein, prion protein, and ?-amyloid) in neurodegenerative disease. Exosome-associated tau is also present in human CSF samples and is phosphorylated at Thr-181 (AT270), an established phosphotau biomarker for Alzheimer disease (AD), in both M1C cells and in CSF samples from patients with mild (Braak stage 3) AD. A preliminary analysis of proteins co-purified with tau in secreted exosomes identified several that are known to be involved in disease-associated tau misprocessing. Our results suggest that exosome-mediated secretion of phosphorylated tau may play a significant role in the abnormal processing of tau and in the genesis of elevated CSF tau in early AD. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: EEA1/ Alix/ Flotilin1
non-EV:
Proteomics
yes
Show all info
Study aim
Omics
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix/ Flotilin1/ EEA1
ELISA
Antibody details provided?
No
Detected EV-associated proteins
EEA1
Characterization: Particle analysis
EM
EM-type
immune EM
EM protein
Alix
Image type
Wide-field
EV120107 2/2 Homo sapiens "Cerebrospinal fluid" (d)(U)C
DG
Saman S 2012 11%

Study summary

Full title
All authors
Saman S, Kim W, Raya M, Visnick Y, Miro S, Saman S, Jackson B, McKee AC, Alvarez VE, Lee NC, Hall GF
Journal
J Biol Chem
Abstract
Recent demonstrations that the secretion, uptake, and interneuronal transfer of tau can be modulated (show more...)Recent demonstrations that the secretion, uptake, and interneuronal transfer of tau can be modulated by disease-associated tau modifications suggest that secretion may be an important element in tau-induced neurodegeneration. Here, we show that much of the tau secreted by M1C cells occurs via exosomal release, a widely characterized mechanism that mediates unconventional secretion of other aggregation-prone proteins (?-synuclein, prion protein, and ?-amyloid) in neurodegenerative disease. Exosome-associated tau is also present in human CSF samples and is phosphorylated at Thr-181 (AT270), an established phosphotau biomarker for Alzheimer disease (AD), in both M1C cells and in CSF samples from patients with mild (Braak stage 3) AD. A preliminary analysis of proteins co-purified with tau in secreted exosomes identified several that are known to be involved in disease-associated tau misprocessing. Our results suggest that exosome-mediated secretion of phosphorylated tau may play a significant role in the abnormal processing of tau and in the genesis of elevated CSF tau in early AD. (hide)
EV-METRIC
11% (31st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
"Cerebrospinal fluid"
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
Protein markers
EV: Alix
non-EV:
Proteomics
no
Show all info
Study aim
Omics
Sample
Species
Homo sapiens
Sample Type
"Cerebrospinal fluid"
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Density gradient
Lowest density fraction
0.25
Highest density fraction
2
Orientation
Bottom-up
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix
Characterization: Particle analysis
None
EV120082 1/1 Ovis aries NAY (d)(U)C
DG
Racicot K 2012 11%

Study summary

Full title
All authors
Racicot K, Schmitt A, Ott T
Journal
Am J Reprod Immunol
Abstract
PROBLEM: Dairy cattle suffer from high percentages of early embryonic loss, and therefore, it is cri (show more...)PROBLEM: Dairy cattle suffer from high percentages of early embryonic loss, and therefore, it is critical to study the function of the uterus at this time. We hypothesize that the antiviral protein, myxovirus resistance (MX)1, regulates secretion in uterine glandular cells during early pregnancy. METHOD OF STUDY: Uterine epithelial cells were used to study uterine function, in vitro. Sucrose gradients, Western blotting, and transmission electron microscopy were used to isolate and identify exosomes. Immunofluorescence and ceramide inhibitors were used for the characterization of exosomes. RESULTS: Myxovirus resistance1 was associated with exosomes and protected from proteases, indicating it was inside exosomes. MX1 partially colocalized with exosomal protein CD63, and a ceramide inhibitor reduced numbers of MX1-associated exosomes. CONCLUSION: This study is the first to characterize MX1-associated exosomes, and we postulate that MX1 regulates secretion in epithelial cells by playing a role in exosome formation or trafficking. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
Protein markers
EV: Alix
non-EV:
Proteomics
no
Show all info
Study aim
Omics
Sample
Species
Ovis aries
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Density gradient
Only used for validation of main results
Yes
Lowest density fraction
10
Highest density fraction
60
Orientation
Bottom-up
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV120154 1/1 Homo sapiens NAY (d)(U)C Qiu S 2012 11%

Study summary

Full title
All authors
Qiu S, Duan X, Geng X, Xie J, Gao H
Journal
Asian Pac J Allergy Immunol
Abstract
BACKGROUND: The prevalence of chronic rhinitis is increasing rapidly. Its pathogenesis is not fully (show more...)BACKGROUND: The prevalence of chronic rhinitis is increasing rapidly. Its pathogenesis is not fully understood but immune inflammation is one plausible causative factor. Antigen specific CD8+ T cells play a critical role in the induction of chronic inflammation. This study aims to investigate the role of antigen specific CD8+ T cells in the pathogenesis of chronic AR. METHODS: Nasal mucosal epithelial samples obtained by the surface of the nasal mucosaof patients with AR complicated with inferior turbinate hypertrophy. Exosomes were purified from the scratching samples and examined by immune gold electron microscopy. Cell culture models were employed to evaluate the effect of exosomes on modulating CD8+ T cell activity. RESULTS: Exosomes purified from patients with chronic AR carried microbial products, Staphylococcal enterotoxin B (SEB), and airborne antigen, Derp1. Dendritic cells pulsed by SEB/Derp1-carrying exosomes showed high levels of CD80, CD86 and the major histocompatibility class I (MHCI). Exosome-pulsed dendritic cells could induce naive CD3+ T cells to differentiate into CD8+ T cells. Upon exposure to a specific antigen, the CD8+ T cells released granzyme B and perforin and more than 30% antigen specific CD8+ T cells proliferated. CONCLUSIONS: Antigen specific CD8+ T cells play an important role in the pathogenesis of chronic AR complicated with inferior turbinate hypertrophy. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: SEB/ Derp1
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
SEB/ Derp1
ELISA
Antibody details provided?
No
Detected EV-associated proteins
SEB/ Derp1
Characterization: Particle analysis
EM
EM-type
immune EM
EM protein
Derp1; SEB
Image type
Wide-field
EV120147 1/1 Acinetobacter baumannii Bacteria (d)(U)C
Filtration
UF
Moon DC 2012 11%

