Search > Results

You searched for: EV200083 (EV-TRACK ID)

Showing 1 - 7 of 7

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV200083 1/7 Homo sapiens MIHA (d)(U)C
Filtration
Zhou, Longyin;Mao, Xiaowen 2020 67%

Study summary

Full title
All authors
Xiaowen Mao, Longyin Zhou, Sze Keong Tey, Angel Po Yee Ma, Cherlie Lot Sum Yeung, Tung Him Ng, Samuel Wan Ki Wong, Bonnie Hei Man Liu, Yi Man Eva Fung, Edward F. Patz Jr., Peihua Cao, Yi Gao, Judy Wai Ping Yam
Journal
J Extracell Vesicles
Abstract
The complement system is involved in the immunosurveillance of pathogens and tumour cells. Proteomic (show more...)The complement system is involved in the immunosurveillance of pathogens and tumour cells. Proteomic profiling revealed that extracellular vesicles (EVs) released by metastatic hepatocellular carcinoma (HCC) cells contained a significant number of complement proteins. Complement Factor H (CFH), an abundant soluble serum protein that inhibits the alternative complement pathway, was found to be highly expressed in EVs of metastatic HCC cell lines. Here, we investigated the functional role of EV‐CFH and explored the therapeutic efficacy of targeting EV‐CFH with an anti‐CFH antibody in HCC. The results showed that EVs that are enriched in CFH promoted HCC cell growth, migration, invasiveness and enhanced liver tumour formation in mice. EV‐CFH also promoted metastasis, which was significantly abrogated when treated with an anti‐CFH antibody. These findings demonstrate an unexplored function of EV‐CFH in protecting HCC cells by evading complement attack, thereby facilitating tumorigenesis and metastasis. Lastly, we demonstrated the therapeutic efficacy of an anti‐CFH antibody in suppressing tumour formation in a syngeneic mouse model. This study suggests a new therapeutic strategy for HCC, by inhibiting EV‐CFH with a tumour specific anti‐CFH antibody. (hide)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: TSG101/ CD9
non-EV: a-tubulin/ p62/ GM130
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MIHA
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell count
200000000
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
JA-30.50
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
20
Wash: time (min)
70
Wash: Rotor Type
JA-30.50
Wash: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ TSG101
Not detected contaminants
p62/ a-tubulin/ GM130
ELISA
Antibody details provided?
No
Detected EV-associated proteins
CD9
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
103
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
EV200083 2/7 Homo sapiens MHCC97L (d)(U)C
Filtration
Zhou, Longyin;Mao, Xiaowen 2020 67%

Study summary

Full title
All authors
Xiaowen Mao, Longyin Zhou, Sze Keong Tey, Angel Po Yee Ma, Cherlie Lot Sum Yeung, Tung Him Ng, Samuel Wan Ki Wong, Bonnie Hei Man Liu, Yi Man Eva Fung, Edward F. Patz Jr., Peihua Cao, Yi Gao, Judy Wai Ping Yam
Journal
J Extracell Vesicles
Abstract
The complement system is involved in the immunosurveillance of pathogens and tumour cells. Proteomic (show more...)The complement system is involved in the immunosurveillance of pathogens and tumour cells. Proteomic profiling revealed that extracellular vesicles (EVs) released by metastatic hepatocellular carcinoma (HCC) cells contained a significant number of complement proteins. Complement Factor H (CFH), an abundant soluble serum protein that inhibits the alternative complement pathway, was found to be highly expressed in EVs of metastatic HCC cell lines. Here, we investigated the functional role of EV‐CFH and explored the therapeutic efficacy of targeting EV‐CFH with an anti‐CFH antibody in HCC. The results showed that EVs that are enriched in CFH promoted HCC cell growth, migration, invasiveness and enhanced liver tumour formation in mice. EV‐CFH also promoted metastasis, which was significantly abrogated when treated with an anti‐CFH antibody. These findings demonstrate an unexplored function of EV‐CFH in protecting HCC cells by evading complement attack, thereby facilitating tumorigenesis and metastasis. Lastly, we demonstrated the therapeutic efficacy of an anti‐CFH antibody in suppressing tumour formation in a syngeneic mouse model. This study suggests a new therapeutic strategy for HCC, by inhibiting EV‐CFH with a tumour specific anti‐CFH antibody. (hide)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: TSG101/ CD9
non-EV: a-tubulin/ p62/ GM130
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MHCC97L
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell count
200000000
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
JA-30.50
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
20
Wash: time (min)
70
Wash: Rotor Type
JA-30.50
Wash: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ TSG101
Not detected contaminants
p62/ a-tubulin/ GM130
ELISA
Antibody details provided?
No
Detected EV-associated proteins
CD9
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
108,6
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up
EV200083 3/7 Homo sapiens MHCC97L (d)(U)C
Filtration
Zhou, Longyin;Mao, Xiaowen 2020 67%

