Search > Results

You searched for: 2015 (Year of publication)

Showing 101 - 150 of 178

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type/Isolation method
Experiment number
  • Experiments differ in Sample type/Isolation method
Experiment number
  • Experiments differ in Isolation method
Details EV-TRACK ID Experiment nr. Species Sample type separation protocol First author Year EV-METRIC
EV150081 1/1 Rattus norvegicus/rattus Serum dUC
Filtration
Liu WH 2015 14%

Study summary

Full title
All authors
Liu WH, Ren LN, Wang X, Wang T, Zhang N, Gao Y, Luo H, Navarro-Alvarez N, Tang LJ
Journal
J Cancer Res Clin Oncol
Abstract
PURPOSE: Due to unsatisfying prognosis of AFP for hepatocellular carcinoma (HCC), we aim to evaluate (show more...)PURPOSE: Due to unsatisfying prognosis of AFP for hepatocellular carcinoma (HCC), we aim to evaluate the prognostic value of combination of exosomes and miRNAs in detecting HCC. METHODS: HCC was induced with diethylnitrosamine in rats and using a scoring system based on histological examination six different stages (normal liver, degeneration, fibrosis, cirrhosis, early HCC and late HCC) were identified in the development of HCC. The expression levels of AFP, exosomes and miRNAs (miRNA-10b, miRNA-21, miRNA-122 and miRNA-200a) were detected in both tissue and blood samples from those six stages. Receiver operating characteristic (ROC) curve analysis was conducted to evaluate the power of each parameter and their different combinations in diagnosing HCC or cirrhosis. RESULTS: A change in the expression of both exosomes and miRNAs was observed during cirrhosis, which in contrast with AFP starts showing up until the early HCC stage. Interestingly, the expressions of exosomes and the selected four miRNAs at early HCC stage obtained more remarkably alterations than the level of AFP (P < 0.05). On correlation analysis, four selected miRNAs had a significant closer relationship with exosomes when compared with AFP. The different combinations of AFP, exosomes, serous miRNAs and exosomal miRNAs had stronger power in predicting HCC than AFP (area under the curve of ROC, 0.943 vs 0.826). CONCLUSION: To conclude, the combination of circulating miRNAs and exosomes might serve as promising biomarkers for non-virus infected HCC screening and cirrhosis discrimination. (hide)
EV-METRIC
14% (63rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Adj. k-factor
30.19 (pelleting)
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Rattus norvegicus/rattus
Sample Type
Serum
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting: time(min)
120
Pelleting: rotor type
TLA100.3
Pelleting: adjusted k-factor
30.19
Filtration steps
0.22µm or 0.2µm
EV150055 1/1 Mus musculus Cell culture supernatant dUC
Filtration
PEG precipitation
Wang Y 2015 13%

Study summary

Full title
All authors
Wang Y, Zhang L, Li Y, Chen L, Wang X, Guo W, Zhang X, Qin G, He SH, Zimmerman A, Liu Y, Kim IM, Weintraub NL, Tang Y
Journal
Int J Cardiol
Abstract
BACKGROUND/OBJECTIVES: Induced pluripotent stem cells (iPS) exhibit enhanced survival and proliferat (show more...)BACKGROUND/OBJECTIVES: Induced pluripotent stem cells (iPS) exhibit enhanced survival and proliferation in ischemic tissues. However, the therapeutic application of iPS cells is limited by their tumorigenic potential. We hypothesized that iPS cells can transmit cytoprotective signals to cardiomyocytes via exosomes/microvesicles. METHODS: Exosomes/microvesicles secreted from mouse cardiac fibroblast (CF)-derived iPS cells (iPS-exo) were purified from conditioned medium and confirmed by electron micrograph, size distribution and zeta potential by particle tracking analyzer and protein expression of the exosome markers CD63 and Tsg101. RESULTS: We observed that exosomes are at low zeta potential, and easily aggregate. Temperature affects zeta potential (-14 to -15 mV at 23 °C vs -24 mV at 37 °C). The uptake of iPS-exo protects H9C2 cells against H2O2-induced oxidative stress by inhibiting caspase 3/7 activation (P < 0.05, n = 6). Importantly, iPS-exo treatment can protect against myocardial ischemia/reperfusion (MIR) injury via intramyocardial injection into mouse ischemic myocardium before reperfusion. Furthermore, iPS-exo deliver cardioprotective miRNAs, including nanog-regulated miR-21 and HIF-1?-regulated miR-210, to H9C2 cardiomyocytes in vitro. CONCLUSIONS: Exosomes/microvesicles secreted by iPS cells are very effective at transmitting cytoprotective signals to cardiomyocytes in the setting of MIR. iPS-exo thus represents novel biological nanoparticles that offer the benefits of iPS cell therapy without the risk of tumorigenicity and can potentially serve as an off-the-shelf therapy to rescue ischemic cardiomyocytes in conditions such as MIR. (hide)
EV-METRIC
13% (33rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes / microvesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration + PEG precipitation
Protein markers
EV: TSG101/ CD63
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Filtration steps
0.22µm or 0.2µm
Other
Name other separation method
PEG precipitation
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD63/ TSG101
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV150095 1/1 Homo sapiens Cell culture supernatant dUC
ExoQuick
Valenzuela MM 2015 13%

Study summary

Full title
All authors
Valenzuela MM, Ferguson Bennit HR, Gonda A, Diaz Osterman CJ, Hibma A, Khan S, Wall NR
Journal
Cancer Microenvironment
Abstract
Exosomes are endosomal-derived nanovesicles released by normal and tumor cells which have been shown (show more...)Exosomes are endosomal-derived nanovesicles released by normal and tumor cells which have been shown to transfer functionally active protein, lipids, mRNAs and miRNAs between cells. Varying in molecular profiles, biological roles, functional roles and protein contents, exosomes have been described as multi-purpose carriers playing a role in supporting the survival and growth of tumor cells. The IAP Survivin has been found to be present in tumor exosomes. However, the existence of other IAPs in tumor exosomes is still unknown. Survivin, cIAP1, cIAP2 and XIAP mRNA and protein are differently expressed in a panel of tumor cell lines: DLCL2, HeLa, MCF-7, Panc-1, and PC3. Exosomes were isolated from conditioned media collected from the cells from which RNA and protein were extracted. Our results provide evidence that like Survivin, XIAP, cIAP1 and cIAP2 proteins are found in tumor exosomes. The mRNA expression, however, is differentially expressed across the tumor cell lines. The presence of these bioactive molecules in exosomes may not only serve as warning signals, but also play a role in providing protection to the cancer cells against changes that are constantly occurring in the tumor microenvironment. (hide)
EV-METRIC
13% (33rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + ExoQuick
Protein markers
EV: LAMP1
non-EV:
Proteomics
no
Show all info
Study aim
Omics
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Commercial kit
ExoQuick
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
LAMP1
ELISA
Detected EV-associated proteins
LAMP1
Characterization: Particle analysis
NTA
EV150094 1/1 Homo sapiens Cell culture supernatant dUC
ExoQuick
Filtration
Tsuno H 2015 13%

Study summary

Full title
All authors
Tsuno H, Suematsu N, Sato T, Arito M, Matsui T, Iizuka N, Omoteyama K, Okamoto K, Tohma S, Kurokawa MS, Kato T
Journal
Proteomics Clinical Applications
Abstract
PURPOSE: To elucidate effects of salazosulfapyridine (SASP) and methotrexate (MTX), major anti-rheum (show more...)PURPOSE: To elucidate effects of salazosulfapyridine (SASP) and methotrexate (MTX), major anti-rheumatic drugs, on exosomes derived from SW982 of a human synovial sarcoma cell line. EXPERIMENTAL DESIGN: SW982 was treated with SASP and/or MTX under interleukin-1? (IL-1?)-treated or nontreated conditions. Exosomes were isolated from the culture media, and exosomal proteome was analyzed by 2D-DIGE. Protein spots whose intensity was significantly altered by the above treatments were identified by MS. RESULTS: Two hundred ninety-four protein spots were detected in the exosome preparations by 2D-DIGE. Compared to the nontreated cells, SASP-, MTX-, and (SASP + MTX)-treated cells displayed 8, 10, and 21 exosomal protein spots with more than ±2.0-fold intensity differences (p < 0.05), respectively. Similarly, the IL-1?-treated cells displayed 58 exosomal protein spots with more than ±1.5-fold intensity differences (p < 0.05). In about half of the 58 spots, the IL-1?-induced intensity changes were suppressed by simultaneous addition of SASP and/or MTX. Most of the identified proteins were immunity- or anti-oxidation-related proteins. CONCLUSIONS AND CLINICAL RELEVANCE: The SASP and/or MTX treatments altered the protein profiles of exosomes and suppressed the effects of IL-1? on the exosomal proteome. Exosomes may play roles in the actions of these anti-rheumatic drugs. (hide)
EV-METRIC
13% (33rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + ExoQuick + Filtration
Protein markers
EV: Alix/ HSP70
non-EV:
Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Filtration steps
0.22µm or 0.2µm
Commercial kit
ExoQuick
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Alix/ HSP70
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV150091 1/1 Homo sapiens Cell culture supernatant dUC
Total Exosome Isolation
Deng L 2015 13%

