Search > Results

You searched for: EV120102 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Isolation method
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV120102 2/2 Mus musculus Blood plasma Microfluidics Davies RT 2012 13%

Study summary

Full title
All authors
Davies RT, Kim J, Jang SC, Choi EJ, Gho YS, Park J
Journal
Lab Chip
Abstract
Extracellular vesicles are released by various cell types, particularly tumor cells, and may be pote (show more...)Extracellular vesicles are released by various cell types, particularly tumor cells, and may be potential targets for blood-based cancer diagnosis. However, studies performed on blood-borne vesicles to date have been limited by lack of effective, standardized purification strategies. Using in situ prepared nanoporous membranes, we present a simple strategy employing a microfluidic filtration system to isolate vesicles from whole blood samples. This method can be applied to purify nano-sized particles from blood allowing isolation of intact extracellular vesicles, avoiding the need for laborious and potentially damaging centrifugation steps or overly specific antibody-based affinity purification. Porous polymer monoliths were integrated as membranes into poly(methyl methacrylate) microfluidic chips by benchtop UV photopolymerization through a mask, allowing precise positioning of membrane elements while preserving simplicity of device preparation. Pore size could be manipulated by changing the ratio of porogenic solvent to prepolymer solution, and was tuned to a size proper for extraction of vesicles. Using the membrane as a size exclusion filter, we separated vesicles from cells and large debris by injecting whole blood under pressure through the microfluidic device. To enhance isolation purity, DC electrophoresis was employed as an alternative driving force to propel particles across the filter and increase the separation efficiency of vesicles from proteins. From the whole blood of melanoma-grown mice, we isolated extracellular vesicles and performed RT-PCR to verify their contents of RNA. Melan A mRNA derived from melanoma tumor cells were found enriched in filtered samples, confirming the recovery of vesicles via their cargo. This filtration system can be incorporated into other on-chip processes enabling integrated sample preparation for the downstream analysis of blood-based extracellular vesicles. (hide)
EV-METRIC
13% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Microfluidics
Protein markers
EV: CD9
non-EV:
Proteomics
no
Show all info
Study aim
Technical
Sample
Species
Mus musculus
Sample Type
Blood plasma
Separation Method
Other
Name other separation method
Microfluidics
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV120102 1/2 Mus musculus Blood plasma (d)(U)C Davies RT 2012 11%

Study summary

Full title
All authors
Davies RT, Kim J, Jang SC, Choi EJ, Gho YS, Park J
Journal
Lab Chip
Abstract
Extracellular vesicles are released by various cell types, particularly tumor cells, and may be pote (show more...)Extracellular vesicles are released by various cell types, particularly tumor cells, and may be potential targets for blood-based cancer diagnosis. However, studies performed on blood-borne vesicles to date have been limited by lack of effective, standardized purification strategies. Using in situ prepared nanoporous membranes, we present a simple strategy employing a microfluidic filtration system to isolate vesicles from whole blood samples. This method can be applied to purify nano-sized particles from blood allowing isolation of intact extracellular vesicles, avoiding the need for laborious and potentially damaging centrifugation steps or overly specific antibody-based affinity purification. Porous polymer monoliths were integrated as membranes into poly(methyl methacrylate) microfluidic chips by benchtop UV photopolymerization through a mask, allowing precise positioning of membrane elements while preserving simplicity of device preparation. Pore size could be manipulated by changing the ratio of porogenic solvent to prepolymer solution, and was tuned to a size proper for extraction of vesicles. Using the membrane as a size exclusion filter, we separated vesicles from cells and large debris by injecting whole blood under pressure through the microfluidic device. To enhance isolation purity, DC electrophoresis was employed as an alternative driving force to propel particles across the filter and increase the separation efficiency of vesicles from proteins. From the whole blood of melanoma-grown mice, we isolated extracellular vesicles and performed RT-PCR to verify their contents of RNA. Melan A mRNA derived from melanoma tumor cells were found enriched in filtered samples, confirming the recovery of vesicles via their cargo. This filtration system can be incorporated into other on-chip processes enabling integrated sample preparation for the downstream analysis of blood-based extracellular vesicles. (hide)
EV-METRIC
11% (25th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: CD9
non-EV:
Proteomics
no
Show all info
Study aim
Technical
Sample
Species
Mus musculus
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV120102
species
Mus musculus
sample type
Blood plasma
condition
NAY
separation protocol
Microfluidics
(d)(U)C
Exp. nr.
2
1
EV-METRIC %
13
11