Study summary

Full title
All authors
Moon DC, Choi CH, Lee JH, Choi CW, Kim HY, Park JS, Kim SI, Lee JC
Journal
J Microbiol
Abstract
Acinetobacter baumannii secretes outer membrane vesicles (OMVs) during both in vitro and in vivo gro (show more...)Acinetobacter baumannii secretes outer membrane vesicles (OMVs) during both in vitro and in vivo growth, but the biogenesis mechanism by which A. baumannii produces OMVs remains undefined. Outer membrane protein A of A. baumannii (AbOmpA) is a major protein in the outer membrane and the C-terminus of AbOmpA interacts with diaminopimelate of peptidoglycan. This study investigated the role of AbOmpA in the biogenesis of A. baumannii OMVs. Quantitative and qualitative approaches were used to analyze OMV biogenesis in A. baumannii ATCC 19606T and an isogenic ?AbOmpA mutant. OMV production was significantly increased in the ?AbOmpA mutant compared to wild-type bacteria as demonstrated by quantitation of proteins and lipopolysaccharides (LPS) packaged in OMVs. LPS profiles prepared from OMVs from wild-type bacteria and the ?AbOmpA mutant had identical patterns, but proteomic analysis showed different protein constituents in OMVs from wild-type bacteria compared to the ?AbOmpA mutant. In conclusion, AbOmpA influences OMV biogenesis by controlling OMV production and protein composition. (hide)
EV-METRIC
11% (40th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Bacteria
Sample origin
NAY
Focus vesicles
OMV
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
UF
Protein markers
EV: OmpA
non-EV:
Proteomics
yes
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Acinetobacter baumannii
Sample Type
Bacteria
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
180
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
OmpA
ELISA
Antibody details provided?
No
Detected EV-associated proteins
OmpA
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV120078 1/1 Homo sapiens NAY (d)(U)C
Filtration
Mineo M 2012 11%

Study summary

Full title
All authors
Mineo M, Garfield SH, Taverna S, Flugy A, De Leo G, Alessandro R, Kohn EC
Journal
Angiogenesis
Abstract
Exosomes, microvesicles of endocytic origin released by normal and tumor cells, play an important ro (show more...)Exosomes, microvesicles of endocytic origin released by normal and tumor cells, play an important role in cell-to-cell communication. Angiogenesis has been shown to regulate progression of chronic myeloid leukemia (CML). The mechanism through which this happens has not been elucidated. We isolated and characterized exosomes from K562 CML cells and evaluated their effects on human umbilical endothelial cells (HUVECs). Fluorescent-labeled exosomes were internalized by HUVECs during tubular differentiation on Matrigel. Exosome localization was perinuclear early in differentiation, moving peripherally in cells undergoing elongation and connection. Exosomes move within and between nanotubular structures connecting the remodeling endothelial cells. They stimulated angiotube formation over a serum/growth factor-limited medium control, doubling total cumulative tube length (P = 0.003). Treatment of K562 cells with two clinically active tyrosine kinase inhibitors, imatinib and dasatinib, reduced their total exosome release (P < 0.009); equivalent concentrations of drug-treated exosomes induced a similar extent of tubular differentiation. However, dasatinib treatment of HUVECs markedly inhibited HUVEC response to drug control CML exosomes (P < 0.002). In an in vivo mouse Matrigel plug model angiogenesis was induced by K562 exosomes and abrogated by oral dasatinib treatment (P < 0.01). K562 exosomes induced dasatinib-sensitive Src phosphorylation and activation of downstream Src pathway proteins in HUVECs. Imatinib was minimally active against exosome stimulation of HUVEC cell differentiation and signaling. Thus, CML cell-derived exosomes induce angiogenic activity in HUVEC cells. The inhibitory effect of dasatinib on exosome production and vascular differentiation and signaling reveals a key role for Src in both the leukemia and its microenvironment. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: CD81/ TSG101/ CD63
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ CD81/ TSG101
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV120075 1/1 Homo sapiens NAY (d)(U)C Makhadiyeva D 2012 11%