Study summary

Full title
All authors
Xiaowen Mao, Longyin Zhou, Sze Keong Tey, Angel Po Yee Ma, Cherlie Lot Sum Yeung, Tung Him Ng, Samuel Wan Ki Wong, Bonnie Hei Man Liu, Yi Man Eva Fung, Edward F. Patz Jr., Peihua Cao, Yi Gao, Judy Wai Ping Yam
Journal
J Extracell Vesicles
Abstract
The complement system is involved in the immunosurveillance of pathogens and tumour cells. Proteomic (show more...)The complement system is involved in the immunosurveillance of pathogens and tumour cells. Proteomic profiling revealed that extracellular vesicles (EVs) released by metastatic hepatocellular carcinoma (HCC) cells contained a significant number of complement proteins. Complement Factor H (CFH), an abundant soluble serum protein that inhibits the alternative complement pathway, was found to be highly expressed in EVs of metastatic HCC cell lines. Here, we investigated the functional role of EV‐CFH and explored the therapeutic efficacy of targeting EV‐CFH with an anti‐CFH antibody in HCC. The results showed that EVs that are enriched in CFH promoted HCC cell growth, migration, invasiveness and enhanced liver tumour formation in mice. EV‐CFH also promoted metastasis, which was significantly abrogated when treated with an anti‐CFH antibody. These findings demonstrate an unexplored function of EV‐CFH in protecting HCC cells by evading complement attack, thereby facilitating tumorigenesis and metastasis. Lastly, we demonstrated the therapeutic efficacy of an anti‐CFH antibody in suppressing tumour formation in a syngeneic mouse model. This study suggests a new therapeutic strategy for HCC, by inhibiting EV‐CFH with a tumour specific anti‐CFH antibody. (hide)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
CFH KD
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: TSG101/ CD9
non-EV: a-tubulin/ p62/ GM130
Proteomics
no
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MHCC97L
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell count
200000000
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
JA-30.50
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
20
Wash: time (min)
70
Wash: Rotor Type
JA-30.50
Wash: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ TSG101
Not detected contaminants
p62/ a-tubulin/ GM130
ELISA
Antibody details provided?
No
Detected EV-associated proteins
CD9
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
108,8
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up
EV200083 4/7 Homo sapiens Huh7 (d)(U)C
Filtration
Zhou, Longyin;Mao, Xiaowen 2020 67%

Study summary

Full title
All authors
Xiaowen Mao, Longyin Zhou, Sze Keong Tey, Angel Po Yee Ma, Cherlie Lot Sum Yeung, Tung Him Ng, Samuel Wan Ki Wong, Bonnie Hei Man Liu, Yi Man Eva Fung, Edward F. Patz Jr., Peihua Cao, Yi Gao, Judy Wai Ping Yam
Journal
J Extracell Vesicles
Abstract
The complement system is involved in the immunosurveillance of pathogens and tumour cells. Proteomic (show more...)The complement system is involved in the immunosurveillance of pathogens and tumour cells. Proteomic profiling revealed that extracellular vesicles (EVs) released by metastatic hepatocellular carcinoma (HCC) cells contained a significant number of complement proteins. Complement Factor H (CFH), an abundant soluble serum protein that inhibits the alternative complement pathway, was found to be highly expressed in EVs of metastatic HCC cell lines. Here, we investigated the functional role of EV‐CFH and explored the therapeutic efficacy of targeting EV‐CFH with an anti‐CFH antibody in HCC. The results showed that EVs that are enriched in CFH promoted HCC cell growth, migration, invasiveness and enhanced liver tumour formation in mice. EV‐CFH also promoted metastasis, which was significantly abrogated when treated with an anti‐CFH antibody. These findings demonstrate an unexplored function of EV‐CFH in protecting HCC cells by evading complement attack, thereby facilitating tumorigenesis and metastasis. Lastly, we demonstrated the therapeutic efficacy of an anti‐CFH antibody in suppressing tumour formation in a syngeneic mouse model. This study suggests a new therapeutic strategy for HCC, by inhibiting EV‐CFH with a tumour specific anti‐CFH antibody. (hide)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: TSG101/ CD9
non-EV: a-tubulin/ p62/ GM130
Proteomics
no
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Huh7
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell count
200000000
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
JA-30.50
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
20
Wash: time (min)
70
Wash: Rotor Type
JA-30.50
Wash: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ TSG101
Not detected contaminants
p62/ a-tubulin/ GM130
ELISA
Antibody details provided?
No
Detected EV-associated proteins
CD9
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
103,5
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up
EV200083 5/7 Homo sapiens Huh7 (d)(U)C
Filtration
Zhou, Longyin;Mao, Xiaowen 2020 67%

