Search > Results

You searched for: 2020 (Year of publication)

Showing 51 - 72 of 72

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Details EV-TRACK ID Experiment nr. Species Sample type separation protocol First author Year EV-METRIC
EV200085 4/5 Rattus norvegicus Cell culture supernatant Density gradient
(Differential) (ultra)centrifugation
Rohit Kumar 2020 23%

Study summary

Full title
All authors
Rohit Kumar, Qilin Tang, Stephan A Müller, Pan Gao, Diana Mahlstedt, Sofia Zampagni, Yi Tan, Andreas Klingl, Kai Bötzel, Stefan F Lichtenthaler, Günter U Höglinger, Thomas Koeglsperger
Journal
Advanced Science
Abstract
Extracellular vesicles (EVs) are endogenous membrane-derived vesicles that shuttle bioactive molecul (show more...)Extracellular vesicles (EVs) are endogenous membrane-derived vesicles that shuttle bioactive molecules between glia and neurons, thereby promoting neuronal survival and plasticity in the central nervous system (CNS) and contributing to neurodegenerative conditions. Although EVs hold great potential as CNS theranostic nanocarriers, the specific molecular factors that regulate neuronal EV uptake and release are currently unknown. A combination of patch-clamp electrophysiology and pH-sensitive dye imaging is used to examine stimulus-evoked EV release in individual neurons in real time. Whereas spontaneous electrical activity and the application of a high-frequency stimulus induce a slow and prolonged fusion of multivesicular bodies (MVBs) with the plasma membrane (PM) in a subset of cells, the neurotrophic factor basic fibroblast growth factor (bFGF) greatly increases the rate of stimulus-evoked MVB-PM fusion events and, consequently, the abundance of EVs in the culture medium. Proteomic analysis of neuronal EVs demonstrates bFGF increases the abundance of the v-SNARE vesicle-associated membrane protein 3 (VAMP3, cellubrevin) on EVs. Conversely, knocking-down VAMP3 in cultured neurons attenuates the effect of bFGF on EV release. The results determine the temporal characteristics of MVB-PM fusion in hippocampal neurons and reveal a new function for bFGF signaling in controlling neuronal EV release. (hide)
EV-METRIC
23% (53rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
CD63-pHluorin transduced + bFGF and BABPTA-AM treated
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Density gradient + (Differential) (ultra)centrifugation
Protein markers
EV: Alix/ CD81/ GFP
non-EV: None
Proteomics
no
Show all info
Study aim
Function/Biogenesis/cargo sorting/Identification of content (omics approaches)
Sample
Species
Rattus norvegicus
Sample Type
Cell culture supernatant
Sample Condition
CD63-pHluorin transduced + bFGF and BABPTA-AM treated
EV-producing cells
Primary Hippocampus neurons
EV-harvesting Medium
Serum free
Cell viability
Yes
Cell number specification
Yes
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
90
Pelleting: rotor type
MLA-80
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
1
Wash: time (min)
90
Wash: Rotor Type
TLA-55
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
Alix/ CD81/ GFP
Characterization: Particle analysis
NA
NTA
Report type
Size range/distribution
Reported size (nm)
0-500
EV concentration
Yes
EV200032 5/11 Homo sapiens Cell culture supernatant Filtration
Commercial method
Stephanie Jung 2020 23%

Study summary

Full title
All authors
Stephanie Jung, Sebastian M Altstetter, Florian Wilsch, Mikhail Shein, Anne K Schütz, Ulrike Protzer
Journal
Matters
Abstract
Hepatitis D Virus (HDV) is a satellite virus requiring a Hepatitis B Virus (HBV) envelope proteins f (show more...)Hepatitis D Virus (HDV) is a satellite virus requiring a Hepatitis B Virus (HBV) envelope proteins for productive infection. Hepatitis D is the most severe form of viral hepatitis and is a global health threat affecting 15 to 20 million humans. In contrast to the Hepatitis B Virus mono-infection, against which only a minor innate immune response is mounted at most, HBV-HDV coinfection is characterized by strong activation of innate immune responses. To shed light on poorly understood mechanisms of HDV-triggered disease progression, we focussed on the question how immune cells may be activated by HDV. We hypothesized that extracellular vesicles (EVs) released from infected cells mediate this activation. We, therefore, purified EVs from the supernatant of HDV-infected and non-infected cells and incubated them with human peripheral blood mononuclear cells (PBMC) and macrophages. Here we show for the first time that HDV infection leads to the production of EVs which subsequently mediate a proinflammatory cytokine response in primary human immune cells. These data might help to understand how HDV can be sensed by non-infected immune cells. (hide)
EV-METRIC
23% (53rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Filtration + Commercial method
Protein markers
EV: TNF alpha/ IFN gamma/ IL 6
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control
EV-producing cells
Hep G2-NTC
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Not specified
Separation Method
Filtration steps
0.45µm > x > 0.22µm,
Commercial kit
qEV
Characterization: Protein analysis
ELISA
Detected EV-associated proteins
TNF alpha/ IFN gamma/ IL 6
Characterization: Particle analysis
NA
EM
EM-type
Transmission­-EM
Image type
Close-up, Wide-field
EV200085 5/5 Rattus norvegicus Cell culture supernatant Density gradient
(Differential) (ultra)centrifugation
Rohit Kumar 2020 15%