Study summary

Full title
All authors
Makhadiyeva D, Lam L, Moatari M, Vallance J, Zheng Y, Campbell EC, Powis SJ
Journal
Immunology
Abstract
Many MHC class I molecules contain unpaired cysteine residues in their cytoplasmic tail domains, the (show more...)Many MHC class I molecules contain unpaired cysteine residues in their cytoplasmic tail domains, the function of which remains relatively uncharacterized. Recently, it has been shown that in the small secretory vesicles known as exosomes, fully folded MHC class I dimers can form through a disulphide bond between the cytoplasmic tail domain cysteines, induced by the low levels of glutathione in these extracellular vesicles. Here we address whether similar MHC class I dimers form in whole cells by alteration of the redox environment. Treatment of the HLA-B27-expressing Epstein-Barr virus-transformed B-cell line Jesthom, and the leukaemic T-cell line CEM transfected with HLA-B27 with the strong oxidant diamide, and the apoptosis-inducing and glutathione-depleting agents hydrogen peroxide and thimerosal, induced MHC class I dimers. Furthermore, induction of apoptosis by cross-linking FasR/CD95 on CEM cells with monoclonal antibody CH-11 also induced MHC class I dimers. As with exosomal MHC class I dimers, the formation of these structures on cells is controlled by the cysteine at position 325 in the cytoplasmic tail domain of HLA-B27. Therefore, the redox environment of cells intimately controls induction of MHC class I dimers, the formation of which may provide novel structures for recognition by the immune system. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: MHC1
non-EV:
Proteomics
no
Show all info
Study aim
Other/MHC1 assembly
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
MHC1
ELISA
Antibody details provided?
No
Detected EV-associated proteins
MHC1
Characterization: Particle analysis
None
EV120074 1/1 Homo sapiens NAY (d)(U)C
Filtration
UF
Lim JW 2012 11%

Study summary

Full title
All authors
Lim JW, Mathias RA, Kapp EA, Layton MJ, Faux MC, Burgess AW, Ji H, Simpson RJ
Journal
Electrophoresis
Abstract
Mutations in the adenomatous polyposis coli (APC) tumor suppressor gene are common in both inherited (show more...)Mutations in the adenomatous polyposis coli (APC) tumor suppressor gene are common in both inherited and sporadic forms of colorectal cancer (CRC), and are associated with dysregulated Wnt signaling. Colon carcinoma SW480 cells restored with stable expression of wild-type APC (SW480APC cells) exhibit attenuated Wnt signaling, and reduced tumorigenicity, including increased cell adhesion. We performed a comparative proteomic analysis of exosomes isolated from SW480 and SW480APC cells to examine the effects of restored APC on exosome protein expression. A salient finding of our study was the unique expression of the Wnt antagonist Dickkopf-related protein 4 (DKK4) in SW480APC, but not parental SW480 cell-derived exosomes. Upregulation of DKK4 in SW480APC cells was confirmed by semiquantitative RT-PCR, immunoblotting, and immunogold electron microscopy. Analysis of the DKK4 gene promoter by methylation-specific PCR revealed reduced methylation in SW480APC cells, while RT-PCR demonstrated the downregulation of DNMT-3a, compared to the parental cell line. Our discovery of exosome-mediated secretion of DKK4 opens up the possibility that exosomal DKK4 may be a mechanism used by epithelial colon cells to regulate Wnt signaling which is lost during CRC progression. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
UF
Protein markers
EV: Alix/ HSP70/ TSG101/ CD9
non-EV:
Proteomics
yes
Show all info
Study aim
Omics
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Filtration steps
0.2µm > x > 0.1µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix/ CD9/ HSP70/ TSG101
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV120073 1/1 Homo sapiens Urine (d)(U)C Li ZZ 2012 11%

Study summary

Full title
All authors
Li ZZ, Zhao ZZ, Wen JG, Xing L, Zhang H, Zhang Y
Journal
J Pediatr Surg
Abstract
BACKGROUND/PURPOSE: Down-regulation of aquaporin 1 (AQP1) and up-regulation of transforming growth f (show more...)BACKGROUND/PURPOSE: Down-regulation of aquaporin 1 (AQP1) and up-regulation of transforming growth factor ?(1) (TGF-?(1)) in the renal parenchyma have been demonstrated in children who underwent pyeloplasty for pelviureteral junction obstruction. However, no information about urinary exosomal AQP1 and TGF-?(1) during postobstructive polyuria in children with congenital unilateral hydronephrosis is available. The aim of the present study is to evaluate the urine concentration of exosomal AQP1 and TGF-?(1) on the first and the second day after surgery in children who underwent pyeloplasty. METHODS: Twenty-two patients (age, 36.2 ± 17.1 months) with unilateral pelviureteral junction obstruction were examined in the study. For the first 2 days after the operation, the urine was collected separately from pyelostomy draining only from the postobstructed kidney and from the bladder catheter draining mostly from the contralateral kidney, which was used as an internal control. Urinary output, urinary osmolality, sodium, ?(2)-microglobulin (?(2)-MG), and creatinine, as well as urinary exosomal AQP1 and TGF-?(1) excretion, were tested in each sample. RESULTS: After pyeloplasty, a significantly decreased urinary excretion of exosomal AQP1 (? 64%) was found in the postobstructed kidney. The patients developed polyuria (807 ± 216 mL/24 h vs 484 ± 144 mL/24 h at day 1, 1021 ± 348 mL/24 h vs 603 ± 228 mL/24 h at day 2; P < .01) and reduced urine osmolality (115 ± 44 mOsm/kg vs 282 ± 61 mOsm/kg at day 1, 139 ± 39 vs 303 ± 46 mOsm/kg at day 2; P < .01) that persisted for 48 hours. In parallel, urinary TGF-?(1) and ?(2)-MG (normalized for creatinine) from the postobstructed kidney were significantly higher compared with the contralateral kidney. The urine output and urinary sodium concentration from the postobstructed kidney elevated significantly on the second day after the release of obstruction compared with those on the first day. The contralateral kidney also showed same trends. CONCLUSIONS: The down-regulation of urinary exosomal AQP1 in the postobstructed kidney may account for the polyuria, hypotonic urine, and elevated urinary ?(2)-MG. The urinary TGF-?(1) level locally increased in the postobstructed kidney may be involved in renal AQP1 down-regulation. (hide)
EV-METRIC
11% (33rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: AQP1
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Characterization: Protein analysis
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
AQP1
ELISA
Antibody details provided?
No
Detected EV-associated proteins
AQP1
Characterization: Particle analysis
None
EV120069 1/1 Homo sapiens NAY (d)(U)C
Filtration
Lau CS 2012 11%