Study summary

Full title
All authors
Deng L, Blanco FJ, Stevens H, Lu R, Caudrillier A, McBride M, McClure JD, Grant J, Thomas M, Frid M, Stenmark K, White K, Seto AG, Morrell NW, Bradshaw AC, MacLean MR, Baker AH
Journal
Circ Res
Abstract
RATIONALE: The pathogenesis of pulmonary arterial hypertension (PAH) remains unclear. The 4 microRNA (show more...)RATIONALE: The pathogenesis of pulmonary arterial hypertension (PAH) remains unclear. The 4 microRNAs representing the miR-143 and miR-145 stem loops are genomically clustered. OBJECTIVE: To elucidate the transcriptional regulation of the miR-143/145 cluster and the role of miR-143 in PAH. METHODS AND RESULTS: We identified the promoter region that regulates miR-143/145 microRNA expression in pulmonary artery smooth muscle cells (PASMCs). We mapped PAH-related signaling pathways, including estrogen receptor, liver X factor/retinoic X receptor, transforming growth factor-? (Smads), and hypoxia (hypoxia response element), that regulated levels of all pri-miR stem loop transcription and resulting microRNA expression. We observed that miR-143-3p is selectively upregulated compared with miR-143-5p during PASMC migration. Modulation of miR-143 in PASMCs significantly altered cell migration and apoptosis. In addition, we found high abundance of miR-143-3p in PASMC-derived exosomes. Using assays with pulmonary arterial endothelial cells, we demonstrated a paracrine promigratory and proangiogenic effect of miR-143-3p-enriched exosomes from PASMC. Quantitative polymerase chain reaction and in situ hybridization showed elevated expression of miR-143 in calf models of PAH and in samples from PAH patients. Moreover, in contrast to our previous findings that had not supported a therapeutic role in vivo, we now demonstrate a protective role of miR-143 in experimental pulmonary hypertension in vivo in miR-143-/- and anti-miR-143-3p-treated mice exposed to chronic hypoxia in both preventative and reversal settings. CONCLUSIONS: MiR-143-3p modulated both cellular and exosome-mediated responses in pulmonary vascular cells, whereas inhibition of miR-143-3p blocked experimental pulmonary hypertension. Taken together, these findings confirm an important role for the miR-143/145 cluster in PAH pathobiology. (hide)
EV-METRIC
13% (33rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Total Exosome Isolation
Protein markers
EV: CD63/ GAPDH/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Commercial kit
Total Exosome Isolation
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD63/ CD9/ GAPDH
ELISA
Detected EV-associated proteins
GAPDH
Characterization: Particle analysis
EV150074 1/1 Homo sapiens Cell culture supernatant dUC
Filtration
Ji R 2015 13%

Study summary

Full title
All authors
Ji R, Zhang B, Zhang X, Xue J, Yuan X, Yan Y, Wang M, Zhu W, Qian H, Xu W
Journal
Cell Cycle
Abstract
Mesenchymal stem cells (MSCs) play an important role in chemoresistance. Exosomes have been reported (show more...)Mesenchymal stem cells (MSCs) play an important role in chemoresistance. Exosomes have been reported to modify cellular phenotype and function by mediating cell-cell communication. In this study, we aimed to investigate whether exosomes derived from MSCs (MSC-exosomes) are involved in mediating the resistance to chemotherapy in gastric cancer and to explore the underlying molecular mechanism. We found that MSC-exosomes significantly induced the resistance of gastric cancer cells to 5-fluorouracil both in vivo and ex vivo. MSC-exosomes antagonized 5-fluorouracil-induced apoptosis and enhanced the expression of multi-drug resistance associated proteins, including MDR, MRP and LRP. Mechanistically, MSC-exosomes triggered the activation of calcium/calmodulin-dependent protein kinases (CaM-Ks) and Raf/MEK/ERK kinase cascade in gastric cancer cells. Blocking the CaM-Ks/Raf/MEK/ERK pathway inhibited the promoting role of MSC-exosomes in chemoresistance. Collectively, MSC-exosomes could induce drug resistance in gastric cancer cells by activating CaM-Ks/Raf/MEK/ERK pathway. Our findings suggest that MSC-exosomes have profound effects on modifying gastric cancer cells in the development of drug resistance. Targeting the interaction between MSC-exosomes and cancer cells may help improve the efficacy of chemotherapy in gastric cancer. (hide)
EV-METRIC
13% (33rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Protein markers
EV: CD63/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD63/ CD9
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV150103 1/7 Mus musculus Cell culture supernatant dUC Dieudé M 2015 11%

Study summary

Full title
All authors
Dieudé M, Bell C, Turgeon J, Beillevaire D, Pomerleau L, Yang B, Hamelin K, Qi S, Pallet N, Béland C, Dhahri W, Cailhier JF, Rousseau M, Duchez AC, Lévesque T, Lau A, Rondeau C, Gingras D, Muruve D, Rivard A, Cardinal H, Perreault C, Desjardins M, Boilard É, Thibault P, Hébert MJ
Journal
J Transl Med
Abstract
Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rej (show more...)Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rejection in organ transplant recipients. However, mechanisms of immunization to apoptotic components remain largely uncharacterized. We used large-scale proteomics, with validation by electron microscopy and biochemical methods, to compare the protein profiles of apoptotic bodies and apoptotic exosome-like vesicles, smaller extracellular vesicles released by endothelial cells downstream of caspase-3 activation. We identified apoptotic exosome-like vesicles as a central trigger for production of anti-perlecan antibodies and acceleration of rejection. Unlike apoptotic bodies, apoptotic exosome-like vesicles triggered the production of anti-perlecan antibodies in naïve mice and enhanced anti-perlecan antibody production and allograft inflammation in mice transplanted with an MHC (major histocompatibility complex)-incompatible aortic graft. The 20S proteasome core was active within apoptotic exosome-like vesicles and controlled their immunogenic activity. Finally, we showed that proteasome activity in circulating exosome-like vesicles increased after vascular injury in mice. These findings open new avenues for predicting and controlling maladaptive humoral responses to apoptotic cell components that enhance the risk of rejection after transplantation. (hide)
EV-METRIC
11% (26th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Apoptosis
Focus vesicles
apoptotic exosome-like vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
127.9 (pelleting)
Protein markers
EV: LG3
non-EV: None
Proteomics
no
Show all info
Study aim
Function, Biomarker, Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
Sample Condition
Apoptosis
EV-producing cells
primary aorta-derived endothelial cells
EV-harvesting Medium
Serum free medium
Cell viability
80
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Equal to or above 150,000 g
Between 50,000 g and 100,000 g
Pelleting: time(min)
1080
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
200000
Pelleting: adjusted k-factor
127.9
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
LG3
Characterization: Particle analysis
EM
EV150103 2/7 Mus musculus Cell culture supernatant dUC Dieudé M 2015 11%

Study summary

Full title
All authors
Dieudé M, Bell C, Turgeon J, Beillevaire D, Pomerleau L, Yang B, Hamelin K, Qi S, Pallet N, Béland C, Dhahri W, Cailhier JF, Rousseau M, Duchez AC, Lévesque T, Lau A, Rondeau C, Gingras D, Muruve D, Rivard A, Cardinal H, Perreault C, Desjardins M, Boilard É, Thibault P, Hébert MJ
Journal
J Transl Med
Abstract
Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rej (show more...)Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rejection in organ transplant recipients. However, mechanisms of immunization to apoptotic components remain largely uncharacterized. We used large-scale proteomics, with validation by electron microscopy and biochemical methods, to compare the protein profiles of apoptotic bodies and apoptotic exosome-like vesicles, smaller extracellular vesicles released by endothelial cells downstream of caspase-3 activation. We identified apoptotic exosome-like vesicles as a central trigger for production of anti-perlecan antibodies and acceleration of rejection. Unlike apoptotic bodies, apoptotic exosome-like vesicles triggered the production of anti-perlecan antibodies in naïve mice and enhanced anti-perlecan antibody production and allograft inflammation in mice transplanted with an MHC (major histocompatibility complex)-incompatible aortic graft. The 20S proteasome core was active within apoptotic exosome-like vesicles and controlled their immunogenic activity. Finally, we showed that proteasome activity in circulating exosome-like vesicles increased after vascular injury in mice. These findings open new avenues for predicting and controlling maladaptive humoral responses to apoptotic cell components that enhance the risk of rejection after transplantation. (hide)
EV-METRIC
11% (26th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Apoptosis
Focus vesicles
apoptotic body
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
127.9 (pelleting)
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function, Biomarker, Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
Sample Condition
Apoptosis
EV-producing cells
primary aorta-derived endothelial cells
EV-harvesting Medium
Serum free medium
Cell viability
80
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 50,000 g and 100,000 g
Pelleting: time(min)
1080
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
200000
Pelleting: adjusted k-factor
127.9
Characterization: Protein analysis
Characterization: Particle analysis
EM
EV150103 3/7 Mus musculus Serum dUC Dieudé M 2015 11%

Study summary

Full title
All authors
Dieudé M, Bell C, Turgeon J, Beillevaire D, Pomerleau L, Yang B, Hamelin K, Qi S, Pallet N, Béland C, Dhahri W, Cailhier JF, Rousseau M, Duchez AC, Lévesque T, Lau A, Rondeau C, Gingras D, Muruve D, Rivard A, Cardinal H, Perreault C, Desjardins M, Boilard É, Thibault P, Hébert MJ
Journal
J Transl Med
Abstract
Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rej (show more...)Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rejection in organ transplant recipients. However, mechanisms of immunization to apoptotic components remain largely uncharacterized. We used large-scale proteomics, with validation by electron microscopy and biochemical methods, to compare the protein profiles of apoptotic bodies and apoptotic exosome-like vesicles, smaller extracellular vesicles released by endothelial cells downstream of caspase-3 activation. We identified apoptotic exosome-like vesicles as a central trigger for production of anti-perlecan antibodies and acceleration of rejection. Unlike apoptotic bodies, apoptotic exosome-like vesicles triggered the production of anti-perlecan antibodies in naïve mice and enhanced anti-perlecan antibody production and allograft inflammation in mice transplanted with an MHC (major histocompatibility complex)-incompatible aortic graft. The 20S proteasome core was active within apoptotic exosome-like vesicles and controlled their immunogenic activity. Finally, we showed that proteasome activity in circulating exosome-like vesicles increased after vascular injury in mice. These findings open new avenues for predicting and controlling maladaptive humoral responses to apoptotic cell components that enhance the risk of rejection after transplantation. (hide)
EV-METRIC
11% (46th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Control condition
Focus vesicles
exosome-like vesicle, membrane vesicle, nanovesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
127.9 (pelleting)
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function, Biomarker, Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Serum
Sample Condition
Control condition
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Equal to or above 150,000 g
Between 50,000 g and 100,000 g
Pelleting: time(min)
1080
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
200000
Pelleting: adjusted k-factor
127.9
Characterization: Protein analysis
Characterization: Particle analysis
EM
EM-type
Transmission-EM
Image type
Close-up
EV150103 6/7 Mus musculus Serum dUC Dieudé M 2015 11%