Study summary

Full title
All authors
Rohit Kumar, Qilin Tang, Stephan A Müller, Pan Gao, Diana Mahlstedt, Sofia Zampagni, Yi Tan, Andreas Klingl, Kai Bötzel, Stefan F Lichtenthaler, Günter U Höglinger, Thomas Koeglsperger
Journal
Advanced Science
Abstract
Extracellular vesicles (EVs) are endogenous membrane-derived vesicles that shuttle bioactive molecul (show more...)Extracellular vesicles (EVs) are endogenous membrane-derived vesicles that shuttle bioactive molecules between glia and neurons, thereby promoting neuronal survival and plasticity in the central nervous system (CNS) and contributing to neurodegenerative conditions. Although EVs hold great potential as CNS theranostic nanocarriers, the specific molecular factors that regulate neuronal EV uptake and release are currently unknown. A combination of patch-clamp electrophysiology and pH-sensitive dye imaging is used to examine stimulus-evoked EV release in individual neurons in real time. Whereas spontaneous electrical activity and the application of a high-frequency stimulus induce a slow and prolonged fusion of multivesicular bodies (MVBs) with the plasma membrane (PM) in a subset of cells, the neurotrophic factor basic fibroblast growth factor (bFGF) greatly increases the rate of stimulus-evoked MVB-PM fusion events and, consequently, the abundance of EVs in the culture medium. Proteomic analysis of neuronal EVs demonstrates bFGF increases the abundance of the v-SNARE vesicle-associated membrane protein 3 (VAMP3, cellubrevin) on EVs. Conversely, knocking-down VAMP3 in cultured neurons attenuates the effect of bFGF on EV release. The results determine the temporal characteristics of MVB-PM fusion in hippocampal neurons and reveal a new function for bFGF signaling in controlling neuronal EV release. (hide)
EV-METRIC
15% (41st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
CD63-pHluorin transduced + bFGF and Genistein treated
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Density gradient + (Differential) (ultra)centrifugation
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function/Biogenesis/cargo sorting/Identification of content (omics approaches)
Sample
Species
Rattus norvegicus
Sample Type
Cell culture supernatant
Sample Condition
CD63-pHluorin transduced + bFGF and Genistein treated
EV-producing cells
Primary Hippocampus neurons
EV-harvesting Medium
Serum free
Cell viability
Yes
Cell number specification
Yes
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
90
Pelleting: rotor type
MLA-80
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
1
Wash: time (min)
90
Wash: Rotor Type
TLA-55
Wash: speed (g)
100000
Protein Concentration Method
BCA
Characterization: Particle analysis
NA
NTA
Report type
Size range/distribution
Reported size (nm)
0-500
EV concentration
Yes
EV200068 3/5 Homo sapiens Cell culture supernatant (Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial)
Filtration
Ultrafiltration
Linda Hofmann 2020 15%

Study summary

Full title
All authors
Linda Hofmann, Sonja Ludwig, Patrick J Schuler, Thomas K Hoffmann, Cornelia Brunner, Marie-Nicole Theodoraki
Journal
Int J Mol Sci
Abstract
Head and neck squamous cell carcinomas (HNSCC) are highly immune suppressive and aggressive malignan (show more...)Head and neck squamous cell carcinomas (HNSCC) are highly immune suppressive and aggressive malignancies. As part of the tumor microenvironment, exosomes contribute to this immune suppression. The Fc receptor CD16 is widely expressed on monocytes, neutrophils, and natural killer (NK) cells and is involved in antibody-dependent cell-mediated cytotoxicity (ADCC). Here, surface levels of CD16 on total exosomes and tumor-derived exosomes (TEX) from plasma of HNSCC patients were analyzed regarding their potential as liquid biomarkers for disease stage. Exosomes were isolated from plasma using mini size exclusion chromatography. TEX were enriched by immune affinity capture with CD44v3 antibodies. On-bead flow cytometry was used to measure CD16 levels on total exosomes and TEX. The results were correlated with clinicopathological parameters. Total exosomes from HNSCC patients had significantly higher CD16 levels compared to TEX. Further, CD16 surface levels of total exosomes, but not TEX, correlated with clinicopathological parameters. Patients with advanced tumor stages T3/4 and Union for International Cancer Control (UICC) stages III/IV had significantly higher CD16 levels on total exosomes compared to patients with early tumor stages T1/2 and UICC stages I/II, respectively. Overall, CD16 positive exosomes have the potential as liquid biomarkers for HNSCC tumor stage and aggressiveness. (hide)
EV-METRIC
15% (41st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(Differential) (ultra)centrifugation + Size-exclusion chromatography (non-commercial) + Filtration + Ultrafiltration
Protein markers
EV: CD16
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
THP-1
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
Commercial EV-depleted serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Polyethersulfone (PES)
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
1
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
BCA
Flow cytometry aspecific beads
Detected EV-associated proteins
CD16
NA
EV200068 4/5 Homo sapiens Cell culture supernatant (Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial)
Filtration
Ultrafiltration
Linda Hofmann 2020 15%