Study summary

Full title
All authors
Lau CS, Wong DT
Journal
PLoS One
Abstract
Saliva is a useful biofluid for the early detection of disease, but how distal tumors communicate wi (show more...)Saliva is a useful biofluid for the early detection of disease, but how distal tumors communicate with the oral cavity and create disease-specific salivary biomarkers remains unclear. Using an in vitro breast cancer model, we demonstrated that breast cancer-derived exosome-like microvesicles are capable of interacting with salivary gland cells, altering the composition of their secreted exosome-like microvesicles. We found that the salivary gland cells secreted exosome-like microvesicles encapsulating both protein and mRNA. We also showed that the interaction with breast cancer-derived exosome-like microvesicles communicated and activated the transcriptional machinery of the salivary gland cells. Thus, the interaction altered the composition of the salivary gland cell-derived exosome-like microvesicles on both the transcriptomically and proteomically. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes / microvesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: Beta-actin/ CD63
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ Beta-actin
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Beta-actin
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV120022 2/2 Homo sapiens Trophoblasts; PMBC (d)(U)C Kshirsagar SK 2012 11%

Study summary

Full title
All authors
Kshirsagar SK, Alam SM, Jasti S, Hodes H, Nauser T, Gilliam M, Billstrand C, Hunt JS, Petroff MG
Journal
Placenta
Abstract
The semiallogenic fetus is tolerated by the maternal immune system through control of innate and ada (show more...)The semiallogenic fetus is tolerated by the maternal immune system through control of innate and adaptive immune responses. Trophoblast cells secrete nanometer scale membranous particles called exosomes, which have been implicated in modulation of the local and systemic maternal immune system. Here we investigate the possibility that exosomes secreted from the first trimester and term placenta carry HLA-G and B7 family immunomodulators. Confocal microscopy of placental sections revealed intracellular co-localization of B7-H1 with CD63, suggesting that B7-H1 associates with subcellular vesicles that give rise to exosomes. First trimester and term placental explants were then cultured for 24 h. B7H-1 (CD274), B7-H3 (CD276) and HLA-G5 were abundant in pelleted supernatants of these cultures that contained microparticles and exosomes; the latter, however, was observed only in first trimester pellets and was nearly undetectable in term explant-derived pellets. Further purification of exosomes by sucrose density fractionation confirmed the association of these proteins specifically with exosomes. Finally, culture of purified trophoblast cells in the presence or absence of EGF suggested that despite the absence of HLA-G5 association with term explant-derived exosomes, it is present in exosomes secreted from mononuclear cytotrophoblast cells. Further, differentiation of cytotrophoblast cells reduced the presence of HLA-G5 in secreted exosomes. Together, the results suggest that the immunomodulatory proteins HLA-G5, B7-H1 and B7-H3, are secreted from early and term placenta, and have important implications in the mechanisms by which trophoblast immunomodulators modify the maternal immunological environment. (hide)
EV-METRIC
11% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Trophoblasts; PMBC
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: B7H-1/ CD63/ LAMP1/ MHC1
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Trophoblasts; PMBC
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ LAMP1/ MHC1/ B7H-1
ELISA
Antibody details provided?
No
Detected EV-associated proteins
LAMP1/ MHC1/ B7H-1
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV120068 1/1 Homo sapiens NAY (d)(U)C Kloft N 2012 11%

Study summary

Full title
All authors
Kloft N, Neukirch C, von Hoven G, Bobkiewicz W, Weis S, Boller K, Husmann M
Journal
J Biol Chem
Abstract
The constitutive reverter of eIF2? phosphorylation (CReP)/PPP1r15B targets the catalytic subunit of (show more...)The constitutive reverter of eIF2? phosphorylation (CReP)/PPP1r15B targets the catalytic subunit of protein phosphatase 1 (PP1c) to phosphorylated eIF2? (p-eIF2?) to promote its dephosphorylation and translation initiation. Here, we report a novel role and mode of action of CReP. We found that CReP regulates uptake of the pore-forming Staphylococcus aureus ?-toxin by epithelial cells. This function was independent of PP1c and translation, although p-eIF2? was involved. The latter accumulated at sites of toxin attack and appeared conjointly with ?-toxin in early endosomes. CReP localized to membranes, interacted with phosphomimetic eIF2?, and, upon overexpression, induced and decorated a population of intracellular vesicles, characterized by accumulation of N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine (N-Rh-PE), a lipid marker of exosomes and intralumenal vesicles of multivesicular bodies. By truncation analysis, we delineated the CReP vesicle induction/association region, which comprises an amphipathic ?-helix and is distinct from the PP1c interaction domain. CReP was also required for exocytosis from erythroleukemia cells and thus appears to play a broader role in membrane traffic. In summary, the mammalian traffic machinery co-opts p-eIF2? and CReP, regulators of translation initiation. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: AChE/ Beta-actin
non-EV:
Proteomics
no
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Beta-actin/ AChE
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Beta-actin/ AChE
Characterization: Particle analysis
None
EV120062 1/1 Homo sapiens NAY (d)(U)C
filter
Goda T 2012 11%

Study summary

Full title
All authors
Goda T, Masuno K, Nishida J, Kosaka N, Ochiya T, Matsumoto A, Miyahara Y
Journal
Chem Commun
Abstract
We report a method for detecting microRNAs encapsulated in exosomes using a microelectrode array in (show more...)We report a method for detecting microRNAs encapsulated in exosomes using a microelectrode array in semiconductor-based potentiometry after RT-PCR. The inherent miniaturization of the electrical biosensor meets requirements for massively parallel analysis of circulating microRNA as a noninvasive biomarker. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
filter
Protein markers
EV: CD63
non-EV:
Proteomics
no
Show all info
Study aim
Technical
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
No
Other
Name other separation method
filter
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63
Characterization: Particle analysis
DLS
NTA
EV120059 1/1 Homo sapiens NAY (d)(U)C Fleming JM 2012 11%

