Search > Results

You searched for: 2021 (Year of publication)

Showing 51 - 100 of 1321

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV210126 4/9 Homo sapiens Expi293F (d)(U)C Silva, Andreia;Lázaro-Ibáñez, Elisa 2021 78%

Study summary

Full title
All authors
Andreia M. Silva, Elisa Lázaro-Ibáñez, Anders Gunnarsson, Aditya Dhande, George Daaboul, Ben Peacock, Xabier Osteikoetxea, Nikki Salmond, Kristina Pagh Friis, Olga Shatnyeva, Niek Dekker
Journal
J Extracell Vesicles
Abstract
Extracellular Vesicles (EVs) have been intensively explored for therapeutic delivery of proteins. Ho (show more...)Extracellular Vesicles (EVs) have been intensively explored for therapeutic delivery of proteins. However, methods to quantify cargo proteins loaded into engineered EVs are lacking. Here, we describe a workflow for EV analysis at the single-vesicle and single-molecule level to accurately quantify the efficiency of different EV-sorting proteins in promoting cargo loading into EVs. Expi293F cells were engineered to express EV-sorting proteins fused to green fluorescent protein (GFP). High levels of GFP loading into secreted EVs was confirmed by Western blotting for specific EV-sorting domains, but quantitative single-vesicle analysis by Nanoflow cytometry detected GFP in less than half of the particles analysed, reflecting EV heterogeneity. Anti-tetraspanin EV immunostaining in ExoView confirmed a heterogeneous GFP distribution in distinct subpopulations of CD63+, CD81+, or CD9+ EVs. Loading of GFP into individual vesicles was quantified by Single-Molecule Localization Microscopy. The combined results demonstrated TSPAN14, CD63 and CD63/CD81 fused to the PDGFRβ transmembrane domain as the most efficient EV-sorting proteins, accumulating on average 50–170 single GFP molecules per vesicle. In conclusion, we validated a set of complementary techniques suitable for high-resolution analysis of EV preparations that reliably capture their heterogeneity, and propose highly efficient EV-sorting proteins to be used in EV engineering applications. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
CD63-GFP
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: TSG101/ CD63/ CD81/ Alix/ Flotillin1/ CD12
non-EV: calnexin
Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
80
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
100
Wash: time (min)
120
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
Flotillin1/ Alix/ GFP/ CD63/ TSG101/ CD81
Not detected EV-associated proteins
CD9
Detected contaminants
calnexin
Flow cytometry
Type of Flow cytometry
NanoAnalyzer N30 (nanoFCM)
Calibration bead size
0.068; 0.091; 0.113; 0.155
Detected EV-associated proteins
GFP
Detected EV-associated proteins
CD9/ CD63/ GFP
Detected EV-associated proteins
GFP
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
100-200
EV concentration
Yes
Particle analysis: flow cytometry
Flow cytometer type
NanoAnalyzer N30 (nanoFCM)
Hardware adjustment
Calibration bead size
0.068; 0.091; 0.113; 0.155
Report type
Mean
Reported size (nm)
74
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV210126 5/9 Homo sapiens Expi293F (d)(U)C Silva, Andreia;Lázaro-Ibáñez, Elisa 2021 78%

Study summary

Full title
All authors
Andreia M. Silva, Elisa Lázaro-Ibáñez, Anders Gunnarsson, Aditya Dhande, George Daaboul, Ben Peacock, Xabier Osteikoetxea, Nikki Salmond, Kristina Pagh Friis, Olga Shatnyeva, Niek Dekker
Journal
J Extracell Vesicles
Abstract
Extracellular Vesicles (EVs) have been intensively explored for therapeutic delivery of proteins. Ho (show more...)Extracellular Vesicles (EVs) have been intensively explored for therapeutic delivery of proteins. However, methods to quantify cargo proteins loaded into engineered EVs are lacking. Here, we describe a workflow for EV analysis at the single-vesicle and single-molecule level to accurately quantify the efficiency of different EV-sorting proteins in promoting cargo loading into EVs. Expi293F cells were engineered to express EV-sorting proteins fused to green fluorescent protein (GFP). High levels of GFP loading into secreted EVs was confirmed by Western blotting for specific EV-sorting domains, but quantitative single-vesicle analysis by Nanoflow cytometry detected GFP in less than half of the particles analysed, reflecting EV heterogeneity. Anti-tetraspanin EV immunostaining in ExoView confirmed a heterogeneous GFP distribution in distinct subpopulations of CD63+, CD81+, or CD9+ EVs. Loading of GFP into individual vesicles was quantified by Single-Molecule Localization Microscopy. The combined results demonstrated TSPAN14, CD63 and CD63/CD81 fused to the PDGFRβ transmembrane domain as the most efficient EV-sorting proteins, accumulating on average 50–170 single GFP molecules per vesicle. In conclusion, we validated a set of complementary techniques suitable for high-resolution analysis of EV preparations that reliably capture their heterogeneity, and propose highly efficient EV-sorting proteins to be used in EV engineering applications. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
CD81TM-GFP
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: TSG101/ CD63/ CD81/ Alix/ Flotillin1/ CD13
non-EV: calnexin
Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
80
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
100
Wash: time (min)
120
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
Flotillin1/ GFP/ CD63/ TSG101/ Alix/ CD81
Not detected EV-associated proteins
CD9
Detected contaminants
calnexin
Flow cytometry
Type of Flow cytometry
NanoAnalyzer N30 (nanoFCM)
Calibration bead size
0.068; 0.091; 0.113; 0.155
Detected EV-associated proteins
GFP
Detected EV-associated proteins
CD81/ CD9/ CD63/ GFP
Detected EV-associated proteins
GFP
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
100-200
EV concentration
Yes
Particle analysis: flow cytometry
Flow cytometer type
NanoAnalyzer N30 (nanoFCM)
Hardware adjustment
Calibration bead size
0.068; 0.091; 0.113; 0.155
Report type
Mean
Reported size (nm)
74
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV210126 6/9 Homo sapiens Expi293F (d)(U)C Silva, Andreia;Lázaro-Ibáñez, Elisa 2021 78%

Study summary

Full title
All authors
Andreia M. Silva, Elisa Lázaro-Ibáñez, Anders Gunnarsson, Aditya Dhande, George Daaboul, Ben Peacock, Xabier Osteikoetxea, Nikki Salmond, Kristina Pagh Friis, Olga Shatnyeva, Niek Dekker
Journal
J Extracell Vesicles
Abstract
Extracellular Vesicles (EVs) have been intensively explored for therapeutic delivery of proteins. Ho (show more...)Extracellular Vesicles (EVs) have been intensively explored for therapeutic delivery of proteins. However, methods to quantify cargo proteins loaded into engineered EVs are lacking. Here, we describe a workflow for EV analysis at the single-vesicle and single-molecule level to accurately quantify the efficiency of different EV-sorting proteins in promoting cargo loading into EVs. Expi293F cells were engineered to express EV-sorting proteins fused to green fluorescent protein (GFP). High levels of GFP loading into secreted EVs was confirmed by Western blotting for specific EV-sorting domains, but quantitative single-vesicle analysis by Nanoflow cytometry detected GFP in less than half of the particles analysed, reflecting EV heterogeneity. Anti-tetraspanin EV immunostaining in ExoView confirmed a heterogeneous GFP distribution in distinct subpopulations of CD63+, CD81+, or CD9+ EVs. Loading of GFP into individual vesicles was quantified by Single-Molecule Localization Microscopy. The combined results demonstrated TSPAN14, CD63 and CD63/CD81 fused to the PDGFRβ transmembrane domain as the most efficient EV-sorting proteins, accumulating on average 50–170 single GFP molecules per vesicle. In conclusion, we validated a set of complementary techniques suitable for high-resolution analysis of EV preparations that reliably capture their heterogeneity, and propose highly efficient EV-sorting proteins to be used in EV engineering applications. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
SDCBP-GFP
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: TSG101/ CD63/ CD81/ Alix/ Flotillin1/ CD14
non-EV: calnexin
Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
80
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
100
Wash: time (min)
120
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
Flotillin1/ GFP/ CD63/ TSG101/ Alix/ CD81
Not detected EV-associated proteins
CD9
Detected contaminants
calnexin
Flow cytometry
Type of Flow cytometry
NanoAnalyzer N30 (nanoFCM)
Calibration bead size
0.068; 0.091; 0.113; 0.155
Detected EV-associated proteins
GFP
Detected EV-associated proteins
CD81/ CD9/ CD63/ GFP
Detected EV-associated proteins
GFP
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
100-200
EV concentration
Yes
Particle analysis: flow cytometry
Flow cytometer type
NanoAnalyzer N30 (nanoFCM)
Hardware adjustment
Calibration bead size
0.068; 0.091; 0.113; 0.155
Report type
Mean
Reported size (nm)
76
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV210126 7/9 Homo sapiens Expi293F (d)(U)C Silva, Andreia;Lázaro-Ibáñez, Elisa 2021 78%

Study summary

Full title
All authors
Andreia M. Silva, Elisa Lázaro-Ibáñez, Anders Gunnarsson, Aditya Dhande, George Daaboul, Ben Peacock, Xabier Osteikoetxea, Nikki Salmond, Kristina Pagh Friis, Olga Shatnyeva, Niek Dekker
Journal
J Extracell Vesicles
Abstract
Extracellular Vesicles (EVs) have been intensively explored for therapeutic delivery of proteins. Ho (show more...)Extracellular Vesicles (EVs) have been intensively explored for therapeutic delivery of proteins. However, methods to quantify cargo proteins loaded into engineered EVs are lacking. Here, we describe a workflow for EV analysis at the single-vesicle and single-molecule level to accurately quantify the efficiency of different EV-sorting proteins in promoting cargo loading into EVs. Expi293F cells were engineered to express EV-sorting proteins fused to green fluorescent protein (GFP). High levels of GFP loading into secreted EVs was confirmed by Western blotting for specific EV-sorting domains, but quantitative single-vesicle analysis by Nanoflow cytometry detected GFP in less than half of the particles analysed, reflecting EV heterogeneity. Anti-tetraspanin EV immunostaining in ExoView confirmed a heterogeneous GFP distribution in distinct subpopulations of CD63+, CD81+, or CD9+ EVs. Loading of GFP into individual vesicles was quantified by Single-Molecule Localization Microscopy. The combined results demonstrated TSPAN14, CD63 and CD63/CD81 fused to the PDGFRβ transmembrane domain as the most efficient EV-sorting proteins, accumulating on average 50–170 single GFP molecules per vesicle. In conclusion, we validated a set of complementary techniques suitable for high-resolution analysis of EV preparations that reliably capture their heterogeneity, and propose highly efficient EV-sorting proteins to be used in EV engineering applications. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
APMAP-GFP
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: TSG101/ CD63/ CD81/ Alix/ Flotillin1/ CD15
non-EV: calnexin
Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
80
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
100
Wash: time (min)
120
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
Flotillin1/ GFP/ CD63/ TSG101/ Alix/ CD81
Not detected EV-associated proteins
CD9
Detected contaminants
calnexin
Flow cytometry
Type of Flow cytometry
NanoAnalyzer N30 (nanoFCM)
Calibration bead size
0.068; 0.091; 0.113; 0.155
Detected EV-associated proteins
GFP
Detected EV-associated proteins
CD81/ CD9/ CD63/ GFP
Detected EV-associated proteins
GFP
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
100-200
EV concentration
Yes
Particle analysis: flow cytometry
Flow cytometer type
NanoAnalyzer N30 (nanoFCM)
Hardware adjustment
Calibration bead size
0.068; 0.091; 0.113; 0.155
Report type
Mean
Reported size (nm)
76
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV210126 8/9 Homo sapiens Expi293F (d)(U)C Silva, Andreia;Lázaro-Ibáñez, Elisa 2021 78%

Study summary

Full title
All authors
Andreia M. Silva, Elisa Lázaro-Ibáñez, Anders Gunnarsson, Aditya Dhande, George Daaboul, Ben Peacock, Xabier Osteikoetxea, Nikki Salmond, Kristina Pagh Friis, Olga Shatnyeva, Niek Dekker
Journal
J Extracell Vesicles
Abstract
Extracellular Vesicles (EVs) have been intensively explored for therapeutic delivery of proteins. Ho (show more...)Extracellular Vesicles (EVs) have been intensively explored for therapeutic delivery of proteins. However, methods to quantify cargo proteins loaded into engineered EVs are lacking. Here, we describe a workflow for EV analysis at the single-vesicle and single-molecule level to accurately quantify the efficiency of different EV-sorting proteins in promoting cargo loading into EVs. Expi293F cells were engineered to express EV-sorting proteins fused to green fluorescent protein (GFP). High levels of GFP loading into secreted EVs was confirmed by Western blotting for specific EV-sorting domains, but quantitative single-vesicle analysis by Nanoflow cytometry detected GFP in less than half of the particles analysed, reflecting EV heterogeneity. Anti-tetraspanin EV immunostaining in ExoView confirmed a heterogeneous GFP distribution in distinct subpopulations of CD63+, CD81+, or CD9+ EVs. Loading of GFP into individual vesicles was quantified by Single-Molecule Localization Microscopy. The combined results demonstrated TSPAN14, CD63 and CD63/CD81 fused to the PDGFRβ transmembrane domain as the most efficient EV-sorting proteins, accumulating on average 50–170 single GFP molecules per vesicle. In conclusion, we validated a set of complementary techniques suitable for high-resolution analysis of EV preparations that reliably capture their heterogeneity, and propose highly efficient EV-sorting proteins to be used in EV engineering applications. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
CD63TM-GFP
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: TSG101/ CD63/ CD81/ Alix/ Flotillin1/ CD16
non-EV: calnexin
Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Cell viability (%)
80
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
100
Wash: time (min)
120
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
Flotillin1/ GFP/ CD63/ TSG101/ Alix/ CD81
Not detected EV-associated proteins
CD9
Detected contaminants
calnexin
Flow cytometry
Type of Flow cytometry
NanoAnalyzer N30 (nanoFCM)
Calibration bead size
0.068; 0.091; 0.113; 0.155
Detected EV-associated proteins
GFP
Detected EV-associated proteins
CD81/ CD9/ CD63/ GFP
Detected EV-associated proteins
GFP
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
100-200
EV concentration
Yes
Particle analysis: flow cytometry
Flow cytometer type
NanoAnalyzer N30 (nanoFCM)
Hardware adjustment
Calibration bead size
0.068; 0.091; 0.113; 0.155
Report type
Mean
Reported size (nm)
73
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV210105 1/14 Homo sapiens HeLa (d)(U)C Mathieu, Mathilde 2021 78%