Study summary

Full title
All authors
Linda Hofmann, Sonja Ludwig, Patrick J Schuler, Thomas K Hoffmann, Cornelia Brunner, Marie-Nicole Theodoraki
Journal
Int J Mol Sci
Abstract
Head and neck squamous cell carcinomas (HNSCC) are highly immune suppressive and aggressive malignan (show more...)Head and neck squamous cell carcinomas (HNSCC) are highly immune suppressive and aggressive malignancies. As part of the tumor microenvironment, exosomes contribute to this immune suppression. The Fc receptor CD16 is widely expressed on monocytes, neutrophils, and natural killer (NK) cells and is involved in antibody-dependent cell-mediated cytotoxicity (ADCC). Here, surface levels of CD16 on total exosomes and tumor-derived exosomes (TEX) from plasma of HNSCC patients were analyzed regarding their potential as liquid biomarkers for disease stage. Exosomes were isolated from plasma using mini size exclusion chromatography. TEX were enriched by immune affinity capture with CD44v3 antibodies. On-bead flow cytometry was used to measure CD16 levels on total exosomes and TEX. The results were correlated with clinicopathological parameters. Total exosomes from HNSCC patients had significantly higher CD16 levels compared to TEX. Further, CD16 surface levels of total exosomes, but not TEX, correlated with clinicopathological parameters. Patients with advanced tumor stages T3/4 and Union for International Cancer Control (UICC) stages III/IV had significantly higher CD16 levels on total exosomes compared to patients with early tumor stages T1/2 and UICC stages I/II, respectively. Overall, CD16 positive exosomes have the potential as liquid biomarkers for HNSCC tumor stage and aggressiveness. (hide)
EV-METRIC
15% (41st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(Differential) (ultra)centrifugation + Size-exclusion chromatography (non-commercial) + Filtration + Ultrafiltration
Protein markers
EV: CD16
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
PCI-30
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
Commercial EV-depleted serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Polyethersulfone (PES)
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
1
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
BCA
Flow cytometry aspecific beads
Detected EV-associated proteins
CD16
NA
EV200068 5/5 Homo sapiens Cell culture supernatant (Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial)
Filtration
Ultrafiltration
Linda Hofmann 2020 15%

Study summary

Full title
All authors
Linda Hofmann, Sonja Ludwig, Patrick J Schuler, Thomas K Hoffmann, Cornelia Brunner, Marie-Nicole Theodoraki
Journal
Int J Mol Sci
Abstract
Head and neck squamous cell carcinomas (HNSCC) are highly immune suppressive and aggressive malignan (show more...)Head and neck squamous cell carcinomas (HNSCC) are highly immune suppressive and aggressive malignancies. As part of the tumor microenvironment, exosomes contribute to this immune suppression. The Fc receptor CD16 is widely expressed on monocytes, neutrophils, and natural killer (NK) cells and is involved in antibody-dependent cell-mediated cytotoxicity (ADCC). Here, surface levels of CD16 on total exosomes and tumor-derived exosomes (TEX) from plasma of HNSCC patients were analyzed regarding their potential as liquid biomarkers for disease stage. Exosomes were isolated from plasma using mini size exclusion chromatography. TEX were enriched by immune affinity capture with CD44v3 antibodies. On-bead flow cytometry was used to measure CD16 levels on total exosomes and TEX. The results were correlated with clinicopathological parameters. Total exosomes from HNSCC patients had significantly higher CD16 levels compared to TEX. Further, CD16 surface levels of total exosomes, but not TEX, correlated with clinicopathological parameters. Patients with advanced tumor stages T3/4 and Union for International Cancer Control (UICC) stages III/IV had significantly higher CD16 levels on total exosomes compared to patients with early tumor stages T1/2 and UICC stages I/II, respectively. Overall, CD16 positive exosomes have the potential as liquid biomarkers for HNSCC tumor stage and aggressiveness. (hide)
EV-METRIC
15% (41st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(Differential) (ultra)centrifugation + Size-exclusion chromatography (non-commercial) + Filtration + Ultrafiltration
Protein markers
EV: CD16
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
SCC-47
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
Commercial EV-depleted serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Polyethersulfone (PES)
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
1
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
BCA
Flow cytometry aspecific beads
Detected EV-associated proteins
CD16
NA
EV200032 6/11 Homo sapiens Cell culture supernatant Filtration
Commercial method
Stephanie Jung 2020 12%

Study summary

Full title
All authors
Stephanie Jung, Sebastian M Altstetter, Florian Wilsch, Mikhail Shein, Anne K Schütz, Ulrike Protzer
Journal
Matters
Abstract
Hepatitis D Virus (HDV) is a satellite virus requiring a Hepatitis B Virus (HBV) envelope proteins f (show more...)Hepatitis D Virus (HDV) is a satellite virus requiring a Hepatitis B Virus (HBV) envelope proteins for productive infection. Hepatitis D is the most severe form of viral hepatitis and is a global health threat affecting 15 to 20 million humans. In contrast to the Hepatitis B Virus mono-infection, against which only a minor innate immune response is mounted at most, HBV-HDV coinfection is characterized by strong activation of innate immune responses. To shed light on poorly understood mechanisms of HDV-triggered disease progression, we focussed on the question how immune cells may be activated by HDV. We hypothesized that extracellular vesicles (EVs) released from infected cells mediate this activation. We, therefore, purified EVs from the supernatant of HDV-infected and non-infected cells and incubated them with human peripheral blood mononuclear cells (PBMC) and macrophages. Here we show for the first time that HDV infection leads to the production of EVs which subsequently mediate a proinflammatory cytokine response in primary human immune cells. These data might help to understand how HDV can be sensed by non-infected immune cells. (hide)
EV-METRIC
12% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
HDV infected
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Filtration + Commercial method
Protein markers
EV: TNF alpha/ IFN gamma/ IL 6
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
HDV infected
EV-producing cells
Hep G2-NTC
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Not specified
Separation Method
Filtration steps
0.45µm > x > 0.22µm,
Commercial kit
qEV
Characterization: Protein analysis
ELISA
Detected EV-associated proteins
TNF alpha/ IFN gamma/ IL 6
NA
EV200032 7/11 Homo sapiens Cell culture supernatant Filtration
Commercial method
Stephanie Jung 2020 12%