Study summary

Full title
All authors
Dieudé M, Bell C, Turgeon J, Beillevaire D, Pomerleau L, Yang B, Hamelin K, Qi S, Pallet N, Béland C, Dhahri W, Cailhier JF, Rousseau M, Duchez AC, Lévesque T, Lau A, Rondeau C, Gingras D, Muruve D, Rivard A, Cardinal H, Perreault C, Desjardins M, Boilard É, Thibault P, Hébert MJ
Journal
J Transl Med
Abstract
Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rej (show more...)Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rejection in organ transplant recipients. However, mechanisms of immunization to apoptotic components remain largely uncharacterized. We used large-scale proteomics, with validation by electron microscopy and biochemical methods, to compare the protein profiles of apoptotic bodies and apoptotic exosome-like vesicles, smaller extracellular vesicles released by endothelial cells downstream of caspase-3 activation. We identified apoptotic exosome-like vesicles as a central trigger for production of anti-perlecan antibodies and acceleration of rejection. Unlike apoptotic bodies, apoptotic exosome-like vesicles triggered the production of anti-perlecan antibodies in naïve mice and enhanced anti-perlecan antibody production and allograft inflammation in mice transplanted with an MHC (major histocompatibility complex)-incompatible aortic graft. The 20S proteasome core was active within apoptotic exosome-like vesicles and controlled their immunogenic activity. Finally, we showed that proteasome activity in circulating exosome-like vesicles increased after vascular injury in mice. These findings open new avenues for predicting and controlling maladaptive humoral responses to apoptotic cell components that enhance the risk of rejection after transplantation. (hide)
EV-METRIC
11% (46th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Ischemic hindlimb model
Focus vesicles
exosome-like vesicle, nanovesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
127.9 (pelleting)
Protein markers
EV: LG3
non-EV: None
Proteomics
no
Show all info
Study aim
Function, Biomarker, Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Serum
Sample Condition
Ischemic hindlimb model
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Equal to or above 150,000 g
Between 50,000 g and 100,000 g
Pelleting: time(min)
1080
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
200000
Pelleting: adjusted k-factor
127.9
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
LG3
EV150058 1/1 Mus musculus Cell culture supernatant dUC Zhang L 2015 11%

Study summary

Full title
All authors
Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, Li P, Li M, Wang X, Zhang C, Wang H, Ellis K, Cheerathodi M, McCarty JH, Palmieri D, Saunus J, Lakhani S, Huang S, Sahin AA, Aldape KD, Steeg PS, Yu D
Journal
Nature
Abstract
The development of life-threatening cancer metastases at distant organs requires disseminated tumour (show more...)The development of life-threatening cancer metastases at distant organs requires disseminated tumour cells' adaptation to, and co-evolution with, the drastically different microenvironments of metastatic sites. Cancer cells of common origin manifest distinct gene expression patterns after metastasizing to different organs. Clearly, the dynamic interaction between metastatic tumour cells and extrinsic signals at individual metastatic organ sites critically effects the subsequent metastatic outgrowth. Yet, it is unclear when and how disseminated tumour cells acquire the essential traits from the microenvironment of metastatic organs that prime their subsequent outgrowth. Here we show that both human and mouse tumour cells with normal expression of PTEN, an important tumour suppressor, lose PTEN expression after dissemination to the brain, but not to other organs. The PTEN level in PTEN-loss brain metastatic tumour cells is restored after leaving the brain microenvironment. This brain microenvironment-dependent, reversible PTEN messenger RNA and protein downregulation is epigenetically regulated by microRNAs from brain astrocytes. Mechanistically, astrocyte-derived exosomes mediate an intercellular transfer of PTEN-targeting microRNAs to metastatic tumour cells, while astrocyte-specific depletion of PTEN-targeting microRNAs or blockade of astrocyte exosome secretion rescues the PTEN loss and suppresses brain metastasis in vivo. Furthermore, this adaptive PTEN loss in brain metastatic tumour cells leads to an increased secretion of the chemokine CCL2, which recruits IBA1-expressing myeloid cells that reciprocally enhance the outgrowth of brain metastatic tumour cells via enhanced proliferation and reduced apoptosis. Our findings demonstrate a remarkable plasticity of PTEN expression in metastatic tumour cells in response to different organ microenvironments, underpinning an essential role of co-evolution between the metastatic cells and their microenvironment during the adaptive metastatic outgrowth. Our findings signify the dynamic and reciprocal cross-talk between tumour cells and the metastatic niche; importantly, they provide new opportunities for effective anti-metastasis therapies, especially of consequence for brain metastasis patients. (hide)
EV-METRIC
11% (26th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: CD81/ TSG101/ CD63
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting: time(min)
70
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD63/ CD81/ TSG101
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV150101 1/1 Homo sapiens Cell culture supernatant dUC Zhang J 2015 11%

Study summary

Full title
All authors
Zhang J, Zhang HD, Yao YF, Zhong SL, Zhao JH, Tang JH
Journal
Cell Physiol Biochem
Abstract
BACKGROUND: Currently, exosomes that act as mediators of intercellular communication are being resea (show more...)BACKGROUND: Currently, exosomes that act as mediators of intercellular communication are being researched extensively. Our previous studies confirmed that these exosomes contain microRNAs (miRNAs) that could alter chemo-susceptibility, which is partly attributed to the successful intercellular transfer of multidrug resistance (MDR)-specific miRNAs. We also confirmed that ?-elemene could influence MDR-related miRNA expression and regulate the expression of the target genes PTEN and Pgp, which may lead to the reversal of the chemoresistant breast cancer (BCA) cells. We are the first to report these findings, and we propose the following logical hypothesis: ?-elemene can mediate MDR-related miRNA expression in cells, thereby affecting the exosome contents, reducing chemoresistance transmission via exosomes, and reversing the drug resistance of breast cancer cells. METHODS: MTT-cytotoxic, miRNA microarray, real-time quantitative PCR, Dual Luciferase Activity Assay, and Western blot analysis were performed to investigate the impact of ?-elemene on the expression of chemoresistance specific miRNA and PTEN as well as Pgp in chemoresistant BCA exosomes. RESULTS: Drug resistance can be reversed by ?-elemene related to exosomes. There were 104 differentially expressed miRNAs in the exosomes of two chemoresistant BCA cells: adriacin (Adr) - resistant MCF-7 cells (MCF-7/Adr) and docetaxel (Doc) - resistant MCF-7 cells (MCF-7/Doc) that underwent treatment. Of these, 31 miRNAs were correlated with the constant changes in the MDR. The expression of miR-34a and miR-452 can lead to changes in the characteristics of two chemoresistant BCA exosomes: MCF-7/Adr exosomes (A/exo) and MCF-7/Doc exosomes (D/exo). The PTEN expression affected by ?-elemene was significantly increased, and the Pgp expression affected by ?-elemene was significantly decreased in both cells and exosomes. ?-elemene induced a significant increase in the apoptosis rate in both MCF-7/Doc and MCF-7/Adr cells. CONCLUSIONS: Drug resistance can be reversed by ?-elemene, which can alter the expression of some MDR-related miRNAs, including PTEN and Pgp in MCF-7/Adr and MCF-7/Doc in cells. It can therefore affect the exosome contents and induce the reduction of resistance transmission via exosomes. (hide)
EV-METRIC
11% (26th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: Calnexin/ TSG101/ Beta-actin
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
120
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
TSG101/ Beta-actin/ Calnexin
ELISA
Detected EV-associated proteins
Beta-actin/ Calnexin
Characterization: Particle analysis
EV150052 1/1 Homo sapiens Cell culture supernatant dUC
Filtration
Ti D 2015 11%

Study summary

Full title
All authors
Ti D, Hao H, Tong C, Liu J, Dong L, Zheng J, Zhao Y, Liu H, Fu X, Han W
Journal
J Transl Med
Abstract
BACKGROUND: Within the last few years, it has become evident that LPS-preconditioned mesenchymal str (show more...)BACKGROUND: Within the last few years, it has become evident that LPS-preconditioned mesenchymal stromal cells (LPS pre-MSCs) show enhanced paracrine effects, including increased trophic support and improved regenerative and repair properties. MSCs may release large amounts of exosomes for cell-to-cell communication and maintain a dynamic and homeostatic microenvironment for tissue repair. The present study assesses the therapeutic efficacy and mechanisms of LPS-preconditioned MSC-derived exosomes (LPS pre-Exo) for chronic inflammation and wound healing. METHODS: We extracted exosomes from the supernatant of LPS pre-MSCs using a gradient centrifugation method. In vitro, THP-1 cells were cultured with high glucose (HG, 30 mM) as an inflammatory model and treated with LPS pre-Exo for 48 h. The expression of inflammation-related cytokines was detected by real-time RT-PCR, and the distribution of macrophage subtype was measured by immunofluorescence. Next, the miRNA expression profiles of LPS pre-Exo were evaluated using miRNA microarray analysis. The molecular signaling pathway responsible for the regenerative potential was identified by western blotting. In vivo, we established a cutaneous wound model in streptozotocin-induced diabetic rats, and LPS pre-Exo were injected dispersively into the wound edge. The curative effects of LPS pre-Exo on inflammation and wound healing were observed and evaluated. RESULTS: LPS pre-Exo have a better ability than untreated MSC-derived exosomes (un-Exo) to modulate the balance of macrophages due to their upregulation of the expression of anti-inflammatory cytokines and promotion of M2 macrophage activation. Microarray analysis of LPS pre-Exo identified the unique expression of let-7b compared with un-Exo, and the let-7b/TLR4 pathway served as potential contributor to macrophage polarization and inflammatory ablation. Further investigation of the mechanisms that control let-7b expression demonstrated that a TLR4/NF-?B/STAT3/AKT regulatory signaling pathway plays a critical role in the regulation of macrophage plasticity. Knockdown of AKT in THP-1 cells similarly abolished the immunomodulatory effect of LPS pre-Exo. In vivo, LPS pre-Exo greatly alleviated inflammation and enhanced diabetic cutaneous wound healing. CONCLUSION: LPS pre-Exo may have improved regulatory abilities for macrophage polarization and resolution of chronic inflammation by shuttling let-7b, and these exosomes carry much immunotherapeutic potential for wound healing. (hide)
EV-METRIC
11% (26th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Protein markers
EV: CD81/ CD63/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
180
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD63/ CD81/ CD9
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV150051 3/3 Homo sapiens Blood plasma dUC Hoshino A 2015 11%