Study summary

Full title
All authors
Fleming JM, Ginsburg E, Oliver SD, Goldsmith P, Vonderhaar BK
Journal
BMC Cancer
Abstract
BACKGROUND: Recent evidence suggests an emerging role for S100 protein in breast cancer and tumor pr (show more...)BACKGROUND: Recent evidence suggests an emerging role for S100 protein in breast cancer and tumor progression. These ubiquitous proteins are involved in numerous normal and pathological cell functions including inflammatory and immune responses, Ca(2+) homeostasis, the dynamics of cytoskeleton constituents, as well as cell proliferation, differentiation, and death. Our previous proteomic analysis demonstrated the presence of hornerin, an S100 family member, in breast tissue and extracellular matrix. Hornerin has been reported in healthy skin as well as psoriatic and regenerating skin after wound healing, suggesting a role in inflammatory/immune response or proliferation. In the present study we investigated hornerin's potential role in normal breast cells and breast cancer. METHODS: The expression levels and localization of hornerin in human breast tissue, breast tumor biopsies, primary breast cells and breast cancer cell lines, as well as murine mammary tissue were measured via immunohistochemistry, western blot analysis and PCR. Antibodies were developed against the N- and C-terminus of the protein for detection of proteolytic fragments and their specific subcellular localization via fluorescent immunocytochemisty. Lastly, cells were treated with H(2)O(2) to detect changes in hornerin expression during induction of apoptosis/necrosis. RESULTS: Breast epithelial cells and stromal fibroblasts and macrophages express hornerin and show unique regulation of expression during distinct phases of mammary development. Furthermore, hornerin expression is decreased in invasive ductal carcinomas compared to invasive lobular carcinomas and less aggressive breast carcinoma phenotypes, and cellular expression of hornerin is altered during induction of apoptosis. Finally, we demonstrate the presence of post-translational fragments that display differential subcellular localization. CONCLUSIONS: Our data opens new possibilities for hornerin and its proteolytic fragments in the control of mammary cell function and breast cancer. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: GAPDH
non-EV:
Proteomics
no
Show all info
Study aim
Other/Hornerin expression/distribution
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
80
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
GAPDH
ELISA
Antibody details provided?
No
Detected EV-associated proteins
GAPDH
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV120058 1/1 Homo sapiens NAY (d)(U)C Fang YT 2012 11%

Study summary

Full title
All authors
Fang YT, Lin CF, Wang CY, Anderson R, Lin YS
Journal
J Cell Physiol
Abstract
Annexin A2 (p36) is usually present together with its natural ligand p11 as a heterotetramer complex (show more...)Annexin A2 (p36) is usually present together with its natural ligand p11 as a heterotetramer complex, which has multiple biological functions depending on its cellular localization. However, the detailed mechanism of annexin A2 translocation and its physiological role in inflammation remain unclear. Here, we show that IFN-? stimulation enhances surface translocation of annexin A2 on lung epithelial cells. While total annexin A2 protein remains unchanged, the expression of p11 is upregulated via the IFN-?-activated JAK2/STAT1 signal pathway. Notably, IFN-?-induced p11 expression is required for annexin A2 translocation to the cell surface. Since annexin A2 lacks a signal peptide for surface translocation by the classical endoplasmic reticulum-Golgi route, its mode of trafficking remains unclear. We observed that p11-dependent surface translocation of annexin A2 is associated with the exosomal secretion pathway. The IFN-?-induced increase of annexin A2 in the exosomes is blocked in p11-silenced cells. Furthermore, IFN-?-induced surface expression of annexin A2 mediates phagocytosis of apoptotic cells by lung epithelial cells. These findings provide insights into the surface translocation mechanism of annexin A2 and illustrate a pivotal function of surface annexin A2 in the phagocytic response to IFN-?. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: TSG101/ Annexin2
non-EV: Cell organelle protein
Proteomics
no
Show all info
Study aim
Other/Annexin2 surface translocation mechanism
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
TSG101/ Annexin2
Detected contaminants
Cell organelle protein
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Annexin2
Characterization: Particle analysis
None
EV120055 1/1 Homo sapiens Urine (d)(U)C Del Boccio P 2012 11%

Study summary

Full title
All authors
Del Boccio P, Raimondo F, Pieragostino D, Morosi L, Cozzi G, Sacchetta P, Magni F, Pitto M, Urbani A
Journal
Electrophoresis
Abstract
Urinary exosomes are released from every renal epithelial cell type facing the urinary space and the (show more...)Urinary exosomes are released from every renal epithelial cell type facing the urinary space and therefore, they may carry molecular markers of renal dysfunction and structural injury. Here, we present a hyphenated microLC-Q-TOF-MS platform for lipidomics studies applied to investigate the urinary exosome lipid repertoire. Lipids were separated by reversed-phase chromatography using a linear gradient of formic acid 0.2% and tetrahydrofuran, in 40 min of analysis. Features (m/z with associated own retention time) were extracted by MarkerLynx(TM) (Waters) and processed, demonstrating good analytical performance in terms of repeatability and mass accuracy of the microLC Q-TOF MS platform. In particular, a stable retention time (RSD less than 4%) and relative intensity (RSD from 2.9% to 11%) were observed. Moreover, the method takes advantages by the use of a lock spray interface (Waters) that allows readjusting the m/z data after acquisition, obtaining inaccuracy below 6 ppm in measuring the m/z value of the reference compound during chromatographic run. The method was employed in a preliminary application to perform comparative analysis from healthy control subjects and renal cell carcinoma (RCC) patients, in order to possibly highlight differences in lipid composition to be exploited as potential tumor biomarker. Differential lipid composition in RCC urinary exosomes was achieved and tentatively identified by accurate mass, providing a preliminary indication of a relationship between lipid composition of urinary exosomes and RCC disease. Among the total features significantly different in RCC exosomes, the ion at m/z 502.3 was taken as an example for molecular confirmation by MS/MS fragmentation analysis. (hide)
EV-METRIC
11% (33rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: Alix/ TSG101
non-EV:
Proteomics
no
Show all info
Study aim
Omics
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix/ TSG101
Characterization: Particle analysis
None
EV120122 1/1 Homo sapiens
Mus musculus
NAY (d)(U)C
Filtration
Danzer KM 2012 11%