Study summary

Full title
All authors
Stephanie Jung, Sebastian M Altstetter, Florian Wilsch, Mikhail Shein, Anne K Schütz, Ulrike Protzer
Journal
Matters
Abstract
Hepatitis D Virus (HDV) is a satellite virus requiring a Hepatitis B Virus (HBV) envelope proteins f (show more...)Hepatitis D Virus (HDV) is a satellite virus requiring a Hepatitis B Virus (HBV) envelope proteins for productive infection. Hepatitis D is the most severe form of viral hepatitis and is a global health threat affecting 15 to 20 million humans. In contrast to the Hepatitis B Virus mono-infection, against which only a minor innate immune response is mounted at most, HBV-HDV coinfection is characterized by strong activation of innate immune responses. To shed light on poorly understood mechanisms of HDV-triggered disease progression, we focussed on the question how immune cells may be activated by HDV. We hypothesized that extracellular vesicles (EVs) released from infected cells mediate this activation. We, therefore, purified EVs from the supernatant of HDV-infected and non-infected cells and incubated them with human peripheral blood mononuclear cells (PBMC) and macrophages. Here we show for the first time that HDV infection leads to the production of EVs which subsequently mediate a proinflammatory cytokine response in primary human immune cells. These data might help to understand how HDV can be sensed by non-infected immune cells. (hide)
EV-METRIC
12% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
UV irradiated HDV infected
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Filtration + Commercial method
Protein markers
EV: TNF alpha/ IFN gamma/ IL 6
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
UV irradiated HDV infected
EV-producing cells
Hep G2-NTC
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Not specified
Separation Method
Filtration steps
0.45µm > x > 0.22µm,
Commercial kit
qEV
Characterization: Protein analysis
ELISA
Not detected EV-associated proteins
Not detected contaminants
TNF alpha/ IFN gamma/ IL 6
NA
EV200032 8/11 Homo sapiens Cell culture supernatant Filtration
Commercial method
Stephanie Jung 2020 12%

Study summary

Full title
All authors
Stephanie Jung, Sebastian M Altstetter, Florian Wilsch, Mikhail Shein, Anne K Schütz, Ulrike Protzer
Journal
Matters
Abstract
Hepatitis D Virus (HDV) is a satellite virus requiring a Hepatitis B Virus (HBV) envelope proteins f (show more...)Hepatitis D Virus (HDV) is a satellite virus requiring a Hepatitis B Virus (HBV) envelope proteins for productive infection. Hepatitis D is the most severe form of viral hepatitis and is a global health threat affecting 15 to 20 million humans. In contrast to the Hepatitis B Virus mono-infection, against which only a minor innate immune response is mounted at most, HBV-HDV coinfection is characterized by strong activation of innate immune responses. To shed light on poorly understood mechanisms of HDV-triggered disease progression, we focussed on the question how immune cells may be activated by HDV. We hypothesized that extracellular vesicles (EVs) released from infected cells mediate this activation. We, therefore, purified EVs from the supernatant of HDV-infected and non-infected cells and incubated them with human peripheral blood mononuclear cells (PBMC) and macrophages. Here we show for the first time that HDV infection leads to the production of EVs which subsequently mediate a proinflammatory cytokine response in primary human immune cells. These data might help to understand how HDV can be sensed by non-infected immune cells. (hide)
EV-METRIC
12% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
IFN beta treated
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Filtration + Commercial method
Protein markers
EV: TNF alpha/ IFN gamma/ IL 6
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
IFN beta treated
EV-producing cells
Hep G2-NTC
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Not specified
Separation Method
Filtration steps
0.45µm > x > 0.22µm,
Commercial kit
qEV
Characterization: Protein analysis
ELISA
Not detected EV-associated proteins
Not detected contaminants
TNF alpha/ IFN gamma/ IL 6
NA
EV200032 2/11 Homo sapiens Cell culture supernatant Filtration
Commercial method
Stephanie Jung 2020 0%

Study summary

Full title
All authors
Stephanie Jung, Sebastian M Altstetter, Florian Wilsch, Mikhail Shein, Anne K Schütz, Ulrike Protzer
Journal
Matters
Abstract
Hepatitis D Virus (HDV) is a satellite virus requiring a Hepatitis B Virus (HBV) envelope proteins f (show more...)Hepatitis D Virus (HDV) is a satellite virus requiring a Hepatitis B Virus (HBV) envelope proteins for productive infection. Hepatitis D is the most severe form of viral hepatitis and is a global health threat affecting 15 to 20 million humans. In contrast to the Hepatitis B Virus mono-infection, against which only a minor innate immune response is mounted at most, HBV-HDV coinfection is characterized by strong activation of innate immune responses. To shed light on poorly understood mechanisms of HDV-triggered disease progression, we focussed on the question how immune cells may be activated by HDV. We hypothesized that extracellular vesicles (EVs) released from infected cells mediate this activation. We, therefore, purified EVs from the supernatant of HDV-infected and non-infected cells and incubated them with human peripheral blood mononuclear cells (PBMC) and macrophages. Here we show for the first time that HDV infection leads to the production of EVs which subsequently mediate a proinflammatory cytokine response in primary human immune cells. These data might help to understand how HDV can be sensed by non-infected immune cells. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
HDV infected
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Filtration + Commercial method
Protein markers
EV: TNF alpha
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
HDV infected
EV-producing cells
Huh7-NTC
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Not specified
Separation Method
Filtration steps
0.45µm > x > 0.22µm,
Commercial kit
qEV
ELISA
Detected EV-associated proteins
TNF alpha
NA
EV200032 3/11 Homo sapiens Cell culture supernatant Filtration
Commercial method
Stephanie Jung 2020 0%