Study summary

Full title
All authors
Mathilde Mathieu, Nathalie Névo, Mabel Jouve, José Ignacio Valenzuela, Mathieu Maurin, Frederik Verweij, Roberta Palmulli, Danielle Lankar, Florent Dingli, Damarys Loew,Eric Rubinstein, Gaëlle Boncompain, Franck Perez & Clotilde Théry
Journal
Nat Commun
Abstract
Despite their roles in intercellular communications, the different populations of extracellular vesi (show more...)Despite their roles in intercellular communications, the different populations of extracellular vesicles (EVs) and their secretion mechanisms are not fully characterized: how and to what extent EVs form as intraluminal vesicles of endocytic compartments (exosomes), or at the plasma membrane (PM) (ectosomes) remains unclear. Here we follow intracellular trafficking of the EV markers CD9 and CD63 from the endoplasmic reticulum to their residency compartment, respectively PM and late endosomes. We observe transient co-localization at both places, before they finally segregate. CD9 and a mutant CD63 stabilized at the PM are more abundantly released in EVs than CD63. Thus, in HeLa cells, ectosomes are more prominent than exosomes. By comparative proteomic analysis and differential response to neutralization of endosomal pH, we identify a few surface proteins likely specific of either exosomes (LAMP1) or ectosomes (BSG, SLC3A2). Our work sets the path for molecular and functional discrimination of exosomes and small ectosomes in any cell type. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: CD63/ Basigin/ SLC3A2/ Syntenin/ CD9/ CD81
non-EV: Calnexin/ acetylcholinesterase
Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HeLa
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell count
1,25E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
200000
Wash: volume per pellet (ml)
6
Wash: time (min)
70
Wash: Rotor Type
MLA-80
Wash: speed (g)
200000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD9/ CD63/ Syntenin/ Basigin/ SLC3A2/ CD81
Detected contaminants
acetylcholinesterase
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
70-400
EV concentration
Yes
Particle yield
No NA
EM
EM-type
Immuno-EM/ Transmission-EM
EM protein
CD63
Image type
Close-up, Wide-field
Report size (nm)
40-300
EV210105 7/14 Homo sapiens HeLa (d)(U)C Mathieu, Mathilde 2021 78%

Study summary

Full title
All authors
Mathilde Mathieu, Nathalie Névo, Mabel Jouve, José Ignacio Valenzuela, Mathieu Maurin, Frederik Verweij, Roberta Palmulli, Danielle Lankar, Florent Dingli, Damarys Loew,Eric Rubinstein, Gaëlle Boncompain, Franck Perez & Clotilde Théry
Journal
Nat Commun
Abstract
Despite their roles in intercellular communications, the different populations of extracellular vesi (show more...)Despite their roles in intercellular communications, the different populations of extracellular vesicles (EVs) and their secretion mechanisms are not fully characterized: how and to what extent EVs form as intraluminal vesicles of endocytic compartments (exosomes), or at the plasma membrane (PM) (ectosomes) remains unclear. Here we follow intracellular trafficking of the EV markers CD9 and CD63 from the endoplasmic reticulum to their residency compartment, respectively PM and late endosomes. We observe transient co-localization at both places, before they finally segregate. CD9 and a mutant CD63 stabilized at the PM are more abundantly released in EVs than CD63. Thus, in HeLa cells, ectosomes are more prominent than exosomes. By comparative proteomic analysis and differential response to neutralization of endosomal pH, we identify a few surface proteins likely specific of either exosomes (LAMP1) or ectosomes (BSG, SLC3A2). Our work sets the path for molecular and functional discrimination of exosomes and small ectosomes in any cell type. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
BafA1
Focus vesicles
small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: CD63/ CD81/ CD9/ basigin/ syntenin/ SLC3A2
non-EV: Calnexin/ acetylcholinesterase
Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HeLa
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell count
1,25E+08
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
200000
Wash: volume per pellet (ml)
6
Wash: time (min)
70
Wash: Rotor Type
MLA-80
Wash: speed (g)
200000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD9/ CD81/ syntenin/ basigin/ SLC3A2/ CD63
Detected contaminants
Calnexin/ acetylcholinesterase
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
70-400
EV concentration
Yes
Particle yield
No NA
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
40-300
EV200185 1/3 Staphylococcus aureus S. aureus NCTC6571 DG
(d)(U)C
Filtration
Bitto, Natalie J. 2021 78%

Study summary

Full title
All authors
Natalie J Bitto, Lesley Cheng, Ella L Johnston, Rishi Pathirana, Thanh Kha Phan, Ivan K H Poon, Neil M O'Brien-Simpson, Andrew F Hill, Timothy P Stinear, Maria Kaparakis-Liaskos
Journal
J Extracell Vesicles
Abstract
Gram-positive bacteria ubiquitously produce membrane vesicles (MVs), and although they contribute to (show more...)Gram-positive bacteria ubiquitously produce membrane vesicles (MVs), and although they contribute to biological functions, our knowledge regarding their composition and immunogenicity remains limited. Here we examine the morphology, contents and immunostimulatory functions of MVs produced by three Staphylococcus aureus strains; a methicillin resistant clinical isolate, a methicillin sensitive clinical isolate and a laboratory-adapted strain. We observed differences in the number and morphology of MVs produced by each strain and showed that they contain microbe-associated molecular patterns (MAMPs) including protein, nucleic acids and peptidoglycan. Analysis of MV-derived RNA indicated the presence of small RNA (sRNA). Furthermore, we detected variability in the amount and composition of protein, nucleic acid and peptidoglycan cargo carried by MVs from each S. aureus strain. S. aureus MVs activated Toll-like receptor (TLR) 2, 7, 8, 9 and nucleotide-binding oligomerization domain containing protein 2 (NOD2) signalling and promoted cytokine and chemokine release by epithelial cells, thus identifying that MV-associated MAMPs including DNA, RNA and peptidoglycan are detected by pattern recognition receptors (PRRs). Moreover, S. aureus MVs induced the formation of and colocalized with autophagosomes in epithelial cells, while inhibition of lysosomal acidification using bafilomycin A1 resulted in accumulation of autophagosomal puncta that colocalized with MVs, revealing the ability of the host to degrade MVs via autophagy. This study reveals the ability of DNA, RNA and peptidoglycan associated with MVs to activate PRRs in host epithelial cells, and their intracellular degradation via autophagy. These findings advance our understanding of the immunostimulatory roles of Gram-positive bacterial MVs in mediating pathogenesis, and their intracellular fate within the host. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Other / Membrane vesicles (MVs)
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: S. aureus proteins
non-EV: None
Proteomics
no
EV density (g/ml)
1.069-1.119
Show all info
Study aim
Function
Sample
Species
Staphylococcus aureus
Sample Type
Cell culture supernatant
EV-producing cells
S. aureus NCTC6571
EV-harvesting Medium
Serum free medium
Cell count
2330000000
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
P28S
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
6
Lowest density fraction
20%
Highest density fraction
45%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
1.1
Orientation
Bottom-up
Rotor type
SW 40 Ti
Speed (g)
100000
Duration (min)
960
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
12ml
Pelleting: duration (min)
120
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
100000
Pelleting-wash: volume per pellet (mL)
12
Pelleting-wash: duration (min)
120
Pelleting-wash: speed (g)
SW 40 Ti
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
S. aureus proteins
Characterization: RNA analysis
RNA analysis
Type
Capillary electrophoresis (e.g. Bioanalyzer)
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-500
EV concentration
Yes
Particle yield
particles per colony forming units (CFU) of bacteria;Yes, other: 1010000000000
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV200185 2/3 Staphylococcus aureus S. aureus BPH2760 DG
(d)(U)C
Filtration
Bitto, Natalie J. 2021 78%

Study summary

Full title
All authors
Natalie J Bitto, Lesley Cheng, Ella L Johnston, Rishi Pathirana, Thanh Kha Phan, Ivan K H Poon, Neil M O'Brien-Simpson, Andrew F Hill, Timothy P Stinear, Maria Kaparakis-Liaskos
Journal
J Extracell Vesicles
Abstract
Gram-positive bacteria ubiquitously produce membrane vesicles (MVs), and although they contribute to (show more...)Gram-positive bacteria ubiquitously produce membrane vesicles (MVs), and although they contribute to biological functions, our knowledge regarding their composition and immunogenicity remains limited. Here we examine the morphology, contents and immunostimulatory functions of MVs produced by three Staphylococcus aureus strains; a methicillin resistant clinical isolate, a methicillin sensitive clinical isolate and a laboratory-adapted strain. We observed differences in the number and morphology of MVs produced by each strain and showed that they contain microbe-associated molecular patterns (MAMPs) including protein, nucleic acids and peptidoglycan. Analysis of MV-derived RNA indicated the presence of small RNA (sRNA). Furthermore, we detected variability in the amount and composition of protein, nucleic acid and peptidoglycan cargo carried by MVs from each S. aureus strain. S. aureus MVs activated Toll-like receptor (TLR) 2, 7, 8, 9 and nucleotide-binding oligomerization domain containing protein 2 (NOD2) signalling and promoted cytokine and chemokine release by epithelial cells, thus identifying that MV-associated MAMPs including DNA, RNA and peptidoglycan are detected by pattern recognition receptors (PRRs). Moreover, S. aureus MVs induced the formation of and colocalized with autophagosomes in epithelial cells, while inhibition of lysosomal acidification using bafilomycin A1 resulted in accumulation of autophagosomal puncta that colocalized with MVs, revealing the ability of the host to degrade MVs via autophagy. This study reveals the ability of DNA, RNA and peptidoglycan associated with MVs to activate PRRs in host epithelial cells, and their intracellular degradation via autophagy. These findings advance our understanding of the immunostimulatory roles of Gram-positive bacterial MVs in mediating pathogenesis, and their intracellular fate within the host. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Other / Membrane vesicles (MVs)
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: S. aureus proteins
non-EV: None
Proteomics
no
EV density (g/ml)
1.069-1.119
Show all info
Study aim
Function
Sample
Species
Staphylococcus aureus
Sample Type
Cell culture supernatant
EV-producing cells
S. aureus BPH2760
EV-harvesting Medium
Serum free medium
Cell count
2000000000
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
P28S
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
6
Lowest density fraction
20%
Highest density fraction
45%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
1.1
Orientation
Bottom-up
Rotor type
SW 40 Ti
Speed (g)
100000
Duration (min)
960
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
12ml
Pelleting: duration (min)
120
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
100000
Pelleting-wash: volume per pellet (mL)
12
Pelleting-wash: duration (min)
120
Pelleting-wash: speed (g)
SW 40 Ti
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
S. aureus proteins
Characterization: RNA analysis
RNA analysis
Type
Capillary electrophoresis (e.g. Bioanalyzer)
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-500
EV concentration
Yes
Particle yield
particles per colony forming units (CFU) of bacteria;Yes, other: 28000000000
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV200185 3/3 Staphylococcus aureus S. aureus BPH2900 DG
(d)(U)C
Filtration
Bitto, Natalie J. 2021 78%

Study summary

Full title
All authors
Natalie J Bitto, Lesley Cheng, Ella L Johnston, Rishi Pathirana, Thanh Kha Phan, Ivan K H Poon, Neil M O'Brien-Simpson, Andrew F Hill, Timothy P Stinear, Maria Kaparakis-Liaskos
Journal
J Extracell Vesicles
Abstract
Gram-positive bacteria ubiquitously produce membrane vesicles (MVs), and although they contribute to (show more...)Gram-positive bacteria ubiquitously produce membrane vesicles (MVs), and although they contribute to biological functions, our knowledge regarding their composition and immunogenicity remains limited. Here we examine the morphology, contents and immunostimulatory functions of MVs produced by three Staphylococcus aureus strains; a methicillin resistant clinical isolate, a methicillin sensitive clinical isolate and a laboratory-adapted strain. We observed differences in the number and morphology of MVs produced by each strain and showed that they contain microbe-associated molecular patterns (MAMPs) including protein, nucleic acids and peptidoglycan. Analysis of MV-derived RNA indicated the presence of small RNA (sRNA). Furthermore, we detected variability in the amount and composition of protein, nucleic acid and peptidoglycan cargo carried by MVs from each S. aureus strain. S. aureus MVs activated Toll-like receptor (TLR) 2, 7, 8, 9 and nucleotide-binding oligomerization domain containing protein 2 (NOD2) signalling and promoted cytokine and chemokine release by epithelial cells, thus identifying that MV-associated MAMPs including DNA, RNA and peptidoglycan are detected by pattern recognition receptors (PRRs). Moreover, S. aureus MVs induced the formation of and colocalized with autophagosomes in epithelial cells, while inhibition of lysosomal acidification using bafilomycin A1 resulted in accumulation of autophagosomal puncta that colocalized with MVs, revealing the ability of the host to degrade MVs via autophagy. This study reveals the ability of DNA, RNA and peptidoglycan associated with MVs to activate PRRs in host epithelial cells, and their intracellular degradation via autophagy. These findings advance our understanding of the immunostimulatory roles of Gram-positive bacterial MVs in mediating pathogenesis, and their intracellular fate within the host. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Other / Membrane vesicles (MVs)
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: S. aureus proteins
non-EV: None
Proteomics
no
EV density (g/ml)
1.069-1.119
Show all info
Study aim
Function
Sample
Species
Staphylococcus aureus
Sample Type
Cell culture supernatant
EV-producing cells
S. aureus BPH2900
EV-harvesting Medium
Serum free medium
Cell count
2130000000
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
P28S
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
6
Lowest density fraction
20%
Highest density fraction
45%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
1.1
Orientation
Bottom-up
Rotor type
SW 40 Ti
Speed (g)
100000
Duration (min)
960
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
12ml
Pelleting: duration (min)
120
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
100000
Pelleting-wash: volume per pellet (mL)
12
Pelleting-wash: duration (min)
120
Pelleting-wash: speed (g)
SW 40 Ti
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
S. aureus proteins
Characterization: RNA analysis
RNA analysis
Type
Capillary electrophoresis (e.g. Bioanalyzer)
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-500
EV concentration
Yes
Particle yield
particles per colony forming units (CFU) of bacteria;Yes, other: 53000000000
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV200121 3/6 Homo sapiens U87 glioblastoma (d)(U)C
DG
Keulers, Tom 2021 78%

Study summary

Full title
All authors
Tom G Keulers, Sten F Libregts, Joel E J Beaumont, Kim G Savelkouls, Johan Bussink, Hans Duimel, Ludwig Dubois, Marijke I Zonneveld, Carmen López-Iglesias, Karel Bezstarosti, Jeroen A Demmers, Marc Vooijs, Marca Wauben, Kasper M A Rouschop
Journal
J Extracell Vesicles
Abstract
Tumour hypoxia is a hallmark of solid tumours and contributes to tumour progression, metastasis deve (show more...)Tumour hypoxia is a hallmark of solid tumours and contributes to tumour progression, metastasis development and therapy resistance. In response to hypoxia, tumour cells secrete pro-angiogenic factors to induce blood vessel formation and restore oxygen supply to hypoxic regions. Extracellular vesicles (EVs) are emerging as mediators of intercellular communication in the tumour microenvironment. Here we demonstrate that increased expression of the LC3/GABARAP protein family member GABARAPL1, is required for endosomal maturation, sorting of cargo to endosomes and the secretion of EVs. Silencing GABARAPL1 results in a block in the early endosomal pathway and impaired secretion of EVs with pro-angiogenic properties. Tumour xenografts of doxycycline inducible GABARAPL1 knockdown cells display impaired vascularisation that results in decreased tumour growth, elevated tumour necrosis and increased therapy efficacy. Moreover, our data show that GABARAPL1 is expressed on the EV surface and targeting GABARAPL1+ EVs with GABARAPL1 targeting antibodies results in blockade of pro-angiogenic effects in vitro. In summary, we reveal that GABARAPL1 is required for EV cargo loading and secretion. GABARAPL1+ EVs are detectable and targetable and are therefore interesting to pursue as a therapeutic target. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: CD81/ CD63/ CD9
non-EV: None
Proteomics
no
EV density (g/ml)
1.14
Show all info
Study aim
Function/Biogenesis/cargo sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
U87 glioblastoma
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell count
1.00E+07
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Density gradient
Only used for validation of main results
Yes
Type
Continuous
Lowest density fraction
0.4M
Highest density fraction
2.0M
Total gradient volume, incl. sample (mL)
12.4
Sample volume (mL)
0.15
Orientation
Bottom-up
Rotor type
SW 41 Ti
Speed (g)
200000
Duration (min)
960
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
12.4
Pelleting: duration (min)
60
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD9/ CD63/ CD81
Not detected EV-associated proteins
CD81/ CD63/ CD9
Characterization: Lipid analysis
No
Characterization: Particle analysis
Particle analysis: flow cytometry
Flow cytometer type
influx
Hardware adjustment
customized influx
Calibration bead size
100
Report type
Not Reported
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up
EV200098 1/3 Homo sapiens PNT1A (d)(U)C
qEV
UF
Millan, Christopher 2021 78%