Study summary

Full title
All authors
Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Jørgen Labori K, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D
Journal
Nature
Abstract
Ever since Stephen Paget's 1889 hypothesis, metastatic organotropism has remained one of cancer's gr (show more...)Ever since Stephen Paget's 1889 hypothesis, metastatic organotropism has remained one of cancer's greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins ?6?4 and ?6?1 were associated with lung metastasis, while exosomal integrin ?v?5 was linked to liver metastasis. Targeting the integrins ?6?4 and ?v?5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis. (hide)
EV-METRIC
11% (36th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: Alix
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
70
Wash: volume per pellet (ml)
20
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Alix
Characterization: Particle analysis
EV150047 1/1 Homo sapiens Urine dUC Rojas-Vega L 2015 11%

Study summary

Full title
All authors
Rojas-Vega L, Jiménez-Vega AR, Bazúa-Valenti S, Arroyo-Garza I, Jiménez JV, Gómez-Ocádiz R, Carrillo-Pérez DL, Moreno E, Morales-Buenrostro LE, Alberú J, Gamba G
Journal
Am J Physiol Renal Physiol
Abstract
Evidence in rodents suggests that tacrolimus-induced posttransplant hypertension is due to upregulat (show more...)Evidence in rodents suggests that tacrolimus-induced posttransplant hypertension is due to upregulation of the thiazide-sensitive Na(+)-Cl(-) cotransporter NCC. Here, we analyzed whether a similar mechanism is involved in posttransplant hypertension in humans. From January 2013 to June 2014, all adult kidney transplant recipients receiving a kidney allograft were enrolled in a prospective cohort study. All patients received tacrolimus as part of the immunosuppressive therapy. Six months after surgery, we assessed general clinical and laboratory variables, tacrolimus trough blood levels, and ambulatory 24-h blood pressure monitoring. Urinary exosomes were extracted to perform Western blot analysis using total and phospho-NCC antibodies. A total of 52 patients, including 17 women and 35 men, were followed. At 6 mo after transplantation, of the 35 men, 17 developed hypertension and 18 remained normotensive, while high blood pressure was observed in only 3 of 17 women. The hypertensive patients were significantly older than the normotensive group; however, there were no significant differences in body weight, history of acute rejection, renal function, and tacrolimus trough levels. In urinary exosomes, hypertensive patients showed higher NCC expression (1.7 ± 0.19) than normotensive (1 ± 0.13) (P = 0.0096). Also, NCC phosphorylation levels were significantly higher in the hypertensive patients (1.57 ± 0.16 vs. 1 ± 0.07; P = 0.0049). Our data show that there is a positive correlation between NCC expression/phosphorylation in urinary exosomes and the development of hypertension in posttransplant male patients treated with tacrolimus. Our results are consistent with the hypothesis that NCC activation plays a major role in tacrolimus-induced hypertension. (hide)
EV-METRIC
11% (27th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
DNF
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: NCC
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting: time(min)
120
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
NCC
ELISA
Detected EV-associated proteins
NCC
Characterization: Particle analysis
EV150087 1/1 Mus musculus Cell culture supernatant dUC
Filtration
Bu N 2015 11%

Study summary

Full title
All authors
Bu N, Wu HQ, Zhang GL, Zhan SQ, Zhang R, Fan QY, Li YL, Zhai YF, Ren HW
Journal
J Immunol
Abstract
Immature dendritic cell-derived exosomes (iMDEX) display a certain degree of immunosuppressive activ (show more...)Immature dendritic cell-derived exosomes (iMDEX) display a certain degree of immunosuppressive activity in autoimmune diseases. However, the role of iMDEX in experimental autoimmune myasthenia gravis (EAMG) is still unclear. Therefore, we tested the effects of mouse bone marrow (BM)-derived iMDEX on tolerance induction in a mouse model of EAMG. In this study, we found that the CELLine culture system produced more exosomes, the morphology and phenotype of these exosomes were found to be identical when compared with traditional cell culture. And, iMDEX(1000) ameliorated the progression of EAMG by reducing AChR-reactive lymphocyte proliferation, AChR antibody levels and pro-inflammatory cytokine levels. (hide)
EV-METRIC
11% (26th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Protein markers
EV: CD80/ MHC2/ CD40/ CD86
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
60
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD80/ MHC2/ CD86/ CD40
ELISA
Detected EV-associated proteins
CD80/ MHC2/ CD86/ CD40
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV150061 2/2 Homo sapiens Cell culture supernatant dUC
Filtration
O'Brien K 2015 11%

Study summary

Full title
All authors
O'Brien K, Lowry MC, Corcoran C, Martinez VG, Daly M, Rani S, Gallagher WM, Radomski MW, MacLeod RA, O'Driscoll L
Journal
Oncotarget
Abstract
Exosomes (EVs) have relevance in cell-to-cell communication carrying pro-tumorigenic factors that pa (show more...)Exosomes (EVs) have relevance in cell-to-cell communication carrying pro-tumorigenic factors that participate in oncogenesis and drug resistance and are proposed to have potential as self-delivery systems. Advancing on our studies of EVs in triple-negative breast cancer, here we more comprehensively analysed isogenic cell line variants and their EV populations, tissues cell line variants and their EV populations, as well as breast tumour and normal tissues. Profiling 384 miRNAs showed EV miRNA content to be highly representative of their cells of origin. miRNAs most substantially down-regulated in aggressive cells and their EVs originated from 14q32. Analysis of miR-134, the most substantially down-regulated miRNA, supported its clinical relevance in breast tumours compared to matched normal breast tissue. Functional studies indicated that miR-134 controls STAT5B which, in turn, controls Hsp90. miR-134 delivered by direct transfection into Hs578Ts(i)8 cells (in which it was greatly down-regulated) reduced STAT5B, Hsp90, and Bcl-2 levels, reduced cellular proliferation, and enhanced cisplatin-induced apoptosis. Delivery via miR-134-enriched EVs also reduced STAT5B and Hsp90, reduced cellular migration and invasion, and enhanced sensitivity to anti-Hsp90 drugs. While the differing effects achieved by transfection or EV delivery are likely to be, at least partly, due to specific amounts of miR-134 delivered by these routes, these EV-based studies identified miRNA-134 as a potential biomarker and therapeutic for breast cancer. (hide)
EV-METRIC
11% (26th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Protein markers
EV: Alix/ TSG101/ CD63
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
75
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Alix/ CD63/ TSG101
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV150043 1/1 Homo sapiens Cell culture supernatant dUC
Filtration
Liu D 2015 11%

Study summary

Full title
All authors
Liu D, Li C, Trojanowicz B, Li X, Shi D, Zhan C, Wang Z, Chen L
Journal
Gastric Cancer
Abstract
BACKGROUND: CD97 knockdown impairs the metastatic capacity of SGC-7901 gastric cancer cells. However (show more...)BACKGROUND: CD97 knockdown impairs the metastatic capacity of SGC-7901 gastric cancer cells. However, the role of CD97 in the distant lymphatic premetastatic niche formation of gastric cancer remains unknown. METHODS: Exosomes and the soluble fraction were isolated from SGC-L (an SGC-7901-cell-derived highly lymphatic metastatic cell line) and CD97-knockdown (SGC-L/CD97-kd) cells, and were co-cultured with gastric cancer cells. The metastatic capacity of the two cell lines was evaluated in vitro and in a footpad lymph node metastasis mouse model. Premetastatic-niche-formation-related proteins were examined immunohistochemically. RESULTS: CD97 expression was ninefold higher in SGC-L cells than in SGC-7901 cells. In vitro, exosomes or conditioned medium from the SGC-L cells enhanced cell proliferation (20 % increase) and invasion (30 % increase) as compared with that from SGC-L/CD97-kd cells (p < 0.01). Intrafootpad injections of SGC-L, but not SGC-L/CD97-kd exosomes or conditioned medium, strongly promoted SGC-L and SGC-L/CD97-kd cell accumulation in the draining lymph nodes (p < 0.01) and increased CD55, CD44v6, ?5?1, CD31, epithelial cell adhesion molecule, and CD151 expression. Although the SGC-L/CD97-kd exosomes alone were insufficient for promotion of metastasis, they were partly aided by the SGC-L-cell-derived soluble fraction. CONCLUSIONS: The CD97 small isoform promotes SGC-L cell lymphatic metastasis exosome dependently, and aided by the soluble fraction, the exosome-dependent CD97 plays a pivotal role in premetastatic niche formation. (hide)
EV-METRIC
11% (26th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Protein markers
EV: HSP70/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
70
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD9/ HSP70
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up, Wide-field
EV150079 1/1 Rattus norvegicus/rattus Cell culture supernatant dUC
Filtration
Ko SF 2015 11%

Study summary

Full title
All authors
Ko SF, Yip HK, Zhen YY, Lee CC, Lee CC, Huang CC, Ng SH, Lin JW
Journal
Stem Cells Int
Abstract
We sought to evaluate the effects of adipose-derived mesenchymal stem cells (ADMSCs) exosomes on hep (show more...)We sought to evaluate the effects of adipose-derived mesenchymal stem cells (ADMSCs) exosomes on hepatocellular carcinoma (HCC) in rats using apparent diffusion coefficient (ADC), natural killer T-cell (NKT-cell) responses, and histopathological features. ADMSC-derived exosomes appeared as nanoparticles (30-90 nm) on electron microscopy and were positive for CD63, tumor susceptibility gene-101, and ?-catenin on western blotting. The control (n = 8) and exosome-treated (n = 8) rats with N1S1-induced HCC underwent baseline and posttreatment day 10 and day 20 magnetic resonance imaging and measurement of ADC. Magnetic resonance imaging showed rapidly enlarged HCCs with low ADCs in the controls. The exosome-treated rats showed partial but nonsignificant tumor reduction, and significant ADC and ADC ratio increases on day 10. On day 20, the exosome-treated rats harbored significantly smaller tumors and volume ratios, higher ADC and ADC ratios, more circulating and intratumoral NKT-cells, and low-grade HCC (P < 0.05 for all comparisons) compared to the controls. The ADC and volume ratios exhibited significant inverse correlations (P < 0.001, R (2) = 0.679). ADMSC-derived exosomes promoted NKT-cell antitumor responses in rats, thereby facilitating HCC suppression, early ADC increase, and low-grade tumor differentiation. ADC may be an early biomarker of treatment response. (hide)
EV-METRIC
11% (26th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Protein markers
EV: TSG101/ Beta-catenin/ CD63
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Rattus norvegicus/rattus
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
90
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD63/ TSG101/ Beta-catenin
ELISA
Detected EV-associated proteins
Beta-catenin
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV150027 1/2 Homo sapiens Serum dUC
Filtration
Kharaziha P 2015 11%