Study summary

Full title
All authors
Stephanie Jung, Sebastian M Altstetter, Florian Wilsch, Mikhail Shein, Anne K Schütz, Ulrike Protzer
Journal
Matters
Abstract
Hepatitis D Virus (HDV) is a satellite virus requiring a Hepatitis B Virus (HBV) envelope proteins f (show more...)Hepatitis D Virus (HDV) is a satellite virus requiring a Hepatitis B Virus (HBV) envelope proteins for productive infection. Hepatitis D is the most severe form of viral hepatitis and is a global health threat affecting 15 to 20 million humans. In contrast to the Hepatitis B Virus mono-infection, against which only a minor innate immune response is mounted at most, HBV-HDV coinfection is characterized by strong activation of innate immune responses. To shed light on poorly understood mechanisms of HDV-triggered disease progression, we focussed on the question how immune cells may be activated by HDV. We hypothesized that extracellular vesicles (EVs) released from infected cells mediate this activation. We, therefore, purified EVs from the supernatant of HDV-infected and non-infected cells and incubated them with human peripheral blood mononuclear cells (PBMC) and macrophages. Here we show for the first time that HDV infection leads to the production of EVs which subsequently mediate a proinflammatory cytokine response in primary human immune cells. These data might help to understand how HDV can be sensed by non-infected immune cells. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
UV irradiated HDV infected
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Filtration + Commercial method
Protein markers
EV: TNF alpha
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
UV irradiated HDV infected
EV-producing cells
Huh7-NTC
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Not specified
Separation Method
Filtration steps
0.45µm > x > 0.22µm,
Commercial kit
qEV
ELISA
Detected EV-associated proteins
TNF alpha
NA
EV200032 4/11 Homo sapiens Cell culture supernatant Filtration
Commercial method
Stephanie Jung 2020 0%

Study summary

Full title
All authors
Stephanie Jung, Sebastian M Altstetter, Florian Wilsch, Mikhail Shein, Anne K Schütz, Ulrike Protzer
Journal
Matters
Abstract
Hepatitis D Virus (HDV) is a satellite virus requiring a Hepatitis B Virus (HBV) envelope proteins f (show more...)Hepatitis D Virus (HDV) is a satellite virus requiring a Hepatitis B Virus (HBV) envelope proteins for productive infection. Hepatitis D is the most severe form of viral hepatitis and is a global health threat affecting 15 to 20 million humans. In contrast to the Hepatitis B Virus mono-infection, against which only a minor innate immune response is mounted at most, HBV-HDV coinfection is characterized by strong activation of innate immune responses. To shed light on poorly understood mechanisms of HDV-triggered disease progression, we focussed on the question how immune cells may be activated by HDV. We hypothesized that extracellular vesicles (EVs) released from infected cells mediate this activation. We, therefore, purified EVs from the supernatant of HDV-infected and non-infected cells and incubated them with human peripheral blood mononuclear cells (PBMC) and macrophages. Here we show for the first time that HDV infection leads to the production of EVs which subsequently mediate a proinflammatory cytokine response in primary human immune cells. These data might help to understand how HDV can be sensed by non-infected immune cells. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
IFN beta treated
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Filtration + Commercial method
Protein markers
EV: TNF alpha
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
IFN beta treated
EV-producing cells
Huh7-NTC
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Not specified
Separation Method
Filtration steps
0.45µm > x > 0.22µm,
Commercial kit
qEV
ELISA
Detected EV-associated proteins
TNF alpha
NA
EV200032 9/11 Homo sapiens serum Filtration
Commercial method
Stephanie Jung 2020 0%

Study summary

Full title
All authors
Stephanie Jung, Sebastian M Altstetter, Florian Wilsch, Mikhail Shein, Anne K Schütz, Ulrike Protzer
Journal
Matters
Abstract
Hepatitis D Virus (HDV) is a satellite virus requiring a Hepatitis B Virus (HBV) envelope proteins f (show more...)Hepatitis D Virus (HDV) is a satellite virus requiring a Hepatitis B Virus (HBV) envelope proteins for productive infection. Hepatitis D is the most severe form of viral hepatitis and is a global health threat affecting 15 to 20 million humans. In contrast to the Hepatitis B Virus mono-infection, against which only a minor innate immune response is mounted at most, HBV-HDV coinfection is characterized by strong activation of innate immune responses. To shed light on poorly understood mechanisms of HDV-triggered disease progression, we focussed on the question how immune cells may be activated by HDV. We hypothesized that extracellular vesicles (EVs) released from infected cells mediate this activation. We, therefore, purified EVs from the supernatant of HDV-infected and non-infected cells and incubated them with human peripheral blood mononuclear cells (PBMC) and macrophages. Here we show for the first time that HDV infection leads to the production of EVs which subsequently mediate a proinflammatory cytokine response in primary human immune cells. These data might help to understand how HDV can be sensed by non-infected immune cells. (hide)
EV-METRIC
0% (median: 13% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
serum
Sample origin
Control
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Filtration + Commercial method
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
serum
Sample Condition
Control
Separation Method
Filtration steps
0.45µm > x > 0.22µm,
Commercial kit
qEV
NA
EV200032 10/11 Homo sapiens serum Filtration
Commercial method
Stephanie Jung 2020 0%

Study summary

Full title
All authors
Stephanie Jung, Sebastian M Altstetter, Florian Wilsch, Mikhail Shein, Anne K Schütz, Ulrike Protzer
Journal
Matters
Abstract
Hepatitis D Virus (HDV) is a satellite virus requiring a Hepatitis B Virus (HBV) envelope proteins f (show more...)Hepatitis D Virus (HDV) is a satellite virus requiring a Hepatitis B Virus (HBV) envelope proteins for productive infection. Hepatitis D is the most severe form of viral hepatitis and is a global health threat affecting 15 to 20 million humans. In contrast to the Hepatitis B Virus mono-infection, against which only a minor innate immune response is mounted at most, HBV-HDV coinfection is characterized by strong activation of innate immune responses. To shed light on poorly understood mechanisms of HDV-triggered disease progression, we focussed on the question how immune cells may be activated by HDV. We hypothesized that extracellular vesicles (EVs) released from infected cells mediate this activation. We, therefore, purified EVs from the supernatant of HDV-infected and non-infected cells and incubated them with human peripheral blood mononuclear cells (PBMC) and macrophages. Here we show for the first time that HDV infection leads to the production of EVs which subsequently mediate a proinflammatory cytokine response in primary human immune cells. These data might help to understand how HDV can be sensed by non-infected immune cells. (hide)
EV-METRIC
0% (median: 13% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
serum
Sample origin
HDV/HBV coinfected, HDV cured
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Filtration + Commercial method
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
serum
Sample Condition
HDV/HBV coinfected, HDV cured
Separation Method
Filtration steps
0.45µm > x > 0.22µm,
Commercial kit
qEV
NA
EV200032 11/11 Homo sapiens serum Filtration
Commercial method
Stephanie Jung 2020 0%