Study summary

Full title
All authors
Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR, Zhu L, Vanderburg CR, McLean PJ
Journal
Mol Neurodegener
Abstract
BACKGROUND: Aggregation of alpha-synuclein (?syn) and resulting cytotoxicity is a hallmark of sporad (show more...)BACKGROUND: Aggregation of alpha-synuclein (?syn) and resulting cytotoxicity is a hallmark of sporadic and familial Parkinson's disease (PD) as well as dementia with Lewy bodies, with recent evidence implicating oligomeric and pre-fibrillar forms of ?syn as the pathogenic species. Recent in vitro studies support the idea of transcellular spread of extracellular, secreted ?syn across membranes. The aim of this study is to characterize the transcellular spread of ?syn oligomers and determine their extracellular location. RESULTS: Using a novel protein fragment complementation assay where ?syn is fused to non-bioluminescent amino-or carboxy-terminus fragments of humanized Gaussia Luciferase we demonstrate here that ?syn oligomers can be found in at least two extracellular fractions: either associated with exosomes or free. Exosome-associated ?syn oligomers are more likely to be taken up by recipient cells and can induce more toxicity compared to free ?syn oligomers. Specifically, we determine that ?syn oligomers are present on both the outside as well as inside of exosomes. Notably, the pathway of secretion of ?syn oligomers is strongly influenced by autophagic activity. CONCLUSIONS: Our data suggest that ?syn may be secreted via different secretory pathways. We hypothesize that exosome-mediated release of ?syn oligomers is a mechanism whereby cells clear toxic ?syn oligomers when autophagic mechanisms fail to be sufficient. Preventing the early events in ?syn exosomal release and uptake by inducing autophagy may be a novel approach to halt disease spreading in PD and other synucleinopathies. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: Alix/ Flotillin
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens / Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Filtration steps
0.45µm > x > 0.22µm, 0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix/ Flotillin
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Flotillin
Characterization: Particle analysis
EM
EM-type
transmission EM/ immune EM
EM protein
CD63
Image type
Wide-field
EV120121 1/1 Homo sapiens NAY (d)(U)C Corrado C 2012 11%

Study summary

Full title
All authors
Corrado C, Flugy AM, Taverna S, Raimondo S, Guggino G, Karmali R, De Leo G, Alessandro R
Journal
PLoS One
Abstract
The Bcr/Abl kinase has been targeted for the treatment of chronic myelogenous leukaemia (CML) by ima (show more...)The Bcr/Abl kinase has been targeted for the treatment of chronic myelogenous leukaemia (CML) by imatinib mesylate. While imatinib has been extremely effective for chronic phase CML, blast crisis CML are often resistant. New therapeutic options are therefore needed for this fatal disease. Although more common in solid tumors, increased microvessel density was also reported in chronic myelogenous leukaemia and was associated with a significant increase of angiogenic factors, suggesting that vascularity in hematologic malignancies is a controlled process and may play a role in the leukaemogenic process thus representing an alternative therapeutic target. Carboxyamidotriazole-orotate (CTO) is the orotate salt form of carboxyamidotriazole (CAI), an orally bioavailable signal transduction inhibitor that in vitro has been shown to possess antileukaemic activities. CTO, which has a reduced toxicity, increased oral bioavailability and stronger efficacy when compared to the parental compound, was tested in this study for its ability to affect imatinib-resistant CML tumor growth in a xenograft model. The active cross talk between endothelial cells and leukemic cells in the bone marrow involving exosomes plays an important role in modulating the process of neovascularization in CML. We have thus investigated the effects of CTO on exosome-stimulated angiogenesis. Our results indicate that CTO may be effective in targeting both cancer cell growth and the tumor microenvironment, thus suggesting a potential therapeutic utility for CTO in leukaemia patients. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: AChE/ CD63/ Hsc70
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ Hsc70/ AChE
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Hsc70/ AChE
Characterization: Particle analysis
EM
EM-type
scanning EM
Image type
Wide-field
Report size (nm)
Not reported
EV120120 1/2 Homo sapiens NAY (d)(U)C Corcoran C 2012 11%