Study summary

Full title
All authors
Kharaziha P, Chioureas D, Rutishauser D, Baltatzis G, Lennartsson L, Fonseca P, Azimi A, Hultenby K, Zubarev R, Ullén A, Yachnin J, Nilsson S, Panaretakis T
Journal
Oncotarget
Abstract
Docetaxel is a cornerstone treatment for metastatic, castration resistant prostate cancer (CRPC) whi (show more...)Docetaxel is a cornerstone treatment for metastatic, castration resistant prostate cancer (CRPC) which remains a leading cause of cancer-related deaths, worldwide. The clinical usage of docetaxel has resulted in modest gains in survival, primarily due to the development of resistance. There are currently no clinical biomarkers available that predict whether a CRPC patient will respond or acquire resistance to this therapy. Comparative proteomics analysis of exosomes secreted from DU145 prostate cancer cells that are sensitive (DU145 Tax-Sen) or have acquired resistance (DU145 Tax-Res) to docetaxel, demonstrated significant differences in the amount of exosomes secreted and in their molecular composition. A panel of proteins was identified by proteomics to be differentially enriched in DU145 Tax-Res compared to DU145 Tax-Sen exosomes and was validated by western blotting. Importantly, we identified MDR-1, MDR-3, Endophilin-A2 and PABP4 that were enriched only in DU145 Tax-Res exosomes. We validated the presence of these proteins in the serum of a small cohort of patients. DU145 cells that have uptaken DU145 Tax-Res exosomes show properties of increased matrix degradation. In summary, exosomes derived from DU145 Tax-Res cells may be a valuable source of biomarkers for response to therapy. (hide)
EV-METRIC
11% (46th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Protein markers
EV: Alix/ Rab5
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
120
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Alix/ Rab5
ELISA
Detected EV-associated proteins
Rab5
Characterization: Particle analysis
NTA
EV150075 2/2 Homo sapiens Blood plasma dUC Joshi GK 2015 11%

Study summary

Full title
All authors
Joshi GK, Deitz-McElyea S, Liyanage T, Lawrence K, Mali S, Sardar R, Korc M
Journal
ACS Nano
Abstract
MicroRNAs are short noncoding RNAs consisting of 18-25 nucleotides that target specific mRNA moietie (show more...)MicroRNAs are short noncoding RNAs consisting of 18-25 nucleotides that target specific mRNA moieties for translational repression or degradation, thereby modulating numerous biological processes. Although microRNAs have the ability to behave like oncogenes or tumor suppressors in a cell-autonomous manner, their exact roles following release into the circulation are only now being unraveled and it is important to establish sensitive assays to measure their levels in different compartments in the circulation. Here, an ultrasensitive localized surface plasmon resonance (LSPR)-based microRNA sensor with single nucleotide specificity was developed using chemically synthesized gold nanoprisms attached onto a solid substrate with unprecedented long-term stability and reversibility. The sensor was used to specifically detect microRNA-10b at the attomolar (10(-18) M) concentration in pancreatic cancer cell lines, derived tissue culture media, human plasma, and media and plasma exosomes. In addition, for the first time, our label-free and nondestructive sensing technique was used to quantify microRNA-10b in highly purified exosomes isolated from patients with pancreatic cancer or chronic pancreatitis, and from normal controls. We show that microRNA-10b levels were significantly higher in plasma-derived exosomes from pancreatic ductal adenocarcinoma patients when compared with patients with chronic pancreatitis or normal controls. Our findings suggest that this unique technique can be used to design novel diagnostic strategies for pancreatic and other cancers based on the direct quantitative measurement of plasma and exosome microRNAs, and can be readily extended to other diseases with identifiable microRNA signatures. (hide)
EV-METRIC
11% (36th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: Alix/ TSG101
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
70
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Alix/ TSG101
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV150071 1/2 Homo sapiens Pericardial fluid dUC
Filtration
Foglio E 2015 11%

Study summary

Full title
All authors
Foglio E, Puddighinu G, Fasanaro P, D'Arcangelo D, Perrone GA, Mocini D, Campanella C, Coppola L, Logozzi M, Azzarito T, Marzoli F, Fais S, Pieroni L, Marzano V, Germani A, Capogrossi MC, Russo MA, Limana F
Journal
Int J Cardiol
Abstract
BACKGROUND: We recently demonstrated that epicardial progenitor cells participate in the regenerativ (show more...)BACKGROUND: We recently demonstrated that epicardial progenitor cells participate in the regenerative response to myocardial infarction (MI) and factors released in the pericardial fluid (PF) may play a key role in this process. Exosomes are secreted nanovesicles of endocytic origin, identified in most body fluids, which may contain molecules able to modulate a variety of cell functions. Here, we investigated whether exosomes are present in the PF and their potential role in cardiac repair. METHODS AND RESULTS: Early gene expression studies in 3day-infarcted mouse hearts showed that PF induces epithelial-to-mesenchymal transition (EMT) in epicardial cells. Exosomes were identified in PFs from non-infarcted patients (PFC) and patients with acute MI (PFMI). A shotgun proteomics analysis identified clusterin in exosomes isolated from PFMI but not from PFC. Notably, clusterin has a protective effect on cardiomyocytes after acute MI in vivo and is an important mediator of TGF?-induced. Clusterin addition to the pericardial sac determined an increase in epicardial cells expressing the EMT marker ?-SMA and, interestingly, an increase in the number of epicardial cells ckit(+)/?-SMA(+), 7days following MI. Importantly, clusterin treatment enhanced arteriolar length density and lowered apoptotic rates in the peri-infarct area. Hemodynamic studies demonstrated an improvement in cardiac function in clusterin-treated compared to untreated infarcted hearts. CONCLUSIONS: Exosomes are present and detectable in the PFs. Clusterin was identified in PFMI-exosomes and might account for an improvement in myocardial performance following MI through a framework including EMT-mediated epicardial activation, arteriogenesis and reduced cardiomyocyte apoptosis. (hide)
EV-METRIC
11% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Pericardial fluid
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Protein markers
EV: CD81/ Rab5b
non-EV:
Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Pericardial fluid
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
60
Filtration steps
0.45µm > x > 0.22µm, 0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD81/ Rab5b
ELISA
Detected EV-associated proteins
CD81/ Rab5b
Characterization: Particle analysis
EV150071 2/2 Homo sapiens Blood plasma dUC
Filtration
Foglio E 2015 11%

Study summary

Full title
All authors
Foglio E, Puddighinu G, Fasanaro P, D'Arcangelo D, Perrone GA, Mocini D, Campanella C, Coppola L, Logozzi M, Azzarito T, Marzoli F, Fais S, Pieroni L, Marzano V, Germani A, Capogrossi MC, Russo MA, Limana F
Journal
Int J Cardiol
Abstract
BACKGROUND: We recently demonstrated that epicardial progenitor cells participate in the regenerativ (show more...)BACKGROUND: We recently demonstrated that epicardial progenitor cells participate in the regenerative response to myocardial infarction (MI) and factors released in the pericardial fluid (PF) may play a key role in this process. Exosomes are secreted nanovesicles of endocytic origin, identified in most body fluids, which may contain molecules able to modulate a variety of cell functions. Here, we investigated whether exosomes are present in the PF and their potential role in cardiac repair. METHODS AND RESULTS: Early gene expression studies in 3day-infarcted mouse hearts showed that PF induces epithelial-to-mesenchymal transition (EMT) in epicardial cells. Exosomes were identified in PFs from non-infarcted patients (PFC) and patients with acute MI (PFMI). A shotgun proteomics analysis identified clusterin in exosomes isolated from PFMI but not from PFC. Notably, clusterin has a protective effect on cardiomyocytes after acute MI in vivo and is an important mediator of TGF?-induced. Clusterin addition to the pericardial sac determined an increase in epicardial cells expressing the EMT marker ?-SMA and, interestingly, an increase in the number of epicardial cells ckit(+)/?-SMA(+), 7days following MI. Importantly, clusterin treatment enhanced arteriolar length density and lowered apoptotic rates in the peri-infarct area. Hemodynamic studies demonstrated an improvement in cardiac function in clusterin-treated compared to untreated infarcted hearts. CONCLUSIONS: Exosomes are present and detectable in the PFs. Clusterin was identified in PFMI-exosomes and might account for an improvement in myocardial performance following MI through a framework including EMT-mediated epicardial activation, arteriogenesis and reduced cardiomyocyte apoptosis. (hide)
EV-METRIC
11% (36th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Protein markers
EV: CD81/ Rab5b
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
60
Filtration steps
0.45µm > x > 0.22µm, 0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD81/ Rab5b
ELISA
Detected EV-associated proteins
Rab5b
Characterization: Particle analysis
EV150040 1/1 Homo sapiens Cell culture supernatant dUC
Filtration
Dutta S 2015 11%

Study summary

Full title
All authors
Dutta S, Reamtong O, Panvongsa W, Kitdumrongthum S, Janpipatkul K, Sangvanich P, Piyachaturawat P, Chairoungdua A
Journal
Biochim Biophys Acta Mol Basis Dis
Abstract
Cholangiocarcinoma (CCA), a common primary malignant tumor of bile duct epithelia, is highly prevale (show more...)Cholangiocarcinoma (CCA), a common primary malignant tumor of bile duct epithelia, is highly prevalent in Asian countries and unresponsive to chemotherapeutic drugs. Thus, a newly recognized biological entity for early diagnosis and treatment is highly needed. Exosomes are small membrane bound vesicles found in body fluids and released by most cell types including cancer cells. The vesicles contain specific subset of proteins and nucleic acids corresponding to cell types and play essential roles in pathophysiological processes. The present study aimed to assess the protein profiles of CCA-derived exosomes and their potential roles. We have isolated exosomes from CCA cells namely KKU-M213 and KKU-100 derived from Thai patients and their roles were investigated by incubation with normal human cholangiocyte (H69) cells. Exosomes were internalized into H69 cells and had no effects on viability or proliferation of the host cells. Interestingly, the exosomes from KKU-M213 cells only induced migration and invasion of H69 cells. Proteomic analysis of the exosomes from KKU-M213 cells disclosed multiple cancer related proteins that are not present in H69 exosomes. Consistent with the protein profile, treatment with KKU-M213 exosomes induced ?-catenin and reduced E-cadherin expressions in H69 cells. Collectively, our results suggest that a direct cell-to-cell transfer of oncogenic proteins via exosomal pathway may be a novel mechanism for CCA progression and metastasis. (hide)
EV-METRIC
11% (26th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Protein markers
EV: CD81/ TSG101/ Flotilin1/ CD63
non-EV:
Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
70
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD63/ CD81/ Flotilin1/ TSG101
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV150105 1/2 Homo sapiens Blood plasma dUC
ExoQuick
Song J 2015 0%