Study summary

Full title
All authors
Christopher Millan, Lukas Prause, Queralt Vallmajo-Martin, Natalie Hensky, Daniel Eberli
Journal
Advanced Healthcare Materials
Abstract
Engineered microtissues that recapitulate key properties of the tumor microenvironment can induce cl (show more...)Engineered microtissues that recapitulate key properties of the tumor microenvironment can induce clinically relevant cancer phenotypes in vitro. However, their effect on molecular cargo of secreted extracellular vesicles (EVs) has not yet been investigated. Here, the impact of hydrogel-based 3D engineered microtissues on EVs secreted by benign and malignant prostate cells is assessed. Compared to 2D cultures, yield of EVs per cell is significantly increased for cancer cells cultured in 3D. Whole transcriptome sequencing and proteomics of 2D-EV and 3D-EV samples reveal stark contrasts in molecular cargo. For one cell type in particular, LNCaP, enrichment is observed exclusively in 3D-EVs of GDF15, FASN, and TOP1, known drivers of prostate cancer progression. Using imaging flow cytometry in a novel approach to validate a putative EV biomarker, colocalization in single EVs of GDF15 with CD9, a universal EV marker, is demonstrated. Finally, in functional assays it is observed that only 3D-EVs, unlike 2D-EVs, confer increased invasiveness and chemoresistance to cells in 2D. Collectively, this study highlights the value of engineered 3D microtissue cultures for the study of bona fide EV cargoes and their potential to identify biomarkers that are not detectable in EVs secreted by cells cultured in standard 2D conditions. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Commercial method
UF
Protein markers
EV: TSG101/ Alix/ CD9
non-EV: Calnexin/ Argonaute2
Proteomics
yes
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
PNT1A
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Ultrafiltration 100kDa cutoff
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
110000
Wash: volume per pellet (ml)
12
Wash: time (min)
120
Wash: Rotor Type
SW 41 Ti
Wash: speed (g)
110,000
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
Lowry-based assay
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ Alix
Not detected contaminants
Calnexin/ Argonaute2
Proteomics database
Yes:
Characterization: RNA analysis
RNA analysis
Type
RNA sequencing;Capillary electrophoresis (e.g. Bioanalyzer)
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
120
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
120
EV200098 2/3 Homo sapiens LNCaP (d)(U)C
qEV
UF
Millan, Christopher 2021 78%

Study summary

Full title
All authors
Christopher Millan, Lukas Prause, Queralt Vallmajo-Martin, Natalie Hensky, Daniel Eberli
Journal
Advanced Healthcare Materials
Abstract
Engineered microtissues that recapitulate key properties of the tumor microenvironment can induce cl (show more...)Engineered microtissues that recapitulate key properties of the tumor microenvironment can induce clinically relevant cancer phenotypes in vitro. However, their effect on molecular cargo of secreted extracellular vesicles (EVs) has not yet been investigated. Here, the impact of hydrogel-based 3D engineered microtissues on EVs secreted by benign and malignant prostate cells is assessed. Compared to 2D cultures, yield of EVs per cell is significantly increased for cancer cells cultured in 3D. Whole transcriptome sequencing and proteomics of 2D-EV and 3D-EV samples reveal stark contrasts in molecular cargo. For one cell type in particular, LNCaP, enrichment is observed exclusively in 3D-EVs of GDF15, FASN, and TOP1, known drivers of prostate cancer progression. Using imaging flow cytometry in a novel approach to validate a putative EV biomarker, colocalization in single EVs of GDF15 with CD9, a universal EV marker, is demonstrated. Finally, in functional assays it is observed that only 3D-EVs, unlike 2D-EVs, confer increased invasiveness and chemoresistance to cells in 2D. Collectively, this study highlights the value of engineered 3D microtissue cultures for the study of bona fide EV cargoes and their potential to identify biomarkers that are not detectable in EVs secreted by cells cultured in standard 2D conditions. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Commercial method
UF
Protein markers
EV: TSG101/ Alix/ GDF15/ CD9
non-EV: Calnexin/ Argonaute2
Proteomics
yes
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
LNCaP
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Ultrafiltration 100kDa cutoff
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
110000
Wash: volume per pellet (ml)
12
Wash: time (min)
120
Wash: Rotor Type
SW 41 Ti
Wash: speed (g)
110,000
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
Lowry-based assay
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ Alix
Not detected contaminants
Calnexin/ Argonaute2
Flow cytometry
Detected EV-associated proteins
CD9/ GDF15
Proteomics database
Yes:
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing;Capillary electrophoresis (e.g. Bioanalyzer)
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
120
EV concentration
Yes
Particle analysis: flow cytometry
Flow cytometer type
Amnis ImageStreamX MkII
Hardware adjustment
60x objective, 7um core diameter, low flow rate. Particles with high aspect ratio, negligible SSC, and high fluorescent were considered positively stained EVs
Calibration bead size
1000
Report type
Not Reported
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
120
EV200098 3/3 Homo sapiens PC3 (d)(U)C
qEV
UF
Millan, Christopher 2021 78%

Study summary

Full title
All authors
Christopher Millan, Lukas Prause, Queralt Vallmajo-Martin, Natalie Hensky, Daniel Eberli
Journal
Advanced Healthcare Materials
Abstract
Engineered microtissues that recapitulate key properties of the tumor microenvironment can induce cl (show more...)Engineered microtissues that recapitulate key properties of the tumor microenvironment can induce clinically relevant cancer phenotypes in vitro. However, their effect on molecular cargo of secreted extracellular vesicles (EVs) has not yet been investigated. Here, the impact of hydrogel-based 3D engineered microtissues on EVs secreted by benign and malignant prostate cells is assessed. Compared to 2D cultures, yield of EVs per cell is significantly increased for cancer cells cultured in 3D. Whole transcriptome sequencing and proteomics of 2D-EV and 3D-EV samples reveal stark contrasts in molecular cargo. For one cell type in particular, LNCaP, enrichment is observed exclusively in 3D-EVs of GDF15, FASN, and TOP1, known drivers of prostate cancer progression. Using imaging flow cytometry in a novel approach to validate a putative EV biomarker, colocalization in single EVs of GDF15 with CD9, a universal EV marker, is demonstrated. Finally, in functional assays it is observed that only 3D-EVs, unlike 2D-EVs, confer increased invasiveness and chemoresistance to cells in 2D. Collectively, this study highlights the value of engineered 3D microtissue cultures for the study of bona fide EV cargoes and their potential to identify biomarkers that are not detectable in EVs secreted by cells cultured in standard 2D conditions. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Commercial method
UF
Protein markers
EV: Alix/ TSG101/ CD9
non-EV: Calnexin/ Argonaute2
Proteomics
yes
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
PC3
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Ultrafiltration 100kDa cutoff
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
110000
Wash: volume per pellet (ml)
12
Wash: time (min)
120
Wash: Rotor Type
SW 41 Ti
Wash: speed (g)
110,000
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
Lowry-based assay
Western Blot
Detected EV-associated proteins
Alix/ CD9/ TSG101
Not detected contaminants
Calnexin/ Argonaute2
Proteomics database
Yes:
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing;Capillary electrophoresis (e.g. Bioanalyzer)
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
120
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
120
EV210281 3/16 Homo sapiens MDAMB231 (d)(U)C
UF
qEV
Immunoaffinity capture
Grisard, Eleonora 2021 75%

Study summary

Full title
All authors
Eleonora Grisard, Aurianne Lescure, Nathalie Nevo, Maxime Corbé, Mabel Jouve, Gregory Lavieu, Alain Joliot, Elaine Del Nery, Lorena Martin-Jaular, Clotilde Théry
Journal
bioRxiv
Abstract
Eukaryotic cells, including cancer cells, secrete highly heterogeneous populations of extracellular (show more...)Eukaryotic cells, including cancer cells, secrete highly heterogeneous populations of extracellular vesicles (EVs). EVs could have different subcellular origin, composition and functional properties, but tools to distinguish between EV subtypes are scarce. Here, we tagged CD63-or CD9-positive EVs secreted by triple negative breast cancer cells with Nanoluciferase enzyme, to set-up a miniaturized method to quantify secretion of these two EV subtypes directly in the supernatant of cells. We performed a cell-based high-content screening to identify clinically-approved drugs able to affect EV secretion. One of the identified hits is Homosalate, an anti-inflammatory drug found in sunscreens which robustly increased EVs’release. Comparing EVs induced by Homosalate with those induced by Bafilomycin A1, we discovered that: 1) the two drugs act on EVs generated indistinct subcellular compartmentsand 2) EVs released upon treatment with Homosalate, but not with Bafilomycin A1, conferred anti-anoikis properties to another recipient tumor cell line. In conclusion, we identified a new drug modifying EV release and demonstrated that under influence of different drugs, triple negative breast cancer cells release EV subpopulations from different subcellular origins harboring distinct functional properties. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DMSO treated
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Ultrafiltration
qEV
Immunoaffinity capture
Protein markers
EV: CD9/ CD63/ CD81/ syntenin/ CD98
non-EV: Gapdh
Proteomics
no
Show all info
Study aim
Function/Biogenesis/cargo sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDAMB231
EV-harvesting Medium
Serum free medium
Cell viability (%)
80
Cell count
27000000
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
10 kDa
Membrane type
PES
Commercial kit
qEV
Immunoaffinity capture
Selected surface protein(s)
CD9/ CD63
Other
Name other separation method
qEV
Other
Name other separation method
Immunoaffinity capture
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD9/ CD63/ CD81/ syntenin/ CD98
Detected contaminants
Gapdh
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
100
EV concentration
Yes
Particle yield
number of particles per million cells: 5.00e+9
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
125
EV210281 4/16 Homo sapiens MDAMB231 (d)(U)C
UF
qEV
Immunoaffinity capture
Grisard, Eleonora 2021 75%

Study summary

Full title
All authors
Eleonora Grisard, Aurianne Lescure, Nathalie Nevo, Maxime Corbé, Mabel Jouve, Gregory Lavieu, Alain Joliot, Elaine Del Nery, Lorena Martin-Jaular, Clotilde Théry
Journal
bioRxiv
Abstract
Eukaryotic cells, including cancer cells, secrete highly heterogeneous populations of extracellular (show more...)Eukaryotic cells, including cancer cells, secrete highly heterogeneous populations of extracellular vesicles (EVs). EVs could have different subcellular origin, composition and functional properties, but tools to distinguish between EV subtypes are scarce. Here, we tagged CD63-or CD9-positive EVs secreted by triple negative breast cancer cells with Nanoluciferase enzyme, to set-up a miniaturized method to quantify secretion of these two EV subtypes directly in the supernatant of cells. We performed a cell-based high-content screening to identify clinically-approved drugs able to affect EV secretion. One of the identified hits is Homosalate, an anti-inflammatory drug found in sunscreens which robustly increased EVs’release. Comparing EVs induced by Homosalate with those induced by Bafilomycin A1, we discovered that: 1) the two drugs act on EVs generated indistinct subcellular compartmentsand 2) EVs released upon treatment with Homosalate, but not with Bafilomycin A1, conferred anti-anoikis properties to another recipient tumor cell line. In conclusion, we identified a new drug modifying EV release and demonstrated that under influence of different drugs, triple negative breast cancer cells release EV subpopulations from different subcellular origins harboring distinct functional properties. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Homosalate treated
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Ultrafiltration
qEV
Immunoaffinity capture
Protein markers
EV: CD9/ CD63/ CD81/ syntenin/ CD98
non-EV: Gapdh
Proteomics
no
Show all info
Study aim
Function/Biogenesis/cargo sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDAMB231
EV-harvesting Medium
Serum free medium
Cell viability (%)
80
Cell count
27000000
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
10 kDa
Membrane type
PES
Commercial kit
qEV
Immunoaffinity capture
Selected surface protein(s)
CD9/ CD63
Other
Name other separation method
qEV
Other
Name other separation method
Immunoaffinity capture
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD9/ CD63/ CD81/ syntenin/ CD98
Detected contaminants
Gapdh
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
100
EV concentration
Yes
Particle yield
number of particles per million cells: 5.00e+9
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
125
EV210153 1/11 Homo sapiens 22Rv1 (d)(U)C
Filtration
UF
Allelein, Susann 2021 75%

Study summary

Full title
All authors
Susann Allelein, Paula Medina-Perez, Ana Leonor Heitor Lopes, Sabrina Rau, Gerd Hause, Andreas Kölsch, Dirk Kuhlmeier
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) have attracted interest due to their ability to provide diagnostic info (show more...)Extracellular vesicles (EVs) have attracted interest due to their ability to provide diagnostic information from liquid biopsies. Cells constantly release vesicles divers in size, content and features depending on the biogenesis, origin and function. This heterogeneity adds a layer of complexity when attempting to isolate and characterize EVs resulting in various protocols. Their high abundance in all bodily fluids and their stable source of origin dependent biomarkers make EVs a powerful tool in biomarker discovery and diagnostics. However, applications are limited by the quality of samples definition. Here, we compared frequently used isolation techniques: ultracentrifugation, density gradient centrifugation, ultrafiltration and size exclusion chromatography. Then, we aimed for a tissue-specific isolation of prostate-derived EVs from cell culture supernatants with immunomagnetic beads. Quality and quantity of EVs were confirmed by nanoparticle tracking analysis, western blot and electron microscopy. Additionally, a spotted antibody microarray was developed to characterize EV sub-populations. Current analysis of 16 samples on one microarray for 6 different EV surface markers in triplicate could be easily extended allowing a faster and more economical method to characterize samples. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
UF
Protein markers
EV: TSG101/ Alix/ CD9
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
22Rv1
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ Alix
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
140
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 1.40E+11
EM
EM-type
Transmission electron microscopy
Image type
Close-up, Wide-field
EV210153 4/11 Homo sapiens 22Rv1 (d)(U)C
Filtration
SEC (non-commercial)
Allelein, Susann 2021 75%

