Search > Results

You searched for: EV120072 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV120072 1/1 Mus musculus NAY (d)(U)C
DC
UF
Li X 2012 13%

Study summary

Full title
All authors
Li X, Li JJ, Yang JY, Wang DS, Zhao W, Song WJ, Li WM, Wang JF, Han W, Zhang ZC, Yu Y, Cao DY, Dou KF
Journal
PLoS One
Abstract
BACKGROUND: Dendritic cells (DCs) release bioactive exosomes that play an important role in immune r (show more...)BACKGROUND: Dendritic cells (DCs) release bioactive exosomes that play an important role in immune regulation. Because they express low levels of class I major histocompatibility complex (MHC) and co-stimulatory molecules, exosomes derived from donor immature DCs (imDex) prolong allograft survival by inhibiting T-cell activation. However, this effect is limited and does not induce immunological tolerance when imDex are administered alone. Thus, we tested the effect of combined treatment with donor imDex and low-dose rapamycin on inducing tolerance in a mouse cardiac transplantation model. METHODS: ImDex were obtained from the culture supernatant of immature DCs derived from donor mouse (C57BL/6) bone marrow and were injected with suboptimal doses of rapamycin into recipient mouse (BALB/c) before and after transplantation. The capacity of this treatment to induce immune tolerance was analyzed in vitro and in vivo using the mouse cardiac transplantation model. RESULTS: Donor imDex expressed moderate levels of MHC class II and low levels of MHC class I and co-stimulatory molecules, but neither imDex nor subtherapeutic rapamycin dose alone induced cardiac allograft tolerance. Combined treatment with imDex and rapamycin, however, led to donor specific cardiac allograft tolerance. This effect was accompanied by decreased anti-donor antigen cellular response and an increased percentage of spleen CD4(+)CD25(+) T cells in recipients. Furthermore, this donor specific tolerance could be further transferred to naïve allograft recipients through injection of splenocytes, but not serum, from tolerant recipients. CONCLUSION: Combined with immunosuppressive treatment, donor imDex can prolong cardiac allograft survival and induce donor specific allograft tolerance. (hide)
EV-METRIC
13% (34th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DC
UF
Protein markers
EV: MFGE8/ CD80/ HSP90/ CD86/ ICAM1/ HSP70/ Beta-actin/ MHC2/ MHC1
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
HSP90/ HSP70/ Beta-actin/ MFGE8/ MHC1/ MHC2/ CD80/ CD86/ ICAM1
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Beta-actin/ MFGE8/ MHC1/ MHC2/ CD80/ CD86/ ICAM1
Characterization: Particle analysis
EM
EM-type
transmission EM
1 - 1 of 1
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV120072
species
Mus musculus
sample type
Cell culture
cell type
NAY
condition
NAY
separation protocol
(d)(U)C
DC
UF
Exp. nr.
1
EV-METRIC %
13