Study summary

Full title
All authors
Song J, Kim D, Han J, Kim Y, Lee M, Jin EJ.
Journal
Clin Exp Med
Abstract
Despite growing importance of long non-coding RNAs (lncRNAs) in normal physiological and disease con (show more...)Despite growing importance of long non-coding RNAs (lncRNAs) in normal physiological and disease conditions, our knowledge of RA-related lncRNAs remains limited. Therefore, we aimed to identify lncRNA signatures that have prognostic values in RA. There was a notably high expression level of Hotair in blood mononuclear cells and serum exosome of rheumatoid arthritis (RA) patients, leading the migration of active macrophage. In contrast, markedly lower level of Hotair was detected in differentiated osteoclasts and rheumatoid synoviocytes and enforced expression of Hotair led to significantly decreased levels of MMP-2 and MMP-13. This exploratory study provides novel empirical evidence that Hotair could be one of potential biomarkers for diagnosing RA. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + ExoQuick
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Sample Condition
Control condition
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Commercial kit
ExoQuick
Characterization: Particle analysis
EV150105 2/2 Homo sapiens Blood plasma dUC
ExoQuick
Song J 2015 0%

Study summary

Full title
All authors
Song J, Kim D, Han J, Kim Y, Lee M, Jin EJ.
Journal
Clin Exp Med
Abstract
Despite growing importance of long non-coding RNAs (lncRNAs) in normal physiological and disease con (show more...)Despite growing importance of long non-coding RNAs (lncRNAs) in normal physiological and disease conditions, our knowledge of RA-related lncRNAs remains limited. Therefore, we aimed to identify lncRNA signatures that have prognostic values in RA. There was a notably high expression level of Hotair in blood mononuclear cells and serum exosome of rheumatoid arthritis (RA) patients, leading the migration of active macrophage. In contrast, markedly lower level of Hotair was detected in differentiated osteoclasts and rheumatoid synoviocytes and enforced expression of Hotair led to significantly decreased levels of MMP-2 and MMP-13. This exploratory study provides novel empirical evidence that Hotair could be one of potential biomarkers for diagnosing RA. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
rheumatoid arthritis
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + ExoQuick
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Sample Condition
rheumatoid arthritis
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Commercial kit
ExoQuick
Characterization: Particle analysis
EV150109 1/4 Homo sapiens Blood plasma dUC
ExoQuick
Huang X 2015 0%

Study summary

Full title
All authors
Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R, Wang D, See W, Costello BA, Quevedo F, Tan W, Nandy D, Bevan GH, Longenbach S, Sun Z, Lu Y, Wang T, Thibodeau SN, Boardman L, Kohli M, Wang L.
Journal
Eur Urol
Abstract
BACKGROUND: Extracellular microRNAs (miRNAs) embedded in circulating exosomes may serves as prognost (show more...)BACKGROUND: Extracellular microRNAs (miRNAs) embedded in circulating exosomes may serves as prognostic biomarkers in cancer. OBJECTIVE: To identify and evaluate plasma exosomal miRNAs for prognosis in castration-resistant prostate cancer (CRPC). DESIGN, SETTING, AND PARTICIPANTS: RNA sequencing was performed to identify candidate exosomal miRNAs associated with overall survival in a screening cohort of 23 CRPC patients. Candidate miRNAs were further evaluated for prognosis using quantitative real-time polymerase chain reaction in a follow-up cohort of 100 CRPC patients. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Cox regression and Kaplan-Meier survival analyses were used to evaluate survival association using candidate miRNAs along with clinical prognostic factors. RESULTS AND LIMITATIONS: RNA sequencing in screening cohort generated approximately 6.80 million mappable reads per patient. Of those with normalized read counts ≥ 5, 43% were mapped to miRNAs for a total of 375 known and 57 novel miRNAs. Cox regression analysis identified an association of miR-1290, -1246, and -375 with overall survival (false discover rate < 0.05). Of those, higher levels of miR-1290 and -375 were significantly associated with poor overall survival (p < 0.004) in the follow-up cohort. Incorporation of miR-1290/-375 into putative clinical prognostic factors-based models in CRPC stage significantly improved predictive performance with a time-dependent area under the curve increase from 0.66 to 0.73 (p = 6.57 × 10(-6)). CONCLUSIONS: Plasma exosomal miR-1290 and miR-375 are promising prognostic biomarkers for CRPC patients. Prospective validation is needed for further evaluation of these candidate miRNAs. PATIENT SUMMARY: In this study, we evaluated whether small RNAs circulating in blood could be used to predict clinical outcomes in late-stage prostate cancer patients. We identified two blood-based small RNAs whose levels showed significant association with survival. Our results warrant further investigation because the noninvasive blood-based test has great potential in the management of late-stage prostate cancer. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + ExoQuick
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Sample Condition
Control condition
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Commercial kit
ExoQuick
Characterization: RNA analysis
RNAse treatment
Moment of RNAse treatment
Before
RNAse type
RNase A
RNAse concentration
10
Characterization: Particle analysis
EV150109 2/4 Homo sapiens Blood plasma dUC
ExoQuick
Huang X 2015 0%

Study summary

Full title
All authors
Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R, Wang D, See W, Costello BA, Quevedo F, Tan W, Nandy D, Bevan GH, Longenbach S, Sun Z, Lu Y, Wang T, Thibodeau SN, Boardman L, Kohli M, Wang L.
Journal
Eur Urol
Abstract
BACKGROUND: Extracellular microRNAs (miRNAs) embedded in circulating exosomes may serves as prognost (show more...)BACKGROUND: Extracellular microRNAs (miRNAs) embedded in circulating exosomes may serves as prognostic biomarkers in cancer. OBJECTIVE: To identify and evaluate plasma exosomal miRNAs for prognosis in castration-resistant prostate cancer (CRPC). DESIGN, SETTING, AND PARTICIPANTS: RNA sequencing was performed to identify candidate exosomal miRNAs associated with overall survival in a screening cohort of 23 CRPC patients. Candidate miRNAs were further evaluated for prognosis using quantitative real-time polymerase chain reaction in a follow-up cohort of 100 CRPC patients. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Cox regression and Kaplan-Meier survival analyses were used to evaluate survival association using candidate miRNAs along with clinical prognostic factors. RESULTS AND LIMITATIONS: RNA sequencing in screening cohort generated approximately 6.80 million mappable reads per patient. Of those with normalized read counts ≥ 5, 43% were mapped to miRNAs for a total of 375 known and 57 novel miRNAs. Cox regression analysis identified an association of miR-1290, -1246, and -375 with overall survival (false discover rate < 0.05). Of those, higher levels of miR-1290 and -375 were significantly associated with poor overall survival (p < 0.004) in the follow-up cohort. Incorporation of miR-1290/-375 into putative clinical prognostic factors-based models in CRPC stage significantly improved predictive performance with a time-dependent area under the curve increase from 0.66 to 0.73 (p = 6.57 × 10(-6)). CONCLUSIONS: Plasma exosomal miR-1290 and miR-375 are promising prognostic biomarkers for CRPC patients. Prospective validation is needed for further evaluation of these candidate miRNAs. PATIENT SUMMARY: In this study, we evaluated whether small RNAs circulating in blood could be used to predict clinical outcomes in late-stage prostate cancer patients. We identified two blood-based small RNAs whose levels showed significant association with survival. Our results warrant further investigation because the noninvasive blood-based test has great potential in the management of late-stage prostate cancer. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
metastatic castration-resistant prostate cancer with androgen deprivation therapy failure
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + ExoQuick
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Sample Condition
metastatic castration-resistant prostate cancer with androgen deprivation therapy failure
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Commercial kit
ExoQuick
Characterization: RNA analysis
RNAse treatment
Moment of RNAse treatment
Before
RNAse type
RNase A
RNAse concentration
10
Characterization: Particle analysis
EV150109 3/4 Homo sapiens Blood plasma dUC
ExoQuick
Huang X 2015 0%

Study summary

Full title
All authors
Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R, Wang D, See W, Costello BA, Quevedo F, Tan W, Nandy D, Bevan GH, Longenbach S, Sun Z, Lu Y, Wang T, Thibodeau SN, Boardman L, Kohli M, Wang L.
Journal
Eur Urol
Abstract
BACKGROUND: Extracellular microRNAs (miRNAs) embedded in circulating exosomes may serves as prognost (show more...)BACKGROUND: Extracellular microRNAs (miRNAs) embedded in circulating exosomes may serves as prognostic biomarkers in cancer. OBJECTIVE: To identify and evaluate plasma exosomal miRNAs for prognosis in castration-resistant prostate cancer (CRPC). DESIGN, SETTING, AND PARTICIPANTS: RNA sequencing was performed to identify candidate exosomal miRNAs associated with overall survival in a screening cohort of 23 CRPC patients. Candidate miRNAs were further evaluated for prognosis using quantitative real-time polymerase chain reaction in a follow-up cohort of 100 CRPC patients. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Cox regression and Kaplan-Meier survival analyses were used to evaluate survival association using candidate miRNAs along with clinical prognostic factors. RESULTS AND LIMITATIONS: RNA sequencing in screening cohort generated approximately 6.80 million mappable reads per patient. Of those with normalized read counts ≥ 5, 43% were mapped to miRNAs for a total of 375 known and 57 novel miRNAs. Cox regression analysis identified an association of miR-1290, -1246, and -375 with overall survival (false discover rate < 0.05). Of those, higher levels of miR-1290 and -375 were significantly associated with poor overall survival (p < 0.004) in the follow-up cohort. Incorporation of miR-1290/-375 into putative clinical prognostic factors-based models in CRPC stage significantly improved predictive performance with a time-dependent area under the curve increase from 0.66 to 0.73 (p = 6.57 × 10(-6)). CONCLUSIONS: Plasma exosomal miR-1290 and miR-375 are promising prognostic biomarkers for CRPC patients. Prospective validation is needed for further evaluation of these candidate miRNAs. PATIENT SUMMARY: In this study, we evaluated whether small RNAs circulating in blood could be used to predict clinical outcomes in late-stage prostate cancer patients. We identified two blood-based small RNAs whose levels showed significant association with survival. Our results warrant further investigation because the noninvasive blood-based test has great potential in the management of late-stage prostate cancer. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
pancreatic cancer
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + ExoQuick
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Sample Condition
pancreatic cancer
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Commercial kit
ExoQuick
Characterization: RNA analysis
RNAse treatment
Moment of RNAse treatment
Before
RNAse type
RNase A
RNAse concentration
10
Characterization: Particle analysis
EV150109 4/4 Homo sapiens Blood plasma dUC
ExoQuick
Huang X 2015 0%