Study summary

Full title
All authors
Stephanie Jung, Sebastian M Altstetter, Florian Wilsch, Mikhail Shein, Anne K Schütz, Ulrike Protzer
Journal
Matters
Abstract
Hepatitis D Virus (HDV) is a satellite virus requiring a Hepatitis B Virus (HBV) envelope proteins f (show more...)Hepatitis D Virus (HDV) is a satellite virus requiring a Hepatitis B Virus (HBV) envelope proteins for productive infection. Hepatitis D is the most severe form of viral hepatitis and is a global health threat affecting 15 to 20 million humans. In contrast to the Hepatitis B Virus mono-infection, against which only a minor innate immune response is mounted at most, HBV-HDV coinfection is characterized by strong activation of innate immune responses. To shed light on poorly understood mechanisms of HDV-triggered disease progression, we focussed on the question how immune cells may be activated by HDV. We hypothesized that extracellular vesicles (EVs) released from infected cells mediate this activation. We, therefore, purified EVs from the supernatant of HDV-infected and non-infected cells and incubated them with human peripheral blood mononuclear cells (PBMC) and macrophages. Here we show for the first time that HDV infection leads to the production of EVs which subsequently mediate a proinflammatory cytokine response in primary human immune cells. These data might help to understand how HDV can be sensed by non-infected immune cells. (hide)
EV-METRIC
0% (median: 13% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
serum
Sample origin
HDV/HBV coinfected, HDV positif
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Filtration + Commercial method
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
serum
Sample Condition
HDV/HBV coinfected, HDV positif
Separation Method
Filtration steps
0.45µm > x > 0.22µm,
Commercial kit
qEV
NA
EV190100 3/10 Homo sapiens Cell culture supernatant ExoQuick Chaoliang Liao 2020 0%

Study summary

Full title
All authors
Chaoliang Liao, Qin Zhou, Zhibao Zhang, Xia Wu, Zhuan Zhou, Bo Li, Jinwu Peng, Liangfang Shen, Dan Li, Xiangjian Luo, Lifang Yang
Journal
J Pharm Sci
Abstract
Increasing evidence indicates that extracellular vesicles (EVs) play an important role in cancer cel (show more...)Increasing evidence indicates that extracellular vesicles (EVs) play an important role in cancer cell-to-cell communication. The Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1), which is closely associated with nasopharyngeal carcinoma (NPC) pathogenesis, can trigger multiple cell signaling pathways that affect cell progression. Several reports have shown that LMP1 promotes EV secretion, and LMP1 trafficking by EVs can enhances cancer progression and metastasis. However, the molecular mechanism by which LMP1 promotes EV secretion is not well understood. In the present study, we found that LMP1 promotes EV secretion by upregulated syndecan-2 (SDC2) and synaptotagmin-like-4 (SYTL4) through nuclear factor (NF)-κB signaling in NPC cells. Further study indicated that SDC2 interacted with syntenin, which promoted the formation of the EVs, and SYTL4 is associated with the release of EVs. Moreover, we found that stimulation of EV secretion by LMP1 can enhance the proliferation and invasion ability of recipient NPC cells and tumor growth in vivo. In summary, we found a new mechanism by which LMP1 upregulates SDC2 and SYTL4 through NF-κB signaling to promote EV secretion, and further enhance cancer progression of NPC. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
transfected siLMP1
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
ExoQuick
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function/Biogenesis/cargo sorting/Mechanism of uptake/transfer
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
transfected siLMP1
EV-producing cells
CNE1-LMP1
EV-harvesting Medium
Serum-containing, but physical separation of serum EVs and secreted EVs (e.g. Bioreactor flask)
Separation Method
Commercial kit
ExoQuick
Protein Concentration Method
BCA
NA
EV190100 4/10 Homo sapiens Cell culture supernatant ExoQuick Chaoliang Liao 2020 0%

Study summary

Full title
All authors
Chaoliang Liao, Qin Zhou, Zhibao Zhang, Xia Wu, Zhuan Zhou, Bo Li, Jinwu Peng, Liangfang Shen, Dan Li, Xiangjian Luo, Lifang Yang
Journal
J Pharm Sci
Abstract
Increasing evidence indicates that extracellular vesicles (EVs) play an important role in cancer cel (show more...)Increasing evidence indicates that extracellular vesicles (EVs) play an important role in cancer cell-to-cell communication. The Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1), which is closely associated with nasopharyngeal carcinoma (NPC) pathogenesis, can trigger multiple cell signaling pathways that affect cell progression. Several reports have shown that LMP1 promotes EV secretion, and LMP1 trafficking by EVs can enhances cancer progression and metastasis. However, the molecular mechanism by which LMP1 promotes EV secretion is not well understood. In the present study, we found that LMP1 promotes EV secretion by upregulated syndecan-2 (SDC2) and synaptotagmin-like-4 (SYTL4) through nuclear factor (NF)-κB signaling in NPC cells. Further study indicated that SDC2 interacted with syntenin, which promoted the formation of the EVs, and SYTL4 is associated with the release of EVs. Moreover, we found that stimulation of EV secretion by LMP1 can enhance the proliferation and invasion ability of recipient NPC cells and tumor growth in vivo. In summary, we found a new mechanism by which LMP1 upregulates SDC2 and SYTL4 through NF-κB signaling to promote EV secretion, and further enhance cancer progression of NPC. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
transfected siSDC2
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
ExoQuick
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function/Biogenesis/cargo sorting/Mechanism of uptake/transfer
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
transfected siSDC2
EV-producing cells
CNE1-LMP1
EV-harvesting Medium
Serum-containing, but physical separation of serum EVs and secreted EVs (e.g. Bioreactor flask)
Separation Method
Commercial kit
ExoQuick
Protein Concentration Method
BCA
NA
EV190100 5/10 Homo sapiens Cell culture supernatant ExoQuick Chaoliang Liao 2020 0%