Study summary

Full title
All authors
Susann Allelein, Paula Medina-Perez, Ana Leonor Heitor Lopes, Sabrina Rau, Gerd Hause, Andreas Kölsch, Dirk Kuhlmeier
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) have attracted interest due to their ability to provide diagnostic info (show more...)Extracellular vesicles (EVs) have attracted interest due to their ability to provide diagnostic information from liquid biopsies. Cells constantly release vesicles divers in size, content and features depending on the biogenesis, origin and function. This heterogeneity adds a layer of complexity when attempting to isolate and characterize EVs resulting in various protocols. Their high abundance in all bodily fluids and their stable source of origin dependent biomarkers make EVs a powerful tool in biomarker discovery and diagnostics. However, applications are limited by the quality of samples definition. Here, we compared frequently used isolation techniques: ultracentrifugation, density gradient centrifugation, ultrafiltration and size exclusion chromatography. Then, we aimed for a tissue-specific isolation of prostate-derived EVs from cell culture supernatants with immunomagnetic beads. Quality and quantity of EVs were confirmed by nanoparticle tracking analysis, western blot and electron microscopy. Additionally, a spotted antibody microarray was developed to characterize EV sub-populations. Current analysis of 16 samples on one microarray for 6 different EV surface markers in triplicate could be easily extended allowing a faster and more economical method to characterize samples. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Size-exclusion chromatography (non-commercial)
Protein markers
EV: TSG101/ Alix/ CD9
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
22Rv1
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Size-exclusion chromatography
Used for validation?
Yes
Total column volume (mL)
10
Sample volume/column (mL)
0.5
Resin type
Not Specified
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ Alix
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
140
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 1.40E+11
EM
EM-type
Transmission electron microscopy
Image type
Close-up, Wide-field
EV210153 5/11 Homo sapiens 22Rv1 (d)(U)C
Filtration
IAF
Allelein, Susann 2021 75%

Study summary

Full title
All authors
Susann Allelein, Paula Medina-Perez, Ana Leonor Heitor Lopes, Sabrina Rau, Gerd Hause, Andreas Kölsch, Dirk Kuhlmeier
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) have attracted interest due to their ability to provide diagnostic info (show more...)Extracellular vesicles (EVs) have attracted interest due to their ability to provide diagnostic information from liquid biopsies. Cells constantly release vesicles divers in size, content and features depending on the biogenesis, origin and function. This heterogeneity adds a layer of complexity when attempting to isolate and characterize EVs resulting in various protocols. Their high abundance in all bodily fluids and their stable source of origin dependent biomarkers make EVs a powerful tool in biomarker discovery and diagnostics. However, applications are limited by the quality of samples definition. Here, we compared frequently used isolation techniques: ultracentrifugation, density gradient centrifugation, ultrafiltration and size exclusion chromatography. Then, we aimed for a tissue-specific isolation of prostate-derived EVs from cell culture supernatants with immunomagnetic beads. Quality and quantity of EVs were confirmed by nanoparticle tracking analysis, western blot and electron microscopy. Additionally, a spotted antibody microarray was developed to characterize EV sub-populations. Current analysis of 16 samples on one microarray for 6 different EV surface markers in triplicate could be easily extended allowing a faster and more economical method to characterize samples. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Immunoaffinity capture (non-commercial)
Protein markers
EV: TSG101/ Alix/ CD9
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
22Rv1
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Immunoaffinity capture
Selected surface protein(s)
PSMA, CD9
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ Alix
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
EM
EM-type
Transmission electron microscopy
Image type
Close-up, Wide-field
EV210153 9/11 Homo sapiens LNCaP (d)(U)C
Filtration
UF
IAF
DG
SEC (non-commercial)
Allelein, Susann 2021 75%

Study summary

Full title
All authors
Susann Allelein, Paula Medina-Perez, Ana Leonor Heitor Lopes, Sabrina Rau, Gerd Hause, Andreas Kölsch, Dirk Kuhlmeier
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) have attracted interest due to their ability to provide diagnostic info (show more...)Extracellular vesicles (EVs) have attracted interest due to their ability to provide diagnostic information from liquid biopsies. Cells constantly release vesicles divers in size, content and features depending on the biogenesis, origin and function. This heterogeneity adds a layer of complexity when attempting to isolate and characterize EVs resulting in various protocols. Their high abundance in all bodily fluids and their stable source of origin dependent biomarkers make EVs a powerful tool in biomarker discovery and diagnostics. However, applications are limited by the quality of samples definition. Here, we compared frequently used isolation techniques: ultracentrifugation, density gradient centrifugation, ultrafiltration and size exclusion chromatography. Then, we aimed for a tissue-specific isolation of prostate-derived EVs from cell culture supernatants with immunomagnetic beads. Quality and quantity of EVs were confirmed by nanoparticle tracking analysis, western blot and electron microscopy. Additionally, a spotted antibody microarray was developed to characterize EV sub-populations. Current analysis of 16 samples on one microarray for 6 different EV surface markers in triplicate could be easily extended allowing a faster and more economical method to characterize samples. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
UF
Immunoaffinity capture (non-commercial)
DG
Size-exclusion chromatography (non-commercial)
Protein markers
EV: TSG101/ Alix/ CD9
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
LNCaP
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Immunoaffinity capture
Selected surface protein(s)
PSMA, CD9
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ Alix
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
EV210144 3/9 Homo sapiens Saliva (d)(U)C
DC
Kumar, Awanit 2021 75%

Study summary

Full title
All authors
Awanit Kumar, Surendar Reddy Dhadi, Ngoc‐Nu Mai, Catherine Taylor, Jeremy W. Roy, David A. Barnett, Stephen M. Lewis, Anirban Ghosh, and Rodney J. Ouellette
Journal
J Extracell Vesicles
Abstract
Several studies have demonstrated the potential uses of extracellular vesicles (EVs) for liquid biop (show more...)Several studies have demonstrated the potential uses of extracellular vesicles (EVs) for liquid biopsy‐based diagnostic tests and therapeutic applications; however, clinical use of EVs presents a challenge as many currently‐available EV isolation methods have limitations related to efficiency, purity, and complexity of the methods. Moreover, many EV isolation methods do not perform efficiently in all biofluids due to their differential physicochemical properties. Thus, there continues to be a need for novel EV isolation methods that are simple, robust, non‐toxic, and/or clinically‐amenable. Here we demonstrate a rapid and efficient method for small extracellular vesicle (sEV) isolation that uses chitosan, a linear cationic polyelectrolyte polysaccharide that exhibits biocompatibility, non‐immunogenicity, biodegradability, and low toxicity. Chitosan‐precipitated material was characterized using Western blotting, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and relevant proteomic‐based gene ontology analyses. We find that chitosan facilitates the isolation of sEVs from multiple biofluids, including cell culture‐conditioned media, human urine, plasma and saliva. Overall, our data support the potential for chitosan to isolate a population of sEVs from a variety of biofluids and may have the potential to be a clinically amenable sEV isolation method. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Saliva
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DC
Protein markers
EV: CD63/ Flotillin1/ CD9/ HSC70
non-EV: CANX
Proteomics
yes
Show all info
Study aim
New methodological development
Sample
Species
Homo sapiens
Sample Type
Saliva
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Density cushion
Density medium
Sucrose
Sample volume
10
Cushion volume
0.7
Density of the cushion
30%
Centrifugation time
120
Centrifugation speed
138,000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
Flotillin1/ CD9/ CD63
Not detected EV-associated proteins
HSC70
Not detected contaminants
CANX
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
205.7 +/- 2.3
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 1.89E+09
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV210144 4/9 Homo sapiens Saliva (d)(U)C
Chitosan-based
Kumar, Awanit 2021 75%

Study summary

Full title
All authors
Awanit Kumar, Surendar Reddy Dhadi, Ngoc‐Nu Mai, Catherine Taylor, Jeremy W. Roy, David A. Barnett, Stephen M. Lewis, Anirban Ghosh, and Rodney J. Ouellette
Journal
J Extracell Vesicles
Abstract
Several studies have demonstrated the potential uses of extracellular vesicles (EVs) for liquid biop (show more...)Several studies have demonstrated the potential uses of extracellular vesicles (EVs) for liquid biopsy‐based diagnostic tests and therapeutic applications; however, clinical use of EVs presents a challenge as many currently‐available EV isolation methods have limitations related to efficiency, purity, and complexity of the methods. Moreover, many EV isolation methods do not perform efficiently in all biofluids due to their differential physicochemical properties. Thus, there continues to be a need for novel EV isolation methods that are simple, robust, non‐toxic, and/or clinically‐amenable. Here we demonstrate a rapid and efficient method for small extracellular vesicle (sEV) isolation that uses chitosan, a linear cationic polyelectrolyte polysaccharide that exhibits biocompatibility, non‐immunogenicity, biodegradability, and low toxicity. Chitosan‐precipitated material was characterized using Western blotting, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and relevant proteomic‐based gene ontology analyses. We find that chitosan facilitates the isolation of sEVs from multiple biofluids, including cell culture‐conditioned media, human urine, plasma and saliva. Overall, our data support the potential for chitosan to isolate a population of sEVs from a variety of biofluids and may have the potential to be a clinically amenable sEV isolation method. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Saliva
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Chitosan-based
Protein markers
EV: CD63/ Flotillin1/ CD9/ HSC70
non-EV: CANX
Proteomics
yes
Show all info
Study aim
New methodological development
Sample
Species
Homo sapiens
Sample Type
Saliva
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Other
Name other separation method
Chitosan-based
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
Flotillin1/ CD9/ CD63
Not detected EV-associated proteins
HSC70
Not detected contaminants
CANX
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
218.2 +/- 5.4
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 8.39E+08
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV210144 5/9 Homo sapiens Urine (d)(U)C
DC
Kumar, Awanit 2021 75%

Study summary

Full title
All authors
Awanit Kumar, Surendar Reddy Dhadi, Ngoc‐Nu Mai, Catherine Taylor, Jeremy W. Roy, David A. Barnett, Stephen M. Lewis, Anirban Ghosh, and Rodney J. Ouellette
Journal
J Extracell Vesicles
Abstract
Several studies have demonstrated the potential uses of extracellular vesicles (EVs) for liquid biop (show more...)Several studies have demonstrated the potential uses of extracellular vesicles (EVs) for liquid biopsy‐based diagnostic tests and therapeutic applications; however, clinical use of EVs presents a challenge as many currently‐available EV isolation methods have limitations related to efficiency, purity, and complexity of the methods. Moreover, many EV isolation methods do not perform efficiently in all biofluids due to their differential physicochemical properties. Thus, there continues to be a need for novel EV isolation methods that are simple, robust, non‐toxic, and/or clinically‐amenable. Here we demonstrate a rapid and efficient method for small extracellular vesicle (sEV) isolation that uses chitosan, a linear cationic polyelectrolyte polysaccharide that exhibits biocompatibility, non‐immunogenicity, biodegradability, and low toxicity. Chitosan‐precipitated material was characterized using Western blotting, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and relevant proteomic‐based gene ontology analyses. We find that chitosan facilitates the isolation of sEVs from multiple biofluids, including cell culture‐conditioned media, human urine, plasma and saliva. Overall, our data support the potential for chitosan to isolate a population of sEVs from a variety of biofluids and may have the potential to be a clinically amenable sEV isolation method. (hide)
EV-METRIC
75% (95th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DC
Protein markers
EV: CD63/ Flotillin1/ CD9/ HSC70
non-EV: Tamm-Horsfall protein/ CANX
Proteomics
yes
Show all info
Study aim
New methodological development
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Density cushion
Density medium
Sucrose
Sample volume
10
Cushion volume
0.7
Density of the cushion
30%
Centrifugation time
120
Centrifugation speed
138,000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
Flotillin1/ CD9/ CD63
Not detected EV-associated proteins
HSC70
Detected contaminants
Tamm-Horsfall protein
Not detected contaminants
CANX
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
165.2 +/- 0.8
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 7.40E+08
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV210144 6/9 Homo sapiens Urine (d)(U)C
Chitosan-based
Kumar, Awanit 2021 75%

Study summary

Full title
All authors
Awanit Kumar, Surendar Reddy Dhadi, Ngoc‐Nu Mai, Catherine Taylor, Jeremy W. Roy, David A. Barnett, Stephen M. Lewis, Anirban Ghosh, and Rodney J. Ouellette
Journal
J Extracell Vesicles
Abstract
Several studies have demonstrated the potential uses of extracellular vesicles (EVs) for liquid biop (show more...)Several studies have demonstrated the potential uses of extracellular vesicles (EVs) for liquid biopsy‐based diagnostic tests and therapeutic applications; however, clinical use of EVs presents a challenge as many currently‐available EV isolation methods have limitations related to efficiency, purity, and complexity of the methods. Moreover, many EV isolation methods do not perform efficiently in all biofluids due to their differential physicochemical properties. Thus, there continues to be a need for novel EV isolation methods that are simple, robust, non‐toxic, and/or clinically‐amenable. Here we demonstrate a rapid and efficient method for small extracellular vesicle (sEV) isolation that uses chitosan, a linear cationic polyelectrolyte polysaccharide that exhibits biocompatibility, non‐immunogenicity, biodegradability, and low toxicity. Chitosan‐precipitated material was characterized using Western blotting, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and relevant proteomic‐based gene ontology analyses. We find that chitosan facilitates the isolation of sEVs from multiple biofluids, including cell culture‐conditioned media, human urine, plasma and saliva. Overall, our data support the potential for chitosan to isolate a population of sEVs from a variety of biofluids and may have the potential to be a clinically amenable sEV isolation method. (hide)
EV-METRIC
75% (95th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Chitosan-based
Protein markers
EV: CD63/ Flotillin1/ CD9/ HSC70
non-EV: Tamm-Horsfall protein/ CANX
Proteomics
yes
Show all info
Study aim
New methodological development
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Other
Name other separation method
Chitosan-based
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
Flotillin1/ HSC70/ CD9/ CD63
Detected contaminants
Tamm-Horsfall protein
Not detected contaminants
CANX
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
136.4 +/- 5.1
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 4.17E+07
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV210144 7/9 Homo sapiens HEK293 (d)(U)C
DC
Kumar, Awanit 2021 75%

Study summary

Full title
All authors
Awanit Kumar, Surendar Reddy Dhadi, Ngoc‐Nu Mai, Catherine Taylor, Jeremy W. Roy, David A. Barnett, Stephen M. Lewis, Anirban Ghosh, and Rodney J. Ouellette
Journal
J Extracell Vesicles
Abstract
Several studies have demonstrated the potential uses of extracellular vesicles (EVs) for liquid biop (show more...)Several studies have demonstrated the potential uses of extracellular vesicles (EVs) for liquid biopsy‐based diagnostic tests and therapeutic applications; however, clinical use of EVs presents a challenge as many currently‐available EV isolation methods have limitations related to efficiency, purity, and complexity of the methods. Moreover, many EV isolation methods do not perform efficiently in all biofluids due to their differential physicochemical properties. Thus, there continues to be a need for novel EV isolation methods that are simple, robust, non‐toxic, and/or clinically‐amenable. Here we demonstrate a rapid and efficient method for small extracellular vesicle (sEV) isolation that uses chitosan, a linear cationic polyelectrolyte polysaccharide that exhibits biocompatibility, non‐immunogenicity, biodegradability, and low toxicity. Chitosan‐precipitated material was characterized using Western blotting, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and relevant proteomic‐based gene ontology analyses. We find that chitosan facilitates the isolation of sEVs from multiple biofluids, including cell culture‐conditioned media, human urine, plasma and saliva. Overall, our data support the potential for chitosan to isolate a population of sEVs from a variety of biofluids and may have the potential to be a clinically amenable sEV isolation method. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DC
Protein markers
EV: CD63/ Flotillin1/ CD9/ HSC70
non-EV: CANX
Proteomics
yes
Show all info
Study aim
New methodological development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HEK293
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell count
7.00E+07
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Density cushion
Density medium
Sucrose
Sample volume
10
Cushion volume
0.7
Density of the cushion
30%
Centrifugation time
120
Centrifugation speed
138,000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
Flotillin1/ HSC70/ CD9/ CD63
Not detected contaminants
CANX
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
164.8 +/- 1.6
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 4.08E+08
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV210109 2/3 Homo sapiens Blood plasma Asymmetric flow field-flow fractionation Cai, Tanxi 2021 75%