Study summary

Full title
All authors
Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R, Wang D, See W, Costello BA, Quevedo F, Tan W, Nandy D, Bevan GH, Longenbach S, Sun Z, Lu Y, Wang T, Thibodeau SN, Boardman L, Kohli M, Wang L.
Journal
Eur Urol
Abstract
BACKGROUND: Extracellular microRNAs (miRNAs) embedded in circulating exosomes may serves as prognost (show more...)BACKGROUND: Extracellular microRNAs (miRNAs) embedded in circulating exosomes may serves as prognostic biomarkers in cancer. OBJECTIVE: To identify and evaluate plasma exosomal miRNAs for prognosis in castration-resistant prostate cancer (CRPC). DESIGN, SETTING, AND PARTICIPANTS: RNA sequencing was performed to identify candidate exosomal miRNAs associated with overall survival in a screening cohort of 23 CRPC patients. Candidate miRNAs were further evaluated for prognosis using quantitative real-time polymerase chain reaction in a follow-up cohort of 100 CRPC patients. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Cox regression and Kaplan-Meier survival analyses were used to evaluate survival association using candidate miRNAs along with clinical prognostic factors. RESULTS AND LIMITATIONS: RNA sequencing in screening cohort generated approximately 6.80 million mappable reads per patient. Of those with normalized read counts ≥ 5, 43% were mapped to miRNAs for a total of 375 known and 57 novel miRNAs. Cox regression analysis identified an association of miR-1290, -1246, and -375 with overall survival (false discover rate < 0.05). Of those, higher levels of miR-1290 and -375 were significantly associated with poor overall survival (p < 0.004) in the follow-up cohort. Incorporation of miR-1290/-375 into putative clinical prognostic factors-based models in CRPC stage significantly improved predictive performance with a time-dependent area under the curve increase from 0.66 to 0.73 (p = 6.57 × 10(-6)). CONCLUSIONS: Plasma exosomal miR-1290 and miR-375 are promising prognostic biomarkers for CRPC patients. Prospective validation is needed for further evaluation of these candidate miRNAs. PATIENT SUMMARY: In this study, we evaluated whether small RNAs circulating in blood could be used to predict clinical outcomes in late-stage prostate cancer patients. We identified two blood-based small RNAs whose levels showed significant association with survival. Our results warrant further investigation because the noninvasive blood-based test has great potential in the management of late-stage prostate cancer. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
colorectal cancer
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + ExoQuick
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Sample Condition
colorectal cancer
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Commercial kit
ExoQuick
Characterization: RNA analysis
RNAse treatment
Moment of RNAse treatment
Before
RNAse type
RNase A
RNAse concentration
10
Characterization: Particle analysis
EV150108 4/4 Homo sapiens Cell culture supernatant dUC Tosar JP 2015 0%

Study summary

Full title
All authors
Tosar JP, Gámbaro F, Sanguinetti J, Bonilla B, Witwer KW, Cayota A.
Journal
Nucleic Acids Res
Abstract
Intercellular communication can be mediated by extracellular small regulatory RNAs (sRNAs). Circulat (show more...)Intercellular communication can be mediated by extracellular small regulatory RNAs (sRNAs). Circulating sRNAs are being intensively studied for their promising use as minimally invasive disease biomarkers. To date, most attention is centered on exosomes and microRNAs as the vectors and the secreted species, respectively. However, this field would benefit from an increased understanding of the plethora of sRNAs secreted by different cell types in different extracellular fractions. It is still not clear if specific sRNAs are selected for secretion, or if sRNA secretion is mostly passive. We sequenced the intracellular sRNA content (19-60 nt) of breast epithelial cell lines (MCF-7 and MCF-10A) and compared it with extracellular fractions enriched in microvesicles, exosomes and ribonucleoprotein complexes. Our results are consistent with a non-selective secretion model for most microRNAs, although a few showed secretion patterns consistent with preferential secretion. On the contrary, 5' tRNA halves and 5' RNA Y4-derived fragments of 31-33 were greatly and significantly enriched in the extracellular space (even in non-mammary cell lines), where tRNA halves were detected as part of ∼45 kDa ribonucleoprotein complexes. Overall, we show that different sRNA families have characteristic secretion patterns and open the question of the role of these sRNAs in the extracellular space. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
MCF-10A
EV-harvesting Medium
Serum free medium
Cell viability
Yes
Cell viability (%)
Yes
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting: time(min)
30
Pelleting: rotor type
Not specified
Pelleting: speed (g)
16000
Wash: time (min)
30
Wash: Rotor Type
Not specified
Wash: speed (g)
16000
Protein Concentration Method
BCA
Characterization: Particle analysis
EV150107 1/2 Homo sapiens Breast milk dUC
ExoQuick
Simpson MR 2015 0%

Study summary

Full title
All authors
Simpson MR, Brede G, Johansen J, Johnsen R, Storrø O, Sætrom P, Øien T.
Journal
PLoS One
Abstract
BACKGROUND: Perinatal probiotic ingestion has been shown to prevent atopic dermatitis (AD) in infanc (show more...)BACKGROUND: Perinatal probiotic ingestion has been shown to prevent atopic dermatitis (AD) in infancy in a number of randomised trials. The Probiotics in the Prevention of Allergy among Children in Trondheim (ProPACT) trial involved a probiotic supplementation regime given solely to mothers in the perinatal period and demonstrated a ~40% relative risk reduction in the cumulative incidence of AD at 2 years of age. However, the mechanisms behind this effect are incompletely understood. Micro-RNAs (miRNA) are abundant in mammalian milk and may influence the developing gastrointestinal and immune systems of newborn infants. The objectives of this study were to describe the miRNA profile of human breast milk, and to investigate breast milk miRNAs as possible mediators of the observed preventative effect of probiotics. METHODS: Small RNA sequencing was conducted on samples collected 3 months postpartum from 54 women participating in the ProPACT trial. Differential expression of miRNA was assessed for the probiotic vs placebo and AD vs non-AD groups. The results were further analysed using functional prediction techniques. RESULTS: Human breast milk samples contain a relatively stable core group of highly expressed miRNAs, including miR-148a-3p, miR-22-3p, miR-30d-5p, let-7b-5p and miR-200a-3p. Functional analysis of these miRNAs revealed enrichment in a broad range of biological processes and molecular functions. Although several miRNAs were found to be differentially expressed on comparison of the probiotic vs placebo and AD vs non-AD groups, none had an acceptable false discovery rate and their biological significance in the development of AD is not immediately apparent from their predicted functional consequences. CONCLUSION: Whilst breast milk miRNAs have the potential to be active in a diverse range of tissues and biological process, individual miRNAs in breast milk 3 months postpartum are unlikely to play a major role in the prevention of atopic dermatitis in infancy by probiotics ingestion in the perinatal period. (hide)
EV-METRIC
0% (median: 0% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Breast milk
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + ExoQuick
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Breast milk
Sample Condition
Control condition
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Commercial kit
ExoQuick
Characterization: Particle analysis
EV150107 2/2 Homo sapiens Breast milk dUC
ExoQuick
Simpson MR 2015 0%

Study summary

Full title
All authors
Simpson MR, Brede G, Johansen J, Johnsen R, Storrø O, Sætrom P, Øien T.
Journal
PLoS One
Abstract
BACKGROUND: Perinatal probiotic ingestion has been shown to prevent atopic dermatitis (AD) in infanc (show more...)BACKGROUND: Perinatal probiotic ingestion has been shown to prevent atopic dermatitis (AD) in infancy in a number of randomised trials. The Probiotics in the Prevention of Allergy among Children in Trondheim (ProPACT) trial involved a probiotic supplementation regime given solely to mothers in the perinatal period and demonstrated a ~40% relative risk reduction in the cumulative incidence of AD at 2 years of age. However, the mechanisms behind this effect are incompletely understood. Micro-RNAs (miRNA) are abundant in mammalian milk and may influence the developing gastrointestinal and immune systems of newborn infants. The objectives of this study were to describe the miRNA profile of human breast milk, and to investigate breast milk miRNAs as possible mediators of the observed preventative effect of probiotics. METHODS: Small RNA sequencing was conducted on samples collected 3 months postpartum from 54 women participating in the ProPACT trial. Differential expression of miRNA was assessed for the probiotic vs placebo and AD vs non-AD groups. The results were further analysed using functional prediction techniques. RESULTS: Human breast milk samples contain a relatively stable core group of highly expressed miRNAs, including miR-148a-3p, miR-22-3p, miR-30d-5p, let-7b-5p and miR-200a-3p. Functional analysis of these miRNAs revealed enrichment in a broad range of biological processes and molecular functions. Although several miRNAs were found to be differentially expressed on comparison of the probiotic vs placebo and AD vs non-AD groups, none had an acceptable false discovery rate and their biological significance in the development of AD is not immediately apparent from their predicted functional consequences. CONCLUSION: Whilst breast milk miRNAs have the potential to be active in a diverse range of tissues and biological process, individual miRNAs in breast milk 3 months postpartum are unlikely to play a major role in the prevention of atopic dermatitis in infancy by probiotics ingestion in the perinatal period. (hide)
EV-METRIC
0% (median: 0% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Breast milk
Sample origin
receiving probiotic-supplemented milk
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + ExoQuick
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Breast milk
Sample Condition
receiving probiotic-supplemented milk
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Commercial kit
ExoQuick
Characterization: Particle analysis
EV150100 1/1 Homo sapiens Cell culture supernatant dUC Yu DD 2015 0%