Study summary

Full title
All authors
Corcoran C, Rani S, O'Brien K, O'Neill A, Prencipe M, Sheikh R, Webb G, McDermott R, Watson W, Crown J, O'Driscoll L
Journal
PLoS One
Abstract
BACKGROUND: Hormone-refractory prostate cancer remains hindered by inevitable progression of resista (show more...)BACKGROUND: Hormone-refractory prostate cancer remains hindered by inevitable progression of resistance to first-line treatment with docetaxel. Recent studies suggest that phenotypic changes associated with cancer may be transferred from cell-to-cell via microvesicles/exosomes. Here we aimed to investigate phenotypic changes associated with docetaxel-resistance in order to help determine the complexity of this problem and to assess the relevance of secreted exosomes in prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS: Docetaxel-resistant variants of DU145 and 22Rv1 were established and characterised in terms of cross-resistance, morphology, proliferation, motility, invasion, anoikis, colony formation, exosomes secretion their and functional relevance. Preliminary analysis of exosomes from relevant serum specimens was also performed. Acquired docetaxel-resistance conferred cross-resistance to doxorubicin and induced alterations in motility, invasion, proliferation and anchorage-independent growth. Exosomes expelled from DU145 and 22Rv1 docetaxel-resistant variants (DU145RD and 22Rv1RD) conferred docetaxel-resistance to DU145, 22Rv1 and LNCap cells, which may be partly due to exosomal MDR-1/P-gp transfer. Exosomes from prostate cancer patients' sera induced increased cell proliferation and invasion, compared to exosomes from age-matched controls. Furthermore, exosomes from sera of patients undergoing a course of docetaxel treatment compared to matched exosomes from the same patients prior to commencing docetaxel treatment, when applied to both DU145 and 22Rv1 cells, showed a correlation between cellular response to docetaxel and patients' response to treatment with docetaxel. CONCLUSIONS/SIGNIFICANCE: Our studies indicate the complex and multifaceted nature of docetaxel-resistance in prostate cancer. Furthermore, our in vitro observations and preliminary clinical studies indicate that exosomes may play an important role in prostate cancer, in cell-cell communication, and thus may offer potential as vehicles containing predictive biomarkers and new therapeutic targets. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: Alix/ TSG101/ GAPDH
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix/ TSG101/ GAPDH
ELISA
Antibody details provided?
No
Detected EV-associated proteins
GAPDH
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV120052 2/2 Mus musculus Spleen, lymph node and tumor suspensions (d)(U)C
Filtration
IAF
Cai Z 2012 11%

Study summary

Full title
All authors
Cai Z, Yang F, Yu L, Yu Z, Jiang L, Wang Q, Yang Y, Wang L, Cao X, Wang J
Journal
J Immunol
Abstract
Activated T cells release bioactive Fas ligand (FasL) in exosomes, which subsequently induce self-ap (show more...)Activated T cells release bioactive Fas ligand (FasL) in exosomes, which subsequently induce self-apoptosis of T cells. However, their potential effects on cell apoptosis in tumors are still unknown. In this study, we purified exosomes expressing FasL from activated CD8(+) T cell from OT-I mice and found that activated T cell exosomes had little effect on apoptosis and proliferation of tumor cells but promoted the invasion of B16 and 3LL cancer cells in vitro via the Fas/FasL pathway. Activated T cell exosomes increased the amount of cellular FLICE inhibitory proteins and subsequently activated the ERK and NF-?B pathways, which subsequently increased MMP9 expression in the B16 murine melanoma cells. In a tumor-invasive model in vivo, we observed that the activated T cell exosomes promoted the migration of B16 tumor cells to lung. Interestingly, pretreatment with FasL mAb significantly reduced the migration of B16 tumor cells to lung. Furthermore, CD8 and FasL double-positive exosomes from tumor mice, but not normal mice, also increased the expression of MMP9 and promoted the invasive ability of B16 murine melanoma and 3LL lung cancer cells. In conclusion, our results indicate that activated T cell exosomes promote melanoma and lung cancer cell metastasis by increasing the expression of MMP9 via Fas signaling, revealing a new mechanism of tumor immune escape. (hide)
EV-METRIC
11% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Spleen, lymph node and tumor suspensions
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
IAF
Protein markers
EV: TSG101/ HSP70/ Beta-actin
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Spleen, lymph node and tumor suspensions
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Filtration steps
0.22µm or 0.2µm
Immunoaffinity capture
Selected surface protein(s)
CD8
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
HSP70/ TSG101/ Beta-actin
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Beta-actin
Characterization: Particle analysis
None
EV210063 1/3 Homo sapiens Blood plasma (d)(U)C Lok, Christine A R 2012 0%

Study summary

Full title
All authors
Christine A R Lok, Karin S Snijder, Rienk Nieuwland, Joris A M Van Der Post, Paul de Vos, Marijke M Faas
Journal
Am J Reprod Immunol
Abstract
Problem: Preeclampsia is a pregnancy-specific disorder that may result from an adverse maternal resp (show more...)Problem: Preeclampsia is a pregnancy-specific disorder that may result from an adverse maternal response to circulating placenta-derived factors, causing a systemic inflammation including endothelial activation. Plasma from preeclamptic patients was shown to induce endothelial activation in the presence of monocytes. We investigated whether microparticles (MP) are the plasma factors causing this activation of endothelial cells. Method of study: Monocultures and co-cultures of monocytes and endothelial cells were incubated with plasma, MP-poor plasma or isolated MP from non-pregnant and pregnant women and preeclamptic patients (each n = 8). ICAM-1 expression was analyzed with flow cytometry. Results: The expression of ICAM-1 was significantly increased in monocytes and endothelial cells in co-cultures after the addition of isolated MP from preeclamptic patients (P = 0.017) and to a lesser extent in pregnant women (P = 0.012) compared to non-pregnant controls. Conclusions: Microparticles from preeclamptic patients activate endothelial cells in the presence of monocytes. Whether all MP have the same effect on monocytes and endothelial cells or only a specific subgroup is the focus of future research. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Non-pregnant
Focus vesicles
microparticle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
30
Pelleting: rotor type
Not specified
Pelleting: speed (g)
18890
Wash: volume per pellet (ml)
500
Wash: time (min)
30
Wash: Rotor Type
Not specified
Wash: speed (g)
18890
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV210063 2/3 Homo sapiens Blood plasma (d)(U)C Lok, Christine A R 2012 0%