Study summary

Full title
All authors
Tanxi Cai, Qing Zhang, Bowen Wu, Jifeng Wang, Na Li, Tingting Zhang, Zhipeng Wang, Jianjun Luo, Xiaojing Guo, Xiang Ding, Zhensheng Xie, Lili Niu, Weihai Ning, Zhen Fan, Xiaowei Chen, Xiangqian Guo, Runsheng Chen, Hongwei Zhang, Fuquan Yang
Journal
J Extracell Vesicles
Abstract
Advancements in omics-based technologies over the past few years have led to the discovery of numero (show more...)Advancements in omics-based technologies over the past few years have led to the discovery of numerous biologically relevant peptides encoded by small open reading frames (smORFs) embedded in long noncoding RNA (lncRNA) transcripts (referred to as microproteins here) in a variety of species. However, the mechanisms and modes of action that underlie the roles of microproteins have yet to be fully characterized. Herein, we provide the first experimental evidence of abundant microproteins in extracellular vesicles (EVs) derived from glioma cancer cells, indicating that the EV-mediated transfer of microproteins may represent a novel mechanism for intercellular communication. Intriguingly, when examining human plasma, 48, 11 and 3 microproteins were identified from purified EVs, whole plasma and EV-free plasma, respectively, suggesting that circulating microproteins are primarily enriched in EVs. Most importantly, the preliminary data showed that the expression profile of EV microproteins in glioma patient diverged from the health donors, suggesting that the circulating microproteins in EVs might have potential diagnostic application in identifying patients with glioma. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Asymmetric flow field-flow fractionation
Protein markers
EV: TSG101/ CD81/ HSP90/ CD63/ CD9
non-EV: APOB/ APOA1
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Other
Name other separation method
Asymmetric flow field-flow fractionation
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD9/ CD63/ HSP90/ TSG101/ CD81
Not detected contaminants
APOA1/ APOB
Proteomics database
Yes:
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
144.2+/-2.8
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 2.00E+10
EM
EM-type
Transmission-EM
Image type
Wide-field
EV210109 3/3 Homo sapiens Blood plasma Asymmetric flow field-flow fractionation Cai, Tanxi 2021 75%

Study summary

Full title
All authors
Tanxi Cai, Qing Zhang, Bowen Wu, Jifeng Wang, Na Li, Tingting Zhang, Zhipeng Wang, Jianjun Luo, Xiaojing Guo, Xiang Ding, Zhensheng Xie, Lili Niu, Weihai Ning, Zhen Fan, Xiaowei Chen, Xiangqian Guo, Runsheng Chen, Hongwei Zhang, Fuquan Yang
Journal
J Extracell Vesicles
Abstract
Advancements in omics-based technologies over the past few years have led to the discovery of numero (show more...)Advancements in omics-based technologies over the past few years have led to the discovery of numerous biologically relevant peptides encoded by small open reading frames (smORFs) embedded in long noncoding RNA (lncRNA) transcripts (referred to as microproteins here) in a variety of species. However, the mechanisms and modes of action that underlie the roles of microproteins have yet to be fully characterized. Herein, we provide the first experimental evidence of abundant microproteins in extracellular vesicles (EVs) derived from glioma cancer cells, indicating that the EV-mediated transfer of microproteins may represent a novel mechanism for intercellular communication. Intriguingly, when examining human plasma, 48, 11 and 3 microproteins were identified from purified EVs, whole plasma and EV-free plasma, respectively, suggesting that circulating microproteins are primarily enriched in EVs. Most importantly, the preliminary data showed that the expression profile of EV microproteins in glioma patient diverged from the health donors, suggesting that the circulating microproteins in EVs might have potential diagnostic application in identifying patients with glioma. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Giloma cancer patients
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Asymmetric flow field-flow fractionation
Protein markers
EV: None
non-EV: None
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Other
Name other separation method
Asymmetric flow field-flow fractionation
Characterization: Protein analysis
Protein Concentration Method
BCA
Proteomics database
Yes:
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV210041 1/5 Homo sapiens SK-MEL-147 qEV Suarez, Henar 2021 75%

Study summary

Full title
All authors
Henar Suárez, Zoraida Andreu, Carla Mazzeo, Víctor Toribio, Aldo Emmanuel Pérez‐Rivera, Soraya López‐Martín, Susana García‐Silva, Begoña Hurtado, Esperanza Morato, Laura Peláez, Egoitz Astigarraga Arribas, Tarson Tolentino‐Cortez, Gabriel Barreda‐Gómez, Ana Isabel Marina, Héctor Peinado, María Yáñez‐Mó
Journal
J Extracell Vesicles
Abstract
Tetraspanins are often used as Extracellular Vesicle (EV) detection markers because of their abundan (show more...)Tetraspanins are often used as Extracellular Vesicle (EV) detection markers because of their abundance on these secreted vesicles. However, data on their function on EV biogenesis are controversial and compensatory mechanisms often occur upon gene deletion. To overcome this handicap, we have compared the effects of tetraspanin CD9 gene deletion with those elicited by cytopermeable peptides with blocking properties against tetraspanin CD9. Both CD9 peptide or gene deletion reduced the number of early endosomes. CD9 peptide induced an increase in lysosome numbers, while CD9 deletion augmented the number of MVB and EV secretion, probably because of compensatory CD63 expression upregulation. In vivo, CD9 peptide delayed primary tumour cell growth and reduced metastasis size. These effects on cell proliferation were shown to be concomitant with an impairment in mitochondrial quality control. CD9 KO cells were able to compensate the mitochondrial malfunction by increasing total mitochondrial mass reducing mitophagy. Our data thus provide the first evidence for a functional connection of tetraspanin CD9 with mitophagy in melanoma cells. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
qEV
Protein markers
EV: Flotillin1/ CD9/ CD63/ HSP90/ MHC1/ TSG101/ Alix/ CD81
non-EV: None
Proteomics
yes
Show all info
Study aim
Biogenesis/cargo sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SK-MEL-147
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
>98%
Separation Method
Commercial kit
qEV
Other
Name other separation method
qEV
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
Flotillin1/ CD9/ CD63/ HSP90/ MHC1/ TSG101/ Alix/ CD81
Proteomics database
Yes:
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
120
EV concentration
Yes
Particle yield
Yes, as number of particles per million cells 1800
TRPS
Report type
Not Reported
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
120
EV concentration
Yes
EV210041 3/5 Homo sapiens SK-MEL-147 qEV Suarez, Henar 2021 75%

Study summary

Full title
All authors
Henar Suárez, Zoraida Andreu, Carla Mazzeo, Víctor Toribio, Aldo Emmanuel Pérez‐Rivera, Soraya López‐Martín, Susana García‐Silva, Begoña Hurtado, Esperanza Morato, Laura Peláez, Egoitz Astigarraga Arribas, Tarson Tolentino‐Cortez, Gabriel Barreda‐Gómez, Ana Isabel Marina, Héctor Peinado, María Yáñez‐Mó
Journal
J Extracell Vesicles
Abstract
Tetraspanins are often used as Extracellular Vesicle (EV) detection markers because of their abundan (show more...)Tetraspanins are often used as Extracellular Vesicle (EV) detection markers because of their abundance on these secreted vesicles. However, data on their function on EV biogenesis are controversial and compensatory mechanisms often occur upon gene deletion. To overcome this handicap, we have compared the effects of tetraspanin CD9 gene deletion with those elicited by cytopermeable peptides with blocking properties against tetraspanin CD9. Both CD9 peptide or gene deletion reduced the number of early endosomes. CD9 peptide induced an increase in lysosome numbers, while CD9 deletion augmented the number of MVB and EV secretion, probably because of compensatory CD63 expression upregulation. In vivo, CD9 peptide delayed primary tumour cell growth and reduced metastasis size. These effects on cell proliferation were shown to be concomitant with an impairment in mitochondrial quality control. CD9 KO cells were able to compensate the mitochondrial malfunction by increasing total mitochondrial mass reducing mitophagy. Our data thus provide the first evidence for a functional connection of tetraspanin CD9 with mitophagy in melanoma cells. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
CD9 KO
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
qEV
Protein markers
EV: Flotillin1/ Alix/ CD9/ CD63/ HSP90/ MHC1/ CD81
non-EV: None
Proteomics
yes
Show all info
Study aim
Biogenesis/cargo sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SK-MEL-147
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
>98%
Separation Method
Commercial kit
qEV
Other
Name other separation method
qEV
Characterization: Protein analysis
Protein Concentration Method
Other
Western Blot
Detected EV-associated proteins
Flotillin1/ Alix/ CD9/ CD63/ HSP90/ MHC1/ CD81
Proteomics database
Yes:
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
110
EV concentration
Yes
Particle yield
Yes, as number of particles per million cells 16000
TRPS
Report type
Not Reported
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
110
EV concentration
Yes
EV210041 4/5 Homo sapiens SK-MEL-147 qEV Suarez, Henar 2021 75%

Study summary

Full title
All authors
Henar Suárez, Zoraida Andreu, Carla Mazzeo, Víctor Toribio, Aldo Emmanuel Pérez‐Rivera, Soraya López‐Martín, Susana García‐Silva, Begoña Hurtado, Esperanza Morato, Laura Peláez, Egoitz Astigarraga Arribas, Tarson Tolentino‐Cortez, Gabriel Barreda‐Gómez, Ana Isabel Marina, Héctor Peinado, María Yáñez‐Mó
Journal
J Extracell Vesicles
Abstract
Tetraspanins are often used as Extracellular Vesicle (EV) detection markers because of their abundan (show more...)Tetraspanins are often used as Extracellular Vesicle (EV) detection markers because of their abundance on these secreted vesicles. However, data on their function on EV biogenesis are controversial and compensatory mechanisms often occur upon gene deletion. To overcome this handicap, we have compared the effects of tetraspanin CD9 gene deletion with those elicited by cytopermeable peptides with blocking properties against tetraspanin CD9. Both CD9 peptide or gene deletion reduced the number of early endosomes. CD9 peptide induced an increase in lysosome numbers, while CD9 deletion augmented the number of MVB and EV secretion, probably because of compensatory CD63 expression upregulation. In vivo, CD9 peptide delayed primary tumour cell growth and reduced metastasis size. These effects on cell proliferation were shown to be concomitant with an impairment in mitochondrial quality control. CD9 KO cells were able to compensate the mitochondrial malfunction by increasing total mitochondrial mass reducing mitophagy. Our data thus provide the first evidence for a functional connection of tetraspanin CD9 with mitophagy in melanoma cells. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Peptide treatments
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
qEV
Protein markers
EV: CD63/ Rac1/ CD81/ Flotillin1/ syntenin/ ERM/ CD9
non-EV: None
Proteomics
yes
Show all info
Study aim
Biogenesis/cargo sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SK-MEL-147
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
>98%
Separation Method
Commercial kit
qEV
Other
Name other separation method
qEV
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
Flotillin1/ ERM/ Rac1/ syntenin/ CD9/ CD63/ CD81
Proteomics database
Yes:
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
120
EV concentration
Yes
Particle yield
Yes, as number of particles per million cells 1800
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
120
EV concentration
Yes
EV200183 1/2 Homo sapiens mesenchymal stem cells derived from human Wharton's jelly (d)(U)C
Filtration
Other;exoEasy Maxi Kit, Exo2D
Kim, Eun Seo 2021 75%

Study summary

Full title
All authors
Eun Seo Kim, Katsuhiko Kida, Jongsoo Mok, Yeonwoo Seong, Seo Yeon Jo, Tatsuro Kanaki, Masato Horikawa, Kyung-Hee Kim, Tae Min Kim, Tae Sub Park, Joonghoon Park
Journal
Biomaterials
Abstract
Mesenchymal stem cell (MSC) transplantation is a promising therapy for regenerative medicine. Howeve (show more...)Mesenchymal stem cell (MSC) transplantation is a promising therapy for regenerative medicine. However, MSCs grown under two-dimensional (2D) culture conditions differ significantly in cell shape from those in the body, with downregulated stemness genes and secretion of paracrine factors. Here, we evaluated the effect of 3D culture using Cellhesion VP, a water-insoluble material composed of chitin-based polysaccharide fibers, on the characteristics of human Wharton's jelly-derived MSCs (hMSCs). Cellhesion VP significantly increased cell proliferation after retrieval. Transcriptome analyses suggested that genes involved in cell stemness, migration ability, and extracellular vesicle (EV) production were enhanced by 3D culture. Subsequent biochemical analyses showed that the expression levels of stemness genes including OCT4, NANOG, and SSEA4 were upregulated and migration capacity was elevated in 3D-cultured hMSCs. In addition, EV production was significantly elevated in 3D cells, which contained a distinct protein profile from 2D cells. Gene and drug connectivity analyses revealed that the 2D and 3D EVs had similar functions as immunomodulators; however, 3D EVs had completely distinct therapeutic profiles for various infectious and metabolic diseases based on activation of disease-associated signaling pathways. Therefore, EVs from Cellhesion VP-primed hMSCs offer a new treatment for immune and metabolic diseases. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
2D culture
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Commercial method
Protein markers
EV: CD81/ TSG101/ CD9
non-EV: Calnexin
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
mesenchymal stem cells derived from human Wharton's jelly
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
8 hrs at 100,000 g;Other preparation
Cell viability (%)
95
Cell count
6.00E+06
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Commercial kit
Other;exoEasy Maxi Kit, Exo2D
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ CD81
Not detected contaminants
Calnexin
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Mean
Reported size (nm)
171
Used for determining EV concentration?
Yes
NTA
Report type
Mean
Reported size (nm)
168
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
100
EV200183 2/2 Homo sapiens mesenchymal stem cells derived from human Wharton's jelly (d)(U)C
Filtration
Other;exoEasy Maxi Kit, Exo2D
Kim, Eun Seo 2021 75%

Study summary

Full title
All authors
Eun Seo Kim, Katsuhiko Kida, Jongsoo Mok, Yeonwoo Seong, Seo Yeon Jo, Tatsuro Kanaki, Masato Horikawa, Kyung-Hee Kim, Tae Min Kim, Tae Sub Park, Joonghoon Park
Journal
Biomaterials
Abstract
Mesenchymal stem cell (MSC) transplantation is a promising therapy for regenerative medicine. Howeve (show more...)Mesenchymal stem cell (MSC) transplantation is a promising therapy for regenerative medicine. However, MSCs grown under two-dimensional (2D) culture conditions differ significantly in cell shape from those in the body, with downregulated stemness genes and secretion of paracrine factors. Here, we evaluated the effect of 3D culture using Cellhesion VP, a water-insoluble material composed of chitin-based polysaccharide fibers, on the characteristics of human Wharton's jelly-derived MSCs (hMSCs). Cellhesion VP significantly increased cell proliferation after retrieval. Transcriptome analyses suggested that genes involved in cell stemness, migration ability, and extracellular vesicle (EV) production were enhanced by 3D culture. Subsequent biochemical analyses showed that the expression levels of stemness genes including OCT4, NANOG, and SSEA4 were upregulated and migration capacity was elevated in 3D-cultured hMSCs. In addition, EV production was significantly elevated in 3D cells, which contained a distinct protein profile from 2D cells. Gene and drug connectivity analyses revealed that the 2D and 3D EVs had similar functions as immunomodulators; however, 3D EVs had completely distinct therapeutic profiles for various infectious and metabolic diseases based on activation of disease-associated signaling pathways. Therefore, EVs from Cellhesion VP-primed hMSCs offer a new treatment for immune and metabolic diseases. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
3D culture
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Commercial method
Protein markers
EV: CD81/ TSG101/ CD9
non-EV: Calnexin
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
mesenchymal stem cells derived from human Wharton's jelly
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
8 hrs at 100,000 g;Other preparation
Cell viability (%)
95
Cell count
6.00E+06
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Commercial kit
Other;exoEasy Maxi Kit, Exo2D
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ CD81
Not detected contaminants
Calnexin
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Mean
Reported size (nm)
153
Used for determining EV concentration?
Yes
NTA
Report type
Mean
Reported size (nm)
182
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
100
EV200122 1/1 Homo sapiens 293 F Filtration Paganini, Carolina 2021 75%