Study summary

Full title
All authors
Xiaowen Mao, Longyin Zhou, Sze Keong Tey, Angel Po Yee Ma, Cherlie Lot Sum Yeung, Tung Him Ng, Samuel Wan Ki Wong, Bonnie Hei Man Liu, Yi Man Eva Fung, Edward F. Patz Jr., Peihua Cao, Yi Gao, Judy Wai Ping Yam
Journal
J Extracell Vesicles
Abstract
The complement system is involved in the immunosurveillance of pathogens and tumour cells. Proteomic (show more...)The complement system is involved in the immunosurveillance of pathogens and tumour cells. Proteomic profiling revealed that extracellular vesicles (EVs) released by metastatic hepatocellular carcinoma (HCC) cells contained a significant number of complement proteins. Complement Factor H (CFH), an abundant soluble serum protein that inhibits the alternative complement pathway, was found to be highly expressed in EVs of metastatic HCC cell lines. Here, we investigated the functional role of EV‐CFH and explored the therapeutic efficacy of targeting EV‐CFH with an anti‐CFH antibody in HCC. The results showed that EVs that are enriched in CFH promoted HCC cell growth, migration, invasiveness and enhanced liver tumour formation in mice. EV‐CFH also promoted metastasis, which was significantly abrogated when treated with an anti‐CFH antibody. These findings demonstrate an unexplored function of EV‐CFH in protecting HCC cells by evading complement attack, thereby facilitating tumorigenesis and metastasis. Lastly, we demonstrated the therapeutic efficacy of an anti‐CFH antibody in suppressing tumour formation in a syngeneic mouse model. This study suggests a new therapeutic strategy for HCC, by inhibiting EV‐CFH with a tumour specific anti‐CFH antibody. (hide)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
CFH KD
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: TSG101/ CD9
non-EV: a-tubulin/ p62/ GM130
Proteomics
no
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Huh7
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell count
200000000
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
JA-30.50
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
20
Wash: time (min)
70
Wash: Rotor Type
JA-30.50
Wash: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ TSG101
Not detected contaminants
p62/ a-tubulin/ GM130
ELISA
Antibody details provided?
No
Detected EV-associated proteins
CD9
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
120,4
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up
EV200083 6/7 Mus musculus Serum ExoQuick Zhou, Longyin;Mao, Xiaowen 2020 0%

Study summary

Full title
All authors
Xiaowen Mao, Longyin Zhou, Sze Keong Tey, Angel Po Yee Ma, Cherlie Lot Sum Yeung, Tung Him Ng, Samuel Wan Ki Wong, Bonnie Hei Man Liu, Yi Man Eva Fung, Edward F. Patz Jr., Peihua Cao, Yi Gao, Judy Wai Ping Yam
Journal
J Extracell Vesicles
Abstract
The complement system is involved in the immunosurveillance of pathogens and tumour cells. Proteomic (show more...)The complement system is involved in the immunosurveillance of pathogens and tumour cells. Proteomic profiling revealed that extracellular vesicles (EVs) released by metastatic hepatocellular carcinoma (HCC) cells contained a significant number of complement proteins. Complement Factor H (CFH), an abundant soluble serum protein that inhibits the alternative complement pathway, was found to be highly expressed in EVs of metastatic HCC cell lines. Here, we investigated the functional role of EV‐CFH and explored the therapeutic efficacy of targeting EV‐CFH with an anti‐CFH antibody in HCC. The results showed that EVs that are enriched in CFH promoted HCC cell growth, migration, invasiveness and enhanced liver tumour formation in mice. EV‐CFH also promoted metastasis, which was significantly abrogated when treated with an anti‐CFH antibody. These findings demonstrate an unexplored function of EV‐CFH in protecting HCC cells by evading complement attack, thereby facilitating tumorigenesis and metastasis. Lastly, we demonstrated the therapeutic efficacy of an anti‐CFH antibody in suppressing tumour formation in a syngeneic mouse model. This study suggests a new therapeutic strategy for HCC, by inhibiting EV‐CFH with a tumour specific anti‐CFH antibody. (hide)
EV-METRIC
0% (median: 13% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
ExoQuick
Protein markers
EV: CD9
non-EV: None
Proteomics
no
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Serum
Separation Method
Commercial kit
ExoQuick
Other
Name other separation method
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
Bradford
ELISA
Antibody details provided?
No
Detected EV-associated proteins
CD9
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
117
EV concentration
Yes
EV200083 7/7 Mus musculus Serum ExoQuick Zhou, Longyin;Mao, Xiaowen 2020 0%