Study summary

Full title
All authors
Chaoliang Liao, Qin Zhou, Zhibao Zhang, Xia Wu, Zhuan Zhou, Bo Li, Jinwu Peng, Liangfang Shen, Dan Li, Xiangjian Luo, Lifang Yang
Journal
J Pharm Sci
Abstract
Increasing evidence indicates that extracellular vesicles (EVs) play an important role in cancer cel (show more...)Increasing evidence indicates that extracellular vesicles (EVs) play an important role in cancer cell-to-cell communication. The Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1), which is closely associated with nasopharyngeal carcinoma (NPC) pathogenesis, can trigger multiple cell signaling pathways that affect cell progression. Several reports have shown that LMP1 promotes EV secretion, and LMP1 trafficking by EVs can enhances cancer progression and metastasis. However, the molecular mechanism by which LMP1 promotes EV secretion is not well understood. In the present study, we found that LMP1 promotes EV secretion by upregulated syndecan-2 (SDC2) and synaptotagmin-like-4 (SYTL4) through nuclear factor (NF)-κB signaling in NPC cells. Further study indicated that SDC2 interacted with syntenin, which promoted the formation of the EVs, and SYTL4 is associated with the release of EVs. Moreover, we found that stimulation of EV secretion by LMP1 can enhance the proliferation and invasion ability of recipient NPC cells and tumor growth in vivo. In summary, we found a new mechanism by which LMP1 upregulates SDC2 and SYTL4 through NF-κB signaling to promote EV secretion, and further enhance cancer progression of NPC. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
transfected siSYTL4
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
ExoQuick
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function/Biogenesis/cargo sorting/Mechanism of uptake/transfer
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
transfected siSYTL4
EV-producing cells
CNE1-LMP1
EV-harvesting Medium
Serum-containing, but physical separation of serum EVs and secreted EVs (e.g. Bioreactor flask)
Separation Method
Commercial kit
ExoQuick
Protein Concentration Method
BCA
NA
EV190100 7/10 Homo sapiens Cell culture supernatant ExoQuick Chaoliang Liao 2020 0%

Study summary

Full title
All authors
Chaoliang Liao, Qin Zhou, Zhibao Zhang, Xia Wu, Zhuan Zhou, Bo Li, Jinwu Peng, Liangfang Shen, Dan Li, Xiangjian Luo, Lifang Yang
Journal
J Pharm Sci
Abstract
Increasing evidence indicates that extracellular vesicles (EVs) play an important role in cancer cel (show more...)Increasing evidence indicates that extracellular vesicles (EVs) play an important role in cancer cell-to-cell communication. The Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1), which is closely associated with nasopharyngeal carcinoma (NPC) pathogenesis, can trigger multiple cell signaling pathways that affect cell progression. Several reports have shown that LMP1 promotes EV secretion, and LMP1 trafficking by EVs can enhances cancer progression and metastasis. However, the molecular mechanism by which LMP1 promotes EV secretion is not well understood. In the present study, we found that LMP1 promotes EV secretion by upregulated syndecan-2 (SDC2) and synaptotagmin-like-4 (SYTL4) through nuclear factor (NF)-κB signaling in NPC cells. Further study indicated that SDC2 interacted with syntenin, which promoted the formation of the EVs, and SYTL4 is associated with the release of EVs. Moreover, we found that stimulation of EV secretion by LMP1 can enhance the proliferation and invasion ability of recipient NPC cells and tumor growth in vivo. In summary, we found a new mechanism by which LMP1 upregulates SDC2 and SYTL4 through NF-κB signaling to promote EV secretion, and further enhance cancer progression of NPC. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
transfected LMP1
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
ExoQuick
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function/Biogenesis/cargo sorting/Mechanism of uptake/transfer
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
transfected LMP1
EV-producing cells
HKI
EV-harvesting Medium
Serum-containing, but physical separation of serum EVs and secreted EVs (e.g. Bioreactor flask)
Separation Method
Commercial kit
ExoQuick
Protein Concentration Method
BCA
NA
EV190100 9/10 Homo sapiens Cell culture supernatant ExoQuick Chaoliang Liao 2020 0%