Study summary

Full title
All authors
Carolina Paganini, Britta Hettich, Marie R G Kopp, Adam Eördögh, Umberto Capasso Palmiero, Giorgia Adamo, Nicolas Touzet, Mauro Manno, Antonella Bongiovanni, Pablo Rivera-Fuentes, Jean-Christophe Leroux, Paolo Arosio
Journal
Advanced Healthcare Materials
Abstract
Extracellular vesicles (EVs) are emerging as promising diagnostic and therapeutic tools for a variet (show more...)Extracellular vesicles (EVs) are emerging as promising diagnostic and therapeutic tools for a variety of diseases. The characterization of EVs requires a series of orthogonal techniques that are overall time- and material-consuming. Here, a microfluidic device is presented that exploits the combination of diffusion sizing and multiwavelength fluorescence detection to simultaneously provide information on EV size, concentration, and composition. The latter is achieved with the nonspecific staining of lipids and proteins combined with the specific staining of EV markers such as EV-associated tetraspanins via antibodies. The device can be operated as a single-step immunoassay thanks to the integrated separation and quantification of free and EV-bound fluorophores. This microfluidic technique is capable of detecting and quantifying components associated to EV subtypes and impurities and thus to measure EV purity in a time scale of minutes, requiring less than 5 µL of sample and minimal sample handling before the analysis. Moreover, the analysis is performed directly in solution without immobilization steps. Therefore, this method can accelerate screening of EV samples and aid the evaluation of sample reproducibility, representing an important complementary tool to the current array of biophysical methods for EV characterization, particularly valuable for instance for bioprocess development. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Cell culture supernatant
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Filtration
Protein markers
EV: TSG101/ Alix/ CD63/ CD81
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
New methodological development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
293 F
EV-harvesting Medium
Serum free medium
Cell viability (%)
97
Cell count
2.20E+08
Separation Method
Filtration steps
> 0.45 µm,
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
CD63/ TSG101/ Alix/ CD81
Not detected contaminants
Calnexin
Detected EV-associated proteins
CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Size range/distribution
Reported size (nm)
23.2+/-6.6
NTA
Report type
Mean
Reported size (nm)
133.6+/-1.2
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 4.30E+09
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV200118 1/1 Homo sapiens primary bone marrow stromal cells (d)(U)C
ExoQuick
Filtration
UF
Tu, Chenggong 2021 75%

Study summary

Full title
All authors
Chenggong Tu, Zhimin Du, Hui Zhang, Yueyuan Feng, Yujun Qi, Yongjiang Zheng, Jinbao Liu, Jinheng Wang
Journal
Theranostics
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, derived from bone marrow stromal (show more...)Extracellular vesicles (EVs), including exosomes and microvesicles, derived from bone marrow stromal cells (BMSCs) have been demonstrated as key factors in the progression and drug resistance of multiple myeloma (MM). EV uptake involves a variety of mechanisms which largely depend on the vesicle origin and recipient cell type. The aim of the present study was to identify the mechanisms involved in the uptake of BMSC-derived small EVs (sEVs) by MM cells, and to evaluate the anti-MM effect of targeting this process. Methods: Human BMSC-derived sEVs were identified by transmission electron microscopy, nanoparticle tracking analysis, and western blot. The effects of chemical inhibitors and shRNA-mediated knockdown of endocytosis-associated genes on sEV uptake and cell apoptosis were analyzed by flow cytometry. The anti-MM effect of blocking sEV uptake was evaluated in vitro and in a xenograft MM mouse model. Results: sEVs derived from BMSC were taken up by MM cells in a time- and dose-dependent manner, and subsequently promoted MM cell cycling and reduced their chemosensitivity to bortezomib. Chemical endocytosis inhibitors targeting heparin sulphate proteoglycans, actin, tyrosine kinase, dynamin-2, sodium/proton exchangers, or phosphoinositide 3-kinases significantly reduced MM cell internalization of BMSC-derived sEVs. Moreover, shRNA-mediated knockdown of endocytosis-associated proteins, including caveolin-1, flotillin-1, clathrin heavy chain, and dynamin-2 in MM cells suppressed sEV uptake. Furthermore, an endocytosis inhibitor targeting dynamin-2 preferentially suppressed the uptake of sEV by primary MM cells ex vivo and enhanced the anti-MM effects of bortezomib in vitro and in a mouse model. Conclusion: Clathrin- and caveolin-dependent endocytosis and macropinocytosis are the predominant routes of sEV-mediated communication between BMSCs and MM cells, and inhibiting endocytosis attenuates sEV-induced reduction of chemosensitivity to bortezomib, and thus enhances its anti-MM properties. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Commercial method
Filtration
Ultrafiltration
Protein markers
EV: CD63/ Flotillin1/ CD9
non-EV: Calreticulin
Proteomics
no
Show all info
Study aim
Mechanism of uptake/transfer
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
primary bone marrow stromal cells
EV-harvesting Medium
Serum free medium
Cell viability (%)
95
Cell count
2000000/flask
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Commercial kit
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
Flotillin1/ CD9/ CD63
Not detected contaminants
Calreticulin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-210
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 9.00E+07
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
50-120
EV200102 2/7 Homo sapiens Blood plasma (d)(U)C Tóth, Eszter 2021 75%

Study summary

Full title
All authors
Eszter Á Tóth, Lilla Turiák, Tamás Visnovitz, Csaba Cserép, Anett Mázló, Barbara W Sódar, András I Försönits, Gábor Petővári, Anna Sebestyén, Zsolt Komlósi, László Drahos, Ágnes Kittel, György Nagy, Attila Bácsi, Ádám Dénes, Yong Song Gho, Katalin É Szabó-Taylor, Edit I Buzás
Journal
J Extracell Vesicles
Abstract
In this study we tested whether a protein corona is formed around extracellular vesicles (EVs) in bl (show more...)In this study we tested whether a protein corona is formed around extracellular vesicles (EVs) in blood plasma. We isolated medium-sized nascent EVs of THP1 cells as well as of Optiprep-purified platelets, and incubated them in EV-depleted blood plasma from healthy subjects and from patients with rheumatoid arthritis. EVs were subjected to differential centrifugation, size exclusion chromatography, or density gradient ultracentrifugation followed by mass spectrometry. Plasma protein-coated EVs had a higher density compared to the nascent ones and carried numerous newly associated proteins. Interactions between plasma proteins and EVs were confirmed by confocal microscopy, capillary Western immunoassay, immune electron microscopy and flow cytometry. We identified nine shared EV corona proteins (ApoA1, ApoB, ApoC3, ApoE, complement factors 3 and 4B, fibrinogen α-chain, immunoglobulin heavy constant γ2 and γ4 chains), which appear to be common corona proteins among EVs, viruses and artificial nanoparticles in blood plasma. An unexpected finding of this study was the high overlap of the composition of the protein corona with blood plasma protein aggregates. This is explained by our finding that besides a diffuse, patchy protein corona, large protein aggregates also associate with the surface of EVs. However, while EVs with an external plasma protein cargo induced an increased expression of TNF-α, IL-6, CD83, CD86 and HLA-DR of human monocyte-derived dendritic cells, EV-free protein aggregates had no effect. In conclusion, our data may shed new light on the origin of the commonly reported plasma protein 'contamination' of EV preparations and may add a new perspective to EV research. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control: EV-depleted plasma, spiked with THP1 EVs
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: CD63/ Phosphatydilserine
non-EV: Albumin/ fibrinogen/ haptoglobin/ complement C3
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
40
Pelleting: rotor type
FA-45-24-11
Pelleting: speed (g)
12500
Wash: volume per pellet (ml)
1
Wash: time (min)
40
Wash: Rotor Type
FA-45-24-11
Wash: speed (g)
12500
Characterization: Protein analysis
Protein Concentration Method
microBCA
Flow cytometry
Type of Flow cytometry
FACS Calibur
Calibration bead size
The vesicular gate was set using Megamix Beads (Bi
Detected EV-associated proteins
Phosphatydilserine
Proteomics database
Yes:
Detected EV-associated proteins
CD63
Detected contaminants
fibrinogen/ haptoglobin/ complement C3/ Albumin
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Modus
Reported size (nm)
240
Particle analysis: flow cytometry
Flow cytometer type
FACS Calibur
Hardware adjustment
Calibration bead size
0.160;0.200;0.240;0.500
Report type
Not Reported
EM
EM-type
Immuno-EM/ Transmission-EM
EM protein
Other;CD63, plasma proteins
Image type
Close-up, Wide-field
EV200102 5/7 Homo sapiens Blood plasma (d)(U)C Tóth, Eszter 2021 75%

Study summary

Full title
All authors
Eszter Á Tóth, Lilla Turiák, Tamás Visnovitz, Csaba Cserép, Anett Mázló, Barbara W Sódar, András I Försönits, Gábor Petővári, Anna Sebestyén, Zsolt Komlósi, László Drahos, Ágnes Kittel, György Nagy, Attila Bácsi, Ádám Dénes, Yong Song Gho, Katalin É Szabó-Taylor, Edit I Buzás
Journal
J Extracell Vesicles
Abstract
In this study we tested whether a protein corona is formed around extracellular vesicles (EVs) in bl (show more...)In this study we tested whether a protein corona is formed around extracellular vesicles (EVs) in blood plasma. We isolated medium-sized nascent EVs of THP1 cells as well as of Optiprep-purified platelets, and incubated them in EV-depleted blood plasma from healthy subjects and from patients with rheumatoid arthritis. EVs were subjected to differential centrifugation, size exclusion chromatography, or density gradient ultracentrifugation followed by mass spectrometry. Plasma protein-coated EVs had a higher density compared to the nascent ones and carried numerous newly associated proteins. Interactions between plasma proteins and EVs were confirmed by confocal microscopy, capillary Western immunoassay, immune electron microscopy and flow cytometry. We identified nine shared EV corona proteins (ApoA1, ApoB, ApoC3, ApoE, complement factors 3 and 4B, fibrinogen α-chain, immunoglobulin heavy constant γ2 and γ4 chains), which appear to be common corona proteins among EVs, viruses and artificial nanoparticles in blood plasma. An unexpected finding of this study was the high overlap of the composition of the protein corona with blood plasma protein aggregates. This is explained by our finding that besides a diffuse, patchy protein corona, large protein aggregates also associate with the surface of EVs. However, while EVs with an external plasma protein cargo induced an increased expression of TNF-α, IL-6, CD83, CD86 and HLA-DR of human monocyte-derived dendritic cells, EV-free protein aggregates had no effect. In conclusion, our data may shed new light on the origin of the commonly reported plasma protein 'contamination' of EV preparations and may add a new perspective to EV research. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Rheuma: EV-depleted plasma, spiked with THP1 EVs
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: CD63/ Phosphatydilserine
non-EV: Albumin/ fibrinogen/ haptoglobin/ complement C3
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
40
Pelleting: rotor type
FA-45-24-11
Pelleting: speed (g)
12500
Wash: volume per pellet (ml)
1
Wash: time (min)
40
Wash: Rotor Type
FA-45-24-11
Wash: speed (g)
12500
Characterization: Protein analysis
Protein Concentration Method
microBCA
Flow cytometry
Type of Flow cytometry
FACS Calibur
Calibration bead size
The vesicular gate was set using Megamix Beads (Bi
Detected EV-associated proteins
Phosphatydilserine
Proteomics database
Yes:
Detected EV-associated proteins
CD63
Detected contaminants
fibrinogen/ haptoglobin/ complement C3/ Albumin
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Not Reported
Particle analysis: flow cytometry
Flow cytometer type
FACS Calibur
Hardware adjustment
Calibration bead size
0.160;0.200;0.240;0.500
Report type
Not Reported
EV200078 1/1 Homo sapiens saliva SEC (non-commercial)
Filtration
UF
Ogawa, Yuko 2021 75%

Study summary

Full title
All authors
Yuko Ogawa, Yoshihiro Akimoto, Mamoru Ikemoto, Yoshikuni Goto, Anna Ishikawa, Sakura Ohta, Yumi Takase, Hayato Kawakami, Masafumi Tsujimoto, Ryohei Yanoshita
Journal
Biochemistry and Biophysics Reports
Abstract
Background: Extracellular vesicles (EVs) have been isolated from various sources, including primary (show more...)Background: Extracellular vesicles (EVs) have been isolated from various sources, including primary and cultured cell lines and body fluids. Previous studies, including those conducted in our laboratory, have reported the stability of EVs under various storage conditions. Methods: EVs from human whole saliva were separated via size-exclusion chromatography. To simulate the effects of gastric or intestinal fluids on the stability of EVs, pepsin or pancreatin was added to the samples. Additionally, to determine the effect of bile acids, sodium cholate was added. The samples were then subjected to western blotting, dynamic light scattering, and transmission electron microscopy analyses. In addition, the activity of dipeptidyl peptidase (DPP) IV retained in the samples was examined to monitor the stability of EVs. Results: Under acidic conditions, with pepsin mimicking the milieu of the stomach, the EVs remained stable. However, they partially lost their membrane integrity in the presence of pancreatin and sodium cholate, indicating that they may be destabilized after passing through the duodenum. Although several associated proteins, such as mucin 5B and CD9 were degraded, DPP IV was stable, and its activity was retained under the simulated gastrointestinal conditions. Conclusion: Our data indicate that although EVs can pass through the stomach without undergoing significant damage, they may be disrupted in the intestine to release their contents. The consistent delivery of active components such as DPP IV from EVs into the intestine might play a role in the efficient modulation of homeostasis of the signal transduction pathways occurring in the gastrointestinal tract. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
saliva
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Size-exclusion chromatography (non-commercial)
Filtration
Ultrafiltration
Protein markers
EV: TSG101/ mucin 5B/ CD63/ CD81/ HSP90/ Alix/ Flotillin1/ IgA/ DPP IV/ HSP70/ CD9
non-EV: apolipoprotein B-100/ Albumin/ apolipoprotein A-1
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
saliva
Separation Method
Filtration steps
> 0.45 µm, 0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Cellulose acetate
Size-exclusion chromatography
Total column volume (mL)
88
Sample volume/column (mL)
2
Resin type
Sephacryl S-500
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD9/ CD63/ DPP IV/ mucin 5B/ IgA/ HSP90/ TSG101/ HSP70/ Alix/ CD81
Not detected EV-associated proteins
Flotillin1
Detected contaminants
apolipoprotein A-1/ apolipoprotein B-100/ Albumin
Proteomics database
Yes:
Characterization: RNA analysis
RNA analysis
Type
RNA sequencing;Capillary electrophoresis (e.g. Bioanalyzer)
Database
Yes
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Mean
Reported size (nm)
40
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
40
EV200066 1/4 Mus musculus Primary choroid plexus epithelial cells qEV
Vandendriessche, Charysse 2021 75%

