Search > Results

You searched for: EV200180 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV200180 1/1 Homo sapiens Serum (d)(U)C Frigerio, Roberto 2020 67%

Study summary

Full title
All authors
Roberto Frigerio, Angelo Musicò, Marco Brucale, Andrea Ridolfi, Silvia Galbiati, Riccardo Vago, Greta Bergamaschi, Anna Ferretti, Marcella Chiari, Francesco Valle, Alessandro Gori, Marina Cretich
Journal
Abstract
Since the outbreak of COVID-19 crisis, the handling of biological samples from known or suspected SA (show more...)Since the outbreak of COVID-19 crisis, the handling of biological samples from known or suspected SARS-CoV-2 positive individuals demanded the use of inactivation protocols aimed at ensuring laboratory operators safety. While not standardized, these practices can be roughly divided in two categories, namely heat inactivation and solvent-detergent treatments. As such, these routine procedures should also apply to samples intended for Extracellular Vesicles (EVs) analysis. Assessing the impact of virus inactivating pre-treatments is therefore of pivotal importance, given the well-known variability introduced by different pre-analytical steps on downstream EVs isolation and analysis. Common guidelines on inactivation protocols tailored to best address EVs-specific requirements will be likely needed among the EVs community, yet deep investigations in this direction haven’t been reported so far. In the attempt of sparking interest on this highly relevant topic, we here provide preliminary insights on SARS-CoV-2 inactivation practices to be adopted prior serum EVs analysis by comparing solvent/detergent treatment vs. heat inactivation. Our analysis entailed the evaluation of EVs recovery and purity along with biochemical, biophysical and biomolecular profiling by means of Nanoparticle Tracking Analysis, Western Blotting, Atomic Force Microscopy, Transmission Electron Microscopy, miRNA content (digital droplet PCR) and tetraspanin assessment by antibody microarrays. Our data suggest an increase in ultracentrifugation (UC) recovery following heat-treatment, however accompanied by a marked enrichment in EVs-associated contaminants. On the contrary, solvent/detergent treatment is promising for small EVs (< 150nm range), yet a depletion of larger vesicular entities was detected. This work represents a first step towards the identification of optimal bio-samples inactivation protocols targeted to EVs analysis. (hide)
EV-METRIC
67% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: TSG101/ CD63/ CD81/ Alix/ APOA1/ CD9
non-EV: None
Proteomics
no
Show all info
Study aim
New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
TLA-55
Pelleting: speed (g)
150000
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ CD63/ APOA1/ TSG101/ Alix
Detected EV-associated proteins
CD9/ CD63/ CD81
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
190
EV concentration
Yes
EM
EM-type
Atomic force-EM
Image type
Close-up, Wide-field
Report size (nm)
120
1 - 1 of 1
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV200180
species
Homo sapiens
sample type
Serum
condition
Control condition
separation protocol
dUC
Exp. nr.
1
EV-METRIC %
67