Study summary

Full title
All authors
Xiaowen Mao, Longyin Zhou, Sze Keong Tey, Angel Po Yee Ma, Cherlie Lot Sum Yeung, Tung Him Ng, Samuel Wan Ki Wong, Bonnie Hei Man Liu, Yi Man Eva Fung, Edward F. Patz Jr., Peihua Cao, Yi Gao, Judy Wai Ping Yam
Journal
J Extracell Vesicles
Abstract
The complement system is involved in the immunosurveillance of pathogens and tumour cells. Proteomic (show more...)The complement system is involved in the immunosurveillance of pathogens and tumour cells. Proteomic profiling revealed that extracellular vesicles (EVs) released by metastatic hepatocellular carcinoma (HCC) cells contained a significant number of complement proteins. Complement Factor H (CFH), an abundant soluble serum protein that inhibits the alternative complement pathway, was found to be highly expressed in EVs of metastatic HCC cell lines. Here, we investigated the functional role of EV‐CFH and explored the therapeutic efficacy of targeting EV‐CFH with an anti‐CFH antibody in HCC. The results showed that EVs that are enriched in CFH promoted HCC cell growth, migration, invasiveness and enhanced liver tumour formation in mice. EV‐CFH also promoted metastasis, which was significantly abrogated when treated with an anti‐CFH antibody. These findings demonstrate an unexplored function of EV‐CFH in protecting HCC cells by evading complement attack, thereby facilitating tumorigenesis and metastasis. Lastly, we demonstrated the therapeutic efficacy of an anti‐CFH antibody in suppressing tumour formation in a syngeneic mouse model. This study suggests a new therapeutic strategy for HCC, by inhibiting EV‐CFH with a tumour specific anti‐CFH antibody. (hide)
EV-METRIC
0% (median: 13% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
serum collected weekly after orthotropic liver implantation of MHCC97L tumor seeds
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
ExoQuick
Protein markers
EV: CD9
non-EV: None
Proteomics
no
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Serum
Separation Method
Commercial kit
ExoQuick
Other
Name other separation method
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
Bradford
ELISA
Antibody details provided?
No
Detected EV-associated proteins
CD9
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
1 - 7 of 7
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV200083
species
Homo
sapiens
Homo
sapiens
Homo
sapiens
Homo
sapiens
Homo
sapiens
Mus
musculus
Mus
musculus
sample type
Cell
culture
Cell
culture
Cell
culture
Cell
culture
Cell
culture
Serum
Serum
cell type
MIHA
MHCC97L
MHCC97L
Huh7
Huh7
NA
NA
medium
EV-depleted
medium
EV-depleted
medium
EV-depleted
medium
EV-depleted
medium
EV-depleted
medium
NA
NA
condition
Control
condition
Control
condition
CFH
KD
Control
condition
CFH
KD
Control
condition
serum
collected
weekly
after
orthotropic
liver
implantation
of
MHCC97L
tumor
seeds
separation protocol
(d)(U)C
Filtration
(d)(U)C
Filtration
(d)(U)C
Filtration
(d)(U)C
Filtration
(d)(U)C
Filtration
ExoQuick
ExoQuick
Exp. nr.
1
2
3
4
5
6
7
EV-METRIC %
67
67
67
67
67
0
0