Study summary

Full title
All authors
Charysse Vandendriessche, Sriram Balusu, Caroline Van Cauwenberghe, Marjana Brkic, Marie Pauwels, Nele Plehiers, Arnout Bruggeman, Pieter Dujardin, Griet Van Imschoot, Elien Van Wonterghem, An Hendrix, Femke Baeke, Riet De Rycke, Kris Gevaert & Roosmarijn E. Vandenbroucke
Journal
Acta neuropathologica communications
Abstract
Increasing evidence indicates that extracellular vesicles (EVs) play an important role in the pathog (show more...)Increasing evidence indicates that extracellular vesicles (EVs) play an important role in the pathogenesis of Alzheimer’s disease (AD). We previously reported that the blood–cerebrospinal fluid (CSF) interface, formed by the choroid plexus epithelial (CPE) cells, releases an increased amount of EVs into the CSF in response to peripheral inflammation. Here, we studied the importance of CP-mediated EV release in AD pathogenesis. We observed increased EV levels in the CSF of young transgenic APP/PS1 mice which correlated with high amyloid beta (Aβ) CSF levels at this age. The intracerebroventricular (icv) injection of Aβ oligomers (AβO) in wild-type mice revealed a significant increase of EVs in the CSF, signifying that the presence of CSF-AβO is sufficient to induce increased EV secretion. Using in vivo, in vitro and ex vivo approaches, we identified the CP as a major source of the CSF-EVs. Interestingly, AβO-induced, CP-derived EVs induced pro-inflammatory effects in mixed cortical cultures. Proteome analysis of these EVs revealed the presence of several pro-inflammatory proteins, including the complement protein C3. Strikingly, inhibition of EV production using GW4869 resulted in protection against acute AβO-induced cognitive decline. Further research into the underlying mechanisms of this EV secretion might open up novel therapeutic strategies to impact the pathogenesis and progression of AD. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Commercial method
No extra separation steps
Protein markers
EV: CD81/ CD9/ TSG101
non-EV: None
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
Primary choroid plexus epithelial cells
EV-harvesting Medium
Serum free medium
Separation Method
Commercial kit
qEV
Other
Name other separation method
No extra separation steps
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
CD81/ TSG101
Not detected contaminants
Calnexin
Proteomics database
No
Detected EV-associated proteins
CD9/ CD81
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample F2: 9.15E09;F3: 4.42E09
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV200066 3/4 Mus musculus Choroid plexus explants qEV
Vandendriessche, Charysse 2021 75%

Study summary

Full title
All authors
Charysse Vandendriessche, Sriram Balusu, Caroline Van Cauwenberghe, Marjana Brkic, Marie Pauwels, Nele Plehiers, Arnout Bruggeman, Pieter Dujardin, Griet Van Imschoot, Elien Van Wonterghem, An Hendrix, Femke Baeke, Riet De Rycke, Kris Gevaert & Roosmarijn E. Vandenbroucke
Journal
Acta neuropathologica communications
Abstract
Increasing evidence indicates that extracellular vesicles (EVs) play an important role in the pathog (show more...)Increasing evidence indicates that extracellular vesicles (EVs) play an important role in the pathogenesis of Alzheimer’s disease (AD). We previously reported that the blood–cerebrospinal fluid (CSF) interface, formed by the choroid plexus epithelial (CPE) cells, releases an increased amount of EVs into the CSF in response to peripheral inflammation. Here, we studied the importance of CP-mediated EV release in AD pathogenesis. We observed increased EV levels in the CSF of young transgenic APP/PS1 mice which correlated with high amyloid beta (Aβ) CSF levels at this age. The intracerebroventricular (icv) injection of Aβ oligomers (AβO) in wild-type mice revealed a significant increase of EVs in the CSF, signifying that the presence of CSF-AβO is sufficient to induce increased EV secretion. Using in vivo, in vitro and ex vivo approaches, we identified the CP as a major source of the CSF-EVs. Interestingly, AβO-induced, CP-derived EVs induced pro-inflammatory effects in mixed cortical cultures. Proteome analysis of these EVs revealed the presence of several pro-inflammatory proteins, including the complement protein C3. Strikingly, inhibition of EV production using GW4869 resulted in protection against acute AβO-induced cognitive decline. Further research into the underlying mechanisms of this EV secretion might open up novel therapeutic strategies to impact the pathogenesis and progression of AD. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Commercial method
No extra separation steps
Protein markers
EV: CD81/ CD9/ TSG101
non-EV: None
Proteomics
no
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
Choroid plexus explants
EV-harvesting Medium
Serum free medium
Separation Method
Commercial kit
qEV
Other
Name other separation method
No extra separation steps
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
CD81/ TSG101
Not detected contaminants
Calnexin
Detected EV-associated proteins
CD81/ CD9
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample F2: 4.4E10;F3: 2.8E10
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV200050 1/4 Homo sapiens Blood plasma qEV
UF
Vestad, Beate 2021 75%

Study summary

Full title
All authors
Beate Vestad, Tuula A Nyman, Malene Hove-Skovsgaard, Maria Stensland, Hedda Hoel, Anne-Marie Siebke Trøseid, Trude Aspelin, Hans Christian D Aass, Maija Puhka, Johannes R Hov, Susanne Dam Nielsen, Reidun Øvstebø, Marius Trøseid
Journal
Scientific Reports
Abstract
HIV and type 2 diabetes (T2D) are both associated with gut microbiota alterations, low-grade endotox (show more...)HIV and type 2 diabetes (T2D) are both associated with gut microbiota alterations, low-grade endotoxemia and increased cardiovascular risk. We investigated the potential role of plasma extracellular vesicles (EVs) in relation to these processes. Plasma EVs were isolated by size exclusion chromatography in fasting individuals with HIV and T2D (n = 16), T2D only (n = 14), HIV only (n = 20) or healthy controls (n = 19), and characterized by transmission electron microscopy, western blot, nanoparticle tracking analysis and quantitative proteomics. The findings were compared to gut microbiota alterations, lipopolysaccharide levels and cardiovascular risk profile. Individuals with concomitant HIV and T2D had higher plasma EV concentration, which correlated closely with plasma lipopolysaccharides, triglycerides and Framingham score, but not with gut microbiota alterations. Proteomic analyses identified 558 human proteins, largely related to cardiometabolic disease genes and upstream regulation of inflammatory pathways, including IL-6 and IL-1β, as well as 30 bacterial proteins, mostly from lipopolysaccharide-producing Proteobacteria. Our study supports that EVs are related to microbial translocation processes in individuals with HIV and T2D. Their proteomic content suggests a contributing role in low-grade inflammation and cardiovascular risk development. The present approach for exploring gut-host crosstalk can potentially identify novel diagnostic biomarkers and therapeutic targets. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Commercial method
Ultrafiltration
Protein markers
EV: HSP70/ CD9
non-EV: ApoA1/ ApoB/ calnexin
Proteomics
yes
Show all info
Study aim
Function/Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
CD9/ HSP70
Not detected contaminants
Calnexin
ELISA
Detected contaminants
ApoA1/ ApoB
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
146
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV200050 2/4 Homo sapiens Blood plasma qEV
UF
Vestad, Beate 2021 75%

Study summary

Full title
All authors
Beate Vestad, Tuula A Nyman, Malene Hove-Skovsgaard, Maria Stensland, Hedda Hoel, Anne-Marie Siebke Trøseid, Trude Aspelin, Hans Christian D Aass, Maija Puhka, Johannes R Hov, Susanne Dam Nielsen, Reidun Øvstebø, Marius Trøseid
Journal
Scientific Reports
Abstract
HIV and type 2 diabetes (T2D) are both associated with gut microbiota alterations, low-grade endotox (show more...)HIV and type 2 diabetes (T2D) are both associated with gut microbiota alterations, low-grade endotoxemia and increased cardiovascular risk. We investigated the potential role of plasma extracellular vesicles (EVs) in relation to these processes. Plasma EVs were isolated by size exclusion chromatography in fasting individuals with HIV and T2D (n = 16), T2D only (n = 14), HIV only (n = 20) or healthy controls (n = 19), and characterized by transmission electron microscopy, western blot, nanoparticle tracking analysis and quantitative proteomics. The findings were compared to gut microbiota alterations, lipopolysaccharide levels and cardiovascular risk profile. Individuals with concomitant HIV and T2D had higher plasma EV concentration, which correlated closely with plasma lipopolysaccharides, triglycerides and Framingham score, but not with gut microbiota alterations. Proteomic analyses identified 558 human proteins, largely related to cardiometabolic disease genes and upstream regulation of inflammatory pathways, including IL-6 and IL-1β, as well as 30 bacterial proteins, mostly from lipopolysaccharide-producing Proteobacteria. Our study supports that EVs are related to microbial translocation processes in individuals with HIV and T2D. Their proteomic content suggests a contributing role in low-grade inflammation and cardiovascular risk development. The present approach for exploring gut-host crosstalk can potentially identify novel diagnostic biomarkers and therapeutic targets. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
type 2 diabetes
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Commercial method
Ultrafiltration
Protein markers
EV: HSP70/ CD9
non-EV: ApoA1/ ApoB/ calnexin
Proteomics
yes
Show all info
Study aim
Function/Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
CD9/ HSP70
Not detected contaminants
calnexin
ELISA
Detected contaminants
ApoA1/ ApoB
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
141
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV200050 3/4 Homo sapiens Blood plasma qEV
UF
Vestad, Beate 2021 75%

Study summary

Full title
All authors
Beate Vestad, Tuula A Nyman, Malene Hove-Skovsgaard, Maria Stensland, Hedda Hoel, Anne-Marie Siebke Trøseid, Trude Aspelin, Hans Christian D Aass, Maija Puhka, Johannes R Hov, Susanne Dam Nielsen, Reidun Øvstebø, Marius Trøseid
Journal
Scientific Reports
Abstract
HIV and type 2 diabetes (T2D) are both associated with gut microbiota alterations, low-grade endotox (show more...)HIV and type 2 diabetes (T2D) are both associated with gut microbiota alterations, low-grade endotoxemia and increased cardiovascular risk. We investigated the potential role of plasma extracellular vesicles (EVs) in relation to these processes. Plasma EVs were isolated by size exclusion chromatography in fasting individuals with HIV and T2D (n = 16), T2D only (n = 14), HIV only (n = 20) or healthy controls (n = 19), and characterized by transmission electron microscopy, western blot, nanoparticle tracking analysis and quantitative proteomics. The findings were compared to gut microbiota alterations, lipopolysaccharide levels and cardiovascular risk profile. Individuals with concomitant HIV and T2D had higher plasma EV concentration, which correlated closely with plasma lipopolysaccharides, triglycerides and Framingham score, but not with gut microbiota alterations. Proteomic analyses identified 558 human proteins, largely related to cardiometabolic disease genes and upstream regulation of inflammatory pathways, including IL-6 and IL-1β, as well as 30 bacterial proteins, mostly from lipopolysaccharide-producing Proteobacteria. Our study supports that EVs are related to microbial translocation processes in individuals with HIV and T2D. Their proteomic content suggests a contributing role in low-grade inflammation and cardiovascular risk development. The present approach for exploring gut-host crosstalk can potentially identify novel diagnostic biomarkers and therapeutic targets. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
HIV
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Commercial method
Ultrafiltration
Protein markers
EV: HSP70/ CD9
non-EV: ApoA1/ ApoB/ calnexin
Proteomics
yes
Show all info
Study aim
Function/Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
CD9/ HSP70
Not detected contaminants
calnexin
ELISA
Detected contaminants
ApoA1/ ApoB
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
154
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV200050 4/4 Homo sapiens Blood plasma qEV
UF
Vestad, Beate 2021 75%

Study summary

Full title
All authors
Beate Vestad, Tuula A Nyman, Malene Hove-Skovsgaard, Maria Stensland, Hedda Hoel, Anne-Marie Siebke Trøseid, Trude Aspelin, Hans Christian D Aass, Maija Puhka, Johannes R Hov, Susanne Dam Nielsen, Reidun Øvstebø, Marius Trøseid
Journal
Scientific Reports
Abstract
HIV and type 2 diabetes (T2D) are both associated with gut microbiota alterations, low-grade endotox (show more...)HIV and type 2 diabetes (T2D) are both associated with gut microbiota alterations, low-grade endotoxemia and increased cardiovascular risk. We investigated the potential role of plasma extracellular vesicles (EVs) in relation to these processes. Plasma EVs were isolated by size exclusion chromatography in fasting individuals with HIV and T2D (n = 16), T2D only (n = 14), HIV only (n = 20) or healthy controls (n = 19), and characterized by transmission electron microscopy, western blot, nanoparticle tracking analysis and quantitative proteomics. The findings were compared to gut microbiota alterations, lipopolysaccharide levels and cardiovascular risk profile. Individuals with concomitant HIV and T2D had higher plasma EV concentration, which correlated closely with plasma lipopolysaccharides, triglycerides and Framingham score, but not with gut microbiota alterations. Proteomic analyses identified 558 human proteins, largely related to cardiometabolic disease genes and upstream regulation of inflammatory pathways, including IL-6 and IL-1β, as well as 30 bacterial proteins, mostly from lipopolysaccharide-producing Proteobacteria. Our study supports that EVs are related to microbial translocation processes in individuals with HIV and T2D. Their proteomic content suggests a contributing role in low-grade inflammation and cardiovascular risk development. The present approach for exploring gut-host crosstalk can potentially identify novel diagnostic biomarkers and therapeutic targets. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
HIV and type 2 diabetes
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Commercial method
Ultrafiltration
Protein markers
EV: HSP70/ CD9
non-EV: ApoA1/ ApoB/ calnexin
Proteomics
yes
Show all info
Study aim
Function/Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Detected EV-associated proteins
CD9/ HSP70
Not detected contaminants
calnexin
ELISA
Detected contaminants
ApoA1/ ApoB
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
146
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV200013 1/2 Bos taurus Bovine ampulla oviductal fluid DG
qEV
Asaadi, Anise 2021 75%