Study summary

Full title
All authors
Christine A R Lok, Karin S Snijder, Rienk Nieuwland, Joris A M Van Der Post, Paul de Vos, Marijke M Faas
Journal
Am J Reprod Immunol
Abstract
Problem: Preeclampsia is a pregnancy-specific disorder that may result from an adverse maternal resp (show more...)Problem: Preeclampsia is a pregnancy-specific disorder that may result from an adverse maternal response to circulating placenta-derived factors, causing a systemic inflammation including endothelial activation. Plasma from preeclamptic patients was shown to induce endothelial activation in the presence of monocytes. We investigated whether microparticles (MP) are the plasma factors causing this activation of endothelial cells. Method of study: Monocultures and co-cultures of monocytes and endothelial cells were incubated with plasma, MP-poor plasma or isolated MP from non-pregnant and pregnant women and preeclamptic patients (each n = 8). ICAM-1 expression was analyzed with flow cytometry. Results: The expression of ICAM-1 was significantly increased in monocytes and endothelial cells in co-cultures after the addition of isolated MP from preeclamptic patients (P = 0.017) and to a lesser extent in pregnant women (P = 0.012) compared to non-pregnant controls. Conclusions: Microparticles from preeclamptic patients activate endothelial cells in the presence of monocytes. Whether all MP have the same effect on monocytes and endothelial cells or only a specific subgroup is the focus of future research. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Pregnant
Focus vesicles
microparticle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
30
Pelleting: rotor type
Not specified
Pelleting: speed (g)
18890
Wash: volume per pellet (ml)
500
Wash: time (min)
30
Wash: Rotor Type
Not specified
Wash: speed (g)
18890
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV210063 3/3 Homo sapiens Blood plasma (d)(U)C Lok, Christine A R 2012 0%

Study summary

Full title
All authors
Christine A R Lok, Karin S Snijder, Rienk Nieuwland, Joris A M Van Der Post, Paul de Vos, Marijke M Faas
Journal
Am J Reprod Immunol
Abstract
Problem: Preeclampsia is a pregnancy-specific disorder that may result from an adverse maternal resp (show more...)Problem: Preeclampsia is a pregnancy-specific disorder that may result from an adverse maternal response to circulating placenta-derived factors, causing a systemic inflammation including endothelial activation. Plasma from preeclamptic patients was shown to induce endothelial activation in the presence of monocytes. We investigated whether microparticles (MP) are the plasma factors causing this activation of endothelial cells. Method of study: Monocultures and co-cultures of monocytes and endothelial cells were incubated with plasma, MP-poor plasma or isolated MP from non-pregnant and pregnant women and preeclamptic patients (each n = 8). ICAM-1 expression was analyzed with flow cytometry. Results: The expression of ICAM-1 was significantly increased in monocytes and endothelial cells in co-cultures after the addition of isolated MP from preeclamptic patients (P = 0.017) and to a lesser extent in pregnant women (P = 0.012) compared to non-pregnant controls. Conclusions: Microparticles from preeclamptic patients activate endothelial cells in the presence of monocytes. Whether all MP have the same effect on monocytes and endothelial cells or only a specific subgroup is the focus of future research. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Pre-eclampsia
Focus vesicles
microparticle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
30
Pelleting: rotor type
Not specified
Pelleting: speed (g)
18890
Wash: volume per pellet (ml)
500
Wash: time (min)
30
Wash: Rotor Type
Not specified
Wash: speed (g)
18890
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV120187 1/1 Paracoccidioides brasiliensis Yeast (d)(U)C
UF
Vallejo MC 2012 0%

Study summary

Full title
All authors
Vallejo MC, Nakayasu ES, Longo LV, Ganiko L, Lopes FG, Matsuo AL, Almeida IC, Puccia R
Journal
PLoS One
Abstract
BACKGROUND: Fungal extracellular vesicles are able to cross the cell wall and transport molecules th (show more...)BACKGROUND: Fungal extracellular vesicles are able to cross the cell wall and transport molecules that help in nutrient acquisition, cell defense, and modulation of the host defense machinery. METHODOLOGY/PRINCIPAL FINDINGS: Here we present a detailed lipidomic analysis of extracellular vesicles released by Paracoccidioides brasiliensis at the yeast pathogenic phase. We compared data of two representative isolates, Pb3 and Pb18, which have distinct virulence profiles and phylogenetic background. Vesicle lipids were fractionated into different classes and analyzed by either electrospray ionization- or gas chromatography-mass spectrometry. We found two species of monohexosylceramide and 33 phospholipid species, including phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid, phosphatidylserine, phosphatidylinositol, and phosphatidylglycerol. Among the phospholipid-bound fatty acids in extracellular vesicles, C181 predominated in Pb3, whereas C18:2 prevailed in Pb18. The prevalent sterol in Pb3 and Pb18 vesicles was brassicasterol, followed by ergosterol and lanosterol. Inter-isolate differences in sterol composition were observed, and also between extracellular vesicles and whole cells. CONCLUSIONS/SIGNIFICANCE: The extensive lipidomic analysis of extracellular vesicles from two P. brasiliensis isolates will help to understand the composition of these fungal components/organelles and will hopefully be useful to study their biogenesis and role in host-pathogen interactions. (hide)
EV-METRIC
0% (median: 20% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Yeast
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
UF
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Omics
Sample
Species
Paracoccidioides brasiliensis
Sample Type
Yeast
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Characterization: Particle analysis
None
151 - 200 of 268 keyboard_arrow_leftkeyboard_arrow_right