Study summary

Full title
All authors
Chaoliang Liao, Qin Zhou, Zhibao Zhang, Xia Wu, Zhuan Zhou, Bo Li, Jinwu Peng, Liangfang Shen, Dan Li, Xiangjian Luo, Lifang Yang
Journal
J Pharm Sci
Abstract
Increasing evidence indicates that extracellular vesicles (EVs) play an important role in cancer cel (show more...)Increasing evidence indicates that extracellular vesicles (EVs) play an important role in cancer cell-to-cell communication. The Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1), which is closely associated with nasopharyngeal carcinoma (NPC) pathogenesis, can trigger multiple cell signaling pathways that affect cell progression. Several reports have shown that LMP1 promotes EV secretion, and LMP1 trafficking by EVs can enhances cancer progression and metastasis. However, the molecular mechanism by which LMP1 promotes EV secretion is not well understood. In the present study, we found that LMP1 promotes EV secretion by upregulated syndecan-2 (SDC2) and synaptotagmin-like-4 (SYTL4) through nuclear factor (NF)-κB signaling in NPC cells. Further study indicated that SDC2 interacted with syntenin, which promoted the formation of the EVs, and SYTL4 is associated with the release of EVs. Moreover, we found that stimulation of EV secretion by LMP1 can enhance the proliferation and invasion ability of recipient NPC cells and tumor growth in vivo. In summary, we found a new mechanism by which LMP1 upregulates SDC2 and SYTL4 through NF-κB signaling to promote EV secretion, and further enhance cancer progression of NPC. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
transfected siLMP1
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
ExoQuick
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function/Biogenesis/cargo sorting/Mechanism of uptake/transfer
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
transfected siLMP1
EV-producing cells
C666-1
EV-harvesting Medium
Serum-containing, but physical separation of serum EVs and secreted EVs (e.g. Bioreactor flask)
Separation Method
Commercial kit
ExoQuick
Protein Concentration Method
BCA
NA
EV190100 10/10 Homo sapiens Cell culture supernatant ExoQuick Chaoliang Liao 2020 0%

Study summary

Full title
All authors
Chaoliang Liao, Qin Zhou, Zhibao Zhang, Xia Wu, Zhuan Zhou, Bo Li, Jinwu Peng, Liangfang Shen, Dan Li, Xiangjian Luo, Lifang Yang
Journal
J Pharm Sci
Abstract
Increasing evidence indicates that extracellular vesicles (EVs) play an important role in cancer cel (show more...)Increasing evidence indicates that extracellular vesicles (EVs) play an important role in cancer cell-to-cell communication. The Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1), which is closely associated with nasopharyngeal carcinoma (NPC) pathogenesis, can trigger multiple cell signaling pathways that affect cell progression. Several reports have shown that LMP1 promotes EV secretion, and LMP1 trafficking by EVs can enhances cancer progression and metastasis. However, the molecular mechanism by which LMP1 promotes EV secretion is not well understood. In the present study, we found that LMP1 promotes EV secretion by upregulated syndecan-2 (SDC2) and synaptotagmin-like-4 (SYTL4) through nuclear factor (NF)-κB signaling in NPC cells. Further study indicated that SDC2 interacted with syntenin, which promoted the formation of the EVs, and SYTL4 is associated with the release of EVs. Moreover, we found that stimulation of EV secretion by LMP1 can enhance the proliferation and invasion ability of recipient NPC cells and tumor growth in vivo. In summary, we found a new mechanism by which LMP1 upregulates SDC2 and SYTL4 through NF-κB signaling to promote EV secretion, and further enhance cancer progression of NPC. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
transfected siSDC2
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
ExoQuick
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function/Biogenesis/cargo sorting/Mechanism of uptake/transfer
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
transfected siSDC2
EV-producing cells
C666-1
EV-harvesting Medium
Serum-containing, but physical separation of serum EVs and secreted EVs (e.g. Bioreactor flask)
Separation Method
Commercial kit
ExoQuick
Protein Concentration Method
BCA
NA
EV190070 1/1 Zingiber officinale Ginger aqueous extract Polyethylene glycol precipitation Kalarikkal SP 2020 0%

Study summary

Full title
All authors
Kalarikkal SP, Prasad D, Kasiappan R, Chaudhari SR, Sundaram GM.
Journal
Sci Rep
Abstract
Edible nanoparticles (ENPs) are nano-sized vesicles derived from edible plants. These ENPs are loade (show more...)Edible nanoparticles (ENPs) are nano-sized vesicles derived from edible plants. These ENPs are loaded with plant derived microRNAs, protein, lipids and phytochemicals. Recently, ginger derived ENPs was shown to prevent inflammatory bowel diseases and colon cancer, in vivo, highlighting their therapeutic potential. Conventionally, differential centrifugation with an ultra-centrifugation step is employed to purify these ENPs which imposes limitation on the cost-effectiveness of their purification. Herein, we developed polyethylene glycol-6000 (PEG6000) based ginger ENP purification (PEG-ENPs) method, which eliminates the need for expensive ultracentrifugation. Using different PEG6000 concentrations, we could recover between 60% to 90% of ENPs compared to ultracentrifugation method. PEG-ENPs exhibit near identical size and zeta potential similar to ultra-ENPs. The biochemical composition of PEG-ENPs, such as proteins, lipids, small RNAs and bioactive content is comparable to that of ultra-ENPs. In addition, similar to ultra-ENPs, PEG-ENPs are efficiently taken up by the murine macrophages and protects cells from hydrogen peroxide induced oxidative stress. Since PEG has been approved as food additive, the PEG method described here will provide a cost-effective alternative to purify ENPs, which can be directly used as a dietary supplement in therapeutic formulations. (hide)
EV-METRIC
0% (median: 0% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Ginger aqueous extract
Sample origin
Control condition
Focus vesicles
Other / edible nanoparticles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Polyethylene glycol precipitation
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function/New methodological development
Sample
Species
Zingiber officinale
Sample Type
Ginger aqueous extract
Sample Condition
Control condition
Separation Method
Other
Name other separation method
Polyethylene glycol precipitation
Protein Concentration Method
Bradford
Other 1
Detected EV-associated proteins
Characterization: RNA analysis
RNAse treatment
Moment of RNAse treatment
After
RNAse type
RNase A
RNAse concentration
1
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NA
DLS
Report type
Size range/distribution
Reported size (nm)
400
51 - 72 of 72 keyboard_arrow_left