Study summary

Full title
All authors
Anise Asaadi, Nima Azari Dolatabad, Hadi Atashi, Annelies Raes, Petra Van Damme, Michael Hoelker, An Hendrix, Osvaldo Bogado Pascottini, Ann Van Soom, Mojtaba Kafi, Krishna Chaitanya Pavani
Journal
Int J Biol Sci
Abstract
Extracellular vesicles (EVs) have been isolated from follicular (FF) and ampullary oviduct fluid (AO (show more...)Extracellular vesicles (EVs) have been isolated from follicular (FF) and ampullary oviduct fluid (AOF), using different isolation methods. However, it is not clear whether different purification methods can affect the functionality of resulting EVs. Here, we compared two methods (OptiPrep™ density gradient ultracentrifugation (ODG UC) and single-step size exclusion chromatography (SEC) (qEV IZON™ single column)) for the isolation of EVs from bovine FF and AOF. Additionally, we evaluated whether the addition of EVs derived either by ODG UC or SEC from FF or AOF during oocyte maturation would yield extra benefits for embryo developmental competence. The characterization of EVs isolated using ODG UC or SEC from FF and AOF did not show any differences in terms of EV sizes (40-400 nm) and concentrations (2.4 ± 0.2 × 1012-1.8 ± 0.2 × 1013 particles/mL). Blastocyst yield and quality was higher in groups supplemented with EVs isolated from FF and AOF by ODG UC, with higher total cell numbers and a lower apoptotic cell ratio compared with the other groups (p < 0.05). Supplementing in vitro maturation media with EVs derived by ODG UC from AOF was beneficial for bovine embryo development and quality. (hide)
EV-METRIC
75% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Bovine ampulla oviductal fluid
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
Commercial method
Protein markers
EV: TSG101/ CD63/ CD9
non-EV: None
Proteomics
no
EV density (g/ml)
1.1
Show all info
Study aim
Function
Sample
Species
Bos taurus
Sample Type
Bovine ampulla oviductal fluid
Separation Method
Density gradient
Only used for validation of main results
Yes
Type
Continuous
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
16.8
Sample volume (mL)
1
Orientation
Top-down
Rotor type
SW 32.1 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
2
Fraction processing
Centrifugation
Pelleting: volume per fraction
14
Pelleting: duration (min)
180
Pelleting: rotor type
SW 32.1 Ti
Pelleting: speed (g)
100000
Commercial kit
qEV
Characterization: Protein analysis
PMID previous EV protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD9/ CD63/ TSG101
Characterization: Lipid analysis
No
Characterization: Particle analysis
PMID previous EV particle analysis
Extra particle analysis
NTA
Report type
Mean
Reported size (nm)
165 +/- 5.8 nm
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 1.80E+12
EM
EM-type
Transmission-EM
Image type
Close-up
EV200013 2/2 Bos taurus Bovine ovarian follicular fluid DG
qEV
Asaadi, Anise 2021 75%

Study summary

Full title
All authors
Anise Asaadi, Nima Azari Dolatabad, Hadi Atashi, Annelies Raes, Petra Van Damme, Michael Hoelker, An Hendrix, Osvaldo Bogado Pascottini, Ann Van Soom, Mojtaba Kafi, Krishna Chaitanya Pavani
Journal
Int J Biol Sci
Abstract
Extracellular vesicles (EVs) have been isolated from follicular (FF) and ampullary oviduct fluid (AO (show more...)Extracellular vesicles (EVs) have been isolated from follicular (FF) and ampullary oviduct fluid (AOF), using different isolation methods. However, it is not clear whether different purification methods can affect the functionality of resulting EVs. Here, we compared two methods (OptiPrep™ density gradient ultracentrifugation (ODG UC) and single-step size exclusion chromatography (SEC) (qEV IZON™ single column)) for the isolation of EVs from bovine FF and AOF. Additionally, we evaluated whether the addition of EVs derived either by ODG UC or SEC from FF or AOF during oocyte maturation would yield extra benefits for embryo developmental competence. The characterization of EVs isolated using ODG UC or SEC from FF and AOF did not show any differences in terms of EV sizes (40-400 nm) and concentrations (2.4 ± 0.2 × 1012-1.8 ± 0.2 × 1013 particles/mL). Blastocyst yield and quality was higher in groups supplemented with EVs isolated from FF and AOF by ODG UC, with higher total cell numbers and a lower apoptotic cell ratio compared with the other groups (p < 0.05). Supplementing in vitro maturation media with EVs derived by ODG UC from AOF was beneficial for bovine embryo development and quality. (hide)
EV-METRIC
75% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Bovine ovarian follicular fluid
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Density gradient
Commercial method
Protein markers
EV: TSG101/ CD63/ CD9
non-EV: None
Proteomics
no
EV density (g/ml)
1.1
Show all info
Study aim
Function
Sample
Species
Bos taurus
Sample Type
Bovine ovarian follicular fluid
Separation Method
Density gradient
Only used for validation of main results
Yes
Type
Continuous
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
16.8
Sample volume (mL)
1
Orientation
Top-down
Rotor type
SW 32.1 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
2
Fraction processing
Centrifugation
Pelleting: volume per fraction
14
Pelleting: duration (min)
180
Pelleting: rotor type
SW 32.1 Ti
Pelleting: speed (g)
100000
Commercial kit
qEV
Characterization: Protein analysis
PMID previous EV protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD9/ CD63/ TSG101
Characterization: Lipid analysis
No
Characterization: Particle analysis
PMID previous EV particle analysis
Extra particle analysis
NTA
Report type
Mean
Reported size (nm)
166.9 +/- 9.7
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 6.44E+12
EM
EM-type
Transmission-EM
Image type
Close-up
EV200010 1/4 Homo sapiens HUVEC (d)(U)C
SEC
UF
Kuypers, Sören 2021 75%

Study summary

Full title
All authors
Sören Kuypers, Nick Smisdom, Isabel Pintelon, Jean-Pierre Timmermans, Marcel Ameloot, Luc Michiels, Jelle Hendrix, Baharak Hosseinkhani
Journal
Small
Abstract
Extracellular vesicles (EV) are biological nanoparticles that play an important role in cell-to-cell (show more...)Extracellular vesicles (EV) are biological nanoparticles that play an important role in cell-to-cell communication. The phenotypic profile of EV populations is a promising reporter of disease, with direct clinical diagnostic relevance. Yet, robust methods for quantifying the biomarker content of EV have been critically lacking, and require a single-particle approach due to their inherent heterogeneous nature. Here, multicolor single-molecule burst analysis microscopy is used to detect multiple biomarkers present on single EV. The authors classify the recorded signals and apply the machine learning-based t-distributed stochastic neighbor embedding algorithm to cluster the resulting multidimensional data. As a proof of principle, the authors use the method to assess both the purity and the inflammatory status of EV, and compare cell culture and plasma-derived EV isolated via different purification methods. This methodology is then applied to identify intercellular adhesion molecule-1 specific EV subgroups released by inflamed endothelial cells, and to prove that apolipoprotein-a1 is an excellent marker to identify the typical lipoprotein contamination in plasma. This methodology can be widely applied on standard confocal microscopes, thereby allowing both standardized quality assessment of patient plasma EV preparations, and diagnostic profiling of multiple EV biomarkers in health and disease. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
SEC
UF
Protein markers
EV: ANXA2/ CD81/ CD9
non-EV: GM130
Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HUVEC
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Cell viability (%)
90
Cell count
1.60E+06
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
1.5
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
ANXA2/ CD81/ CD9
Not detected contaminants
GM130
Detected EV-associated proteins
CD9/ CD63/ ICAM1
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
100-200
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
100-200
EV200010 2/4 Homo sapiens HUVEC (d)(U)C
SEC
UF
Kuypers, Sören 2021 75%

Study summary

Full title
All authors
Sören Kuypers, Nick Smisdom, Isabel Pintelon, Jean-Pierre Timmermans, Marcel Ameloot, Luc Michiels, Jelle Hendrix, Baharak Hosseinkhani
Journal
Small
Abstract
Extracellular vesicles (EV) are biological nanoparticles that play an important role in cell-to-cell (show more...)Extracellular vesicles (EV) are biological nanoparticles that play an important role in cell-to-cell communication. The phenotypic profile of EV populations is a promising reporter of disease, with direct clinical diagnostic relevance. Yet, robust methods for quantifying the biomarker content of EV have been critically lacking, and require a single-particle approach due to their inherent heterogeneous nature. Here, multicolor single-molecule burst analysis microscopy is used to detect multiple biomarkers present on single EV. The authors classify the recorded signals and apply the machine learning-based t-distributed stochastic neighbor embedding algorithm to cluster the resulting multidimensional data. As a proof of principle, the authors use the method to assess both the purity and the inflammatory status of EV, and compare cell culture and plasma-derived EV isolated via different purification methods. This methodology is then applied to identify intercellular adhesion molecule-1 specific EV subgroups released by inflamed endothelial cells, and to prove that apolipoprotein-a1 is an excellent marker to identify the typical lipoprotein contamination in plasma. This methodology can be widely applied on standard confocal microscopes, thereby allowing both standardized quality assessment of patient plasma EV preparations, and diagnostic profiling of multiple EV biomarkers in health and disease. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
TNFalpha
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
SEC
UF
Protein markers
EV: ANXA2/ CD81/ CD9
non-EV: GM130
Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HUVEC
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Cell viability (%)
90
Cell count
1.60E+06
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
1.5
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
ANXA2/ CD81/ CD9
Not detected contaminants
GM130
Detected EV-associated proteins
CD9/ CD63/ ICAM1
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
100-200
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
100-200
EV200010 3/4 Homo sapiens HUVEC (d)(U)C
SEC
UF
Kuypers, Sören 2021 75%

Study summary

Full title
All authors
Sören Kuypers, Nick Smisdom, Isabel Pintelon, Jean-Pierre Timmermans, Marcel Ameloot, Luc Michiels, Jelle Hendrix, Baharak Hosseinkhani
Journal
Small
Abstract
Extracellular vesicles (EV) are biological nanoparticles that play an important role in cell-to-cell (show more...)Extracellular vesicles (EV) are biological nanoparticles that play an important role in cell-to-cell communication. The phenotypic profile of EV populations is a promising reporter of disease, with direct clinical diagnostic relevance. Yet, robust methods for quantifying the biomarker content of EV have been critically lacking, and require a single-particle approach due to their inherent heterogeneous nature. Here, multicolor single-molecule burst analysis microscopy is used to detect multiple biomarkers present on single EV. The authors classify the recorded signals and apply the machine learning-based t-distributed stochastic neighbor embedding algorithm to cluster the resulting multidimensional data. As a proof of principle, the authors use the method to assess both the purity and the inflammatory status of EV, and compare cell culture and plasma-derived EV isolated via different purification methods. This methodology is then applied to identify intercellular adhesion molecule-1 specific EV subgroups released by inflamed endothelial cells, and to prove that apolipoprotein-a1 is an excellent marker to identify the typical lipoprotein contamination in plasma. This methodology can be widely applied on standard confocal microscopes, thereby allowing both standardized quality assessment of patient plasma EV preparations, and diagnostic profiling of multiple EV biomarkers in health and disease. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
IL1beta
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
SEC
UF
Protein markers
EV: ANXA2/ CD81/ CD9
non-EV: GM130
Proteomics
no
Show all info
Study aim
New methodological development/Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HUVEC
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Cell viability (%)
90
Cell count
1.60E+06
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
1.5
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Detected EV-associated proteins
ANXA2/ CD81/ CD9
Not detected contaminants
GM130
Detected EV-associated proteins
CD9/ CD63/ ICAM1
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
100-200
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
100-200
EV200007 1/1 Homo sapiens breast milk DG
(d)(U)C
SEC
Zonneveld, Marijke 2021 75%

Study summary

Full title
All authors
Marijke I Zonneveld, Martijn J C van Herwijnen, Marcela M Fernandez-Gutierrez, Alberta Giovanazzi, Anne Marit de Groot, Marije Kleinjan, Toni M M van Capel, Alice J A M Sijts, Leonie S Taams, Johan Garssen, Esther C de Jong, Michiel Kleerebezem, Esther N M Nolte-'t Hoen, Frank A Redegeld, Marca H M Wauben
Journal
J Extracell Vesicles
Abstract
Maternal milk is nature's first functional food. It plays a crucial role in the development of the i (show more...)Maternal milk is nature's first functional food. It plays a crucial role in the development of the infant's gastrointestinal (GI) tract and the immune system. Extracellular vesicles (EVs) are a heterogeneous population of lipid bilayer enclosed vesicles released by cells for intercellular communication and are a component of milk. Recently, we discovered that human milk EVs contain a unique proteome compared to other milk components. Here, we show that physiological concentrations of milk EVs support epithelial barrier function by increasing cell migration via the p38 MAPK pathway. Additionally, milk EVs inhibit agonist-induced activation of endosomal Toll like receptors TLR3 and TLR9. Furthermore, milk EVs directly inhibit activation of CD4+ T cells by temporarily suppressing T cell activation without inducing tolerance. We show that milk EV proteins target key hotspots of signalling networks that can modulate cellular processes in various cell types of the GI tract. (hide)
EV-METRIC
75% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
breast milk
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
(d)(U)C
SEC
Protein markers
EV: CD63/ Flotillin1/ CD9/ HSP70
non-EV: Lactoferrin
Proteomics
no
EV density (g/ml)
1.06-1.19
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
breast milk
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Density gradient
Type
Continuous
Lowest density fraction
10%
Highest density fraction
60%
Total gradient volume, incl. sample (mL)
12.5
Sample volume (mL)
6.5
Orientation
Top-down
Rotor type
SW 40 Ti
Speed (g)
192000
Duration (min)
900
Fraction volume (mL)
0.5
Fraction processing
Size-exclusion chromatography
Size-exclusion chromatography
Total column volume (mL)
15
Sample volume/column (mL)
2.5
Resin type
Sephadex G-100
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
Flotillin1/ CD9/ CD63/ HSP70
Detected contaminants
Lactoferrin
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV200005 1/6 Homo sapiens Serum (d)(U)C
Filtration
Tzaridis, Theophilos 2021 75%

Study summary

Full title
All authors
Theophilos Tzaridis, Daniel Bachurski, Shu Liu, Kristin Surmann, Felix Babatz, Manuela Gesell Salazar, Uwe Völker, Michael Hallek, Ulrich Herrlinger, Ina Vorberg, Christoph Coch, Katrin S Reiners, Gunther Hartmann
Journal
Int J Mol Sci
Abstract
Extracellular vesicles (EVs) are reminiscent of their cell of origin and thus represent a valuable s (show more...)Extracellular vesicles (EVs) are reminiscent of their cell of origin and thus represent a valuable source of biomarkers. However, for EVs to be used as biomarkers in clinical practice, simple, comparable, and reproducible analytical methods must be applied. Although progress is being made in EV separation methods for human biofluids, the implementation of EV assays for clinical diagnosis and common guidelines are still lacking. We conducted a comprehensive analysis of established EV separation techniques from human serum and plasma, including ultracentrifugation and size exclusion chromatography (SEC), followed by concentration using (a) ultracentrifugation, (b) ultrafiltration, or (c) precipitation, and immunoaffinity isolation. We analyzed the size, number, protein, and miRNA content of the obtained EVs and assessed the functional delivery of EV cargo. Our results demonstrate that all methods led to an adequate yield of small EVs. While no significant difference in miRNA content was observed for the different separation methods, ultracentrifugation was best for subsequent flow cytometry analysis. Immunoaffinity isolation is not suitable for subsequent protein analyses. SEC + ultracentrifugation showed the best functional delivery of EV cargo. In summary, combining SEC with ultracentrifugation gives the highest yield of pure and functional EVs and allows reliable analysis of both protein and miRNA contents. We propose this combination as the preferred EV isolation method for biomarker studies from human serum or plasma. (hide)
EV-METRIC
75% (98th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: TSG101/ Flotillin1/ CD63/ CD9
non-EV: Calnexin
Proteomics
yes
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
105
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
11
Wash: time (min)
105
Wash: Rotor Type
SW 41 Ti
Wash: speed (g)
100000
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Protein Concentration Method
Other
Western Blot
Detected EV-associated proteins
Flotillin1/ TSG101
Not detected contaminants
Calnexin
Flow cytometry aspecific beads
Detected EV-associated proteins
CD9/ CD63
Proteomics database
Yes:
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
151
EV concentration
Yes
Particle yield
particles/ml;Yes, other: 1.20E+09
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
51 - 100 of 1321 keyboard_arrow_leftkeyboard_arrow_right