Study summary

Full title
All authors
Yu DD, Wu Y, Zhang XH, Lv MM, Chen WX, Chen X, Yang SJ, Shen H, Zhong SL, Tang JH, Zhao JH
Journal
Tumour Biol
Abstract
Breast cancer (BCa) is one of the major deadly cancers in women. However, treatment of BCa is still (show more...)Breast cancer (BCa) is one of the major deadly cancers in women. However, treatment of BCa is still hindered by the acquired-drug resistance. It is increasingly reported that exosomes take part in the development, metastasis, and drug resistance of BCa. However, the specific role of exosomes in drug resistance of BCa is poorly understood. In this study, we investigate whether exosomes transmit drug resistance through delivering miR-222. We established an adriamycin-resistant variant of Michigan Cancer Foundation-7 (MCF-7) breast cancer cell line (MCF-7/Adr) from a drug-sensitive variant (MCF-7/S). Exosomes were isolated from cell supernatant by ultracentrifugation. Cell viability was assessed by MTT assay and apoptosis assay. Individual miR-222 molecules in BCa cells were detected by fluorescence in situ hybridization (FISH). Then, FISH was combined with locked nucleic acid probes and enzyme-labeled fluorescence (LNA-ELF-FISH). Individual miR-222 could be detected as bright photostable fluorescent spots and then the quantity of miR-222 per cell could be counted. Stained exosomes were taken in by the receipt cells. MCF-7/S acquired drug resistance after co-culture with exosomes from MCF-7/Adr (A/exo) but did not after co-culture with exosomes from MCF-7/S (S/exo). The quantity of miR-222 in A/exo-treated MCF-7/S was significantly greater than in S/exo-treated MCF-7/S. MCF-7/S transfected with miR-222 mimics acquired adriamycin resistance while MCF-7/S transfected with miR-222 inhibitors lost resistance. In conclusion, exosomes are effective in transmitting drug resistance and the delivery of miR-222 via exosomes may be a mechanism. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
120
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV150099 1/1 Homo sapiens Cell culture supernatant dUC Yang Y 2015 0%

Study summary

Full title
All authors
Yang Y, Bucan V, Baehre H, von der Ohe J, Otte A, Hass R
Journal
PLoS One
Abstract
Interaction between multi-functional mesenchymal stroma/stem cells (MSC) and human tumor cells invol (show more...)Interaction between multi-functional mesenchymal stroma/stem cells (MSC) and human tumor cells involves the exchange of biological material via extracellular vesicles including exosomes. Protein analysis of MSC-derived exosomes demonstrated the presence of MMP-2 and MSC-specific markers including CD90 and ecto-5'-nucleotidase (CD73). Incubation of tumor cells with these membranous particles revealed a rapid uptake of MSC-released microvesicles whereby breast cancer cells incorporated ~19% and SCCOHT-1 cells representing a rare type of small cell ovarian cancer assimilated ~28% of available exosomes within 24 h. This interaction was accompanied by functional alterations of tumor cell properties during integration of exosomal content from MSC. Indeed, exosome-associated MMP-2 exhibited functional enzyme activity and MCF-7 breast cancer cells with undetectable MMP-2 protein acquired expression of this enzyme and corresponding gelatinase functionality after stimulation with MSC-derived exosomes. Similar effects were observed in SCCOHT-1 cells during culture in the presence of MSC-derived exosomes which enabled new metabolic activities in this tumor cell type. Together, these findings demonstrated that the internalization of MSC-derived exosomes was associated with the acquisition of new tumor cell properties by altering cellular functionalities and providing the capability to re-organize the tumor microenvironment. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
60
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV150098 1/1 Homo sapiens "Cerebrospinal fluid" dUC Ding X 2015 0%

Study summary

Full title
All authors
Ding X, Ma M, Teng J, Teng RK, Zhou S, Yin J, Fonkem E, Huang JH, Wu E, Wang X
Journal
Oncotarget
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) represent a continuum of devas (show more...)Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) represent a continuum of devastating neurodegenerative diseases, characterized by transactive response DNA-binding protein of 43 kDa (TDP-43) aggregates accumulation throughout the nervous system. Despite rapidly emerging evidence suggesting the hypothesis of prion-like propagation of TDP-43 positive inclusion in the regional spread of ALS symptoms, whether and how TDP-43 aggregates spread between cells is not clear. Herein, we established a cerebrospinal fluid (CSF)-cultured cell model to dissect mechanisms governing TDP-43 aggregates formation and propagation. Remarkably, intracellular TDP-43 mislocalization and aggregates were induced in the human glioma U251 cells following exposure to ALS-FTD-CSF but not ALS-CSF and normal control (NC) -CSF for 21 days. The exosomes derived from ALS-FTD-CSF were enriched in TDP-43 C-terminal fragments (CTFs). Incubation of ALS-FTD-CSF induced the increase of mislocated TDP-43 positive exosomes in U251 cells. We further demonstrated that exposure to ALS-FTD-CSF induced the generations of tunneling nanotubes (TNTs)-like structure and exosomes at different stages, which mediated the propagation of TDP-43 aggregates in the cultured U251 cells. Moreover, immunoblotting analyses revealed that abnormal activations of apoptosis and autophagy were induced in U251 cells, following incubation of ALS-CSF and ALS-FTD-CSF. Taken together, our data provide direct evidence that ALS-FTD-CSF has prion-like transmissible properties. TNTs-like structure and exosomes supply the routes for the transfer of TDP-43 aggregates, and selective inhibition of their over-generations may interrupt the progression of TDP-43 proteinopathy. (hide)
EV-METRIC
0% (median: 18% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
"Cerebrospinal fluid"
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: Flotilin1
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
"Cerebrospinal fluid"
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting: time(min)
60
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Flotilin1
Characterization: Particle analysis
EV150097 1/1 Homo sapiens Cell culture supernatant dUC Wu M 2015 0%

Study summary

Full title
All authors
Wu M, Barnard J, Kundu S, McCrae KR
Journal
J Thromb Haemost
Abstract
BACKGROUND: Elevated levels of endothelial cell (EC)-derived extracellular vesicles (EVs) circulate (show more...)BACKGROUND: Elevated levels of endothelial cell (EC)-derived extracellular vesicles (EVs) circulate in patients with antiphospholipid antibodies (APLAs), and APLAs, particularly those against ?2 -glycoprotein I (?2 GPI), stimulate EV release from ECs. However, the effects of EC-derived EVs have not been characterized. OBJECTIVE: To determine the mechanism by which EVs released from ECs by anti-?2 GPI antibodies activate unstimulated ECs. PATIENTS/METHODS: We used interleukin (IL)-1 receptor inhibitors, small interfering RNA (siRNA) against Toll-like receptors (TLRs) and microRNA (miRNA) profiling to assess the mechanism(s) by which EVs released from ECs exposed to anti-?2 GPI antibodies activated unstimulated ECs. RESULTS AND CONCLUSIONS: Anti-?2 GPI antibodies caused formation of an EC inflammasome and the release of EVs that were enriched in mature IL-1?, had a distinct miRNA profile, and caused endothelial activation. However, activation was not inhibited by an IL-1? antibody, an IL-1 receptor antagonist, or IL-1 receptor siRNA. EC activation by EVs required IL-1 receptor-associated kinase 4 phosphorylation, and was inhibited by pretreatment of cells with TLR7 siRNA or RNase A, which degrades ssRNA. Profiling of miRNA in EVs released from ECs incubated with ?2 GPI and either control IgG or anti-?2 GPI antibodies revealed numerous differences in the content of specific miRNAs, including a significant decrease in mIR126. These observations demonstrate that, although anti-?2 GPI-derived endothelial EVs contain IL-1?, they activate unstimulated ECs through a TLR7-dependent and ssRNA-dependent pathway. Alterations in miRNA content may contribute to the ability of EVs derived from ECs exposed to anti-?2 GPI antibodies to activate unstimulated ECs in an autocrine or paracrine manner. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
90
Characterization: Particle analysis
EV150092 1/3 Homo sapiens Cell culture supernatant dUC
Filtration
Tokuhisa M 2015 0%

Study summary

Full title
All authors
Tokuhisa M, Ichikawa Y, Kosaka N, Ochiya T, Yashiro M, Hirakawa K, Kosaka T, Makino H, Akiyama H, Kunisaki C, Endo I
Journal
PLoS One
Abstract
Peritoneal metastasis is the most frequent type of recurrence in patients with gastric cancer (GC) a (show more...)Peritoneal metastasis is the most frequent type of recurrence in patients with gastric cancer (GC) and is associated with poor prognosis. Peritoneal lavage cytology, used to evaluate the risk of peritoneal metastasis, has low sensitivity. Here, we assessed the diagnostic potential of exosomal miRNA profiles in peritoneal fluid for the prediction of peritoneal dissemination in GC. Total RNA was extracted from exosomes isolated from six gastric malignant ascites (MA) samples, 24 peritoneal lavage fluid (PLF) samples, and culture supernatants (CM) of two human gastric carcinoma cell lines that differ in their potential for peritoneal metastasis. Expression of exosomal miRNAs was evaluated with Agilent Human miRNA microarrays and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The microarray analysis indicated a low variability in the number and signal intensity of miRNAs detected among the samples. In the six MA fluids, miR-21 showed the highest signal intensity. We identified five miRNAs (miR-1225-5p, miR-320c, miR-1202, miR-1207-5p, and miR-4270) with high expression in MA samples, the PLF of serosa-invasive GC, and the CM of a highly metastatic GC cell line; these candidate miRNA species appear to be related to peritoneal dissemination. Differential expression of miR-21, miR-320c, and miR-1225-5p was validated in the PLF of serosa-invasive and non-invasive GC by qRT-PCR and miR-21 and miR-1225-5p were confirmed to be associated with serosal invasion in GC. PLF can be used to profile the expression of exosomal miRNAs. Our findings suggest that miR-21 and miR-1225-5p may serve as biomarkers of peritoneal recurrence after curative GC resection, thus providing a novel approach to early diagnosis of peritoneal dissemination of GC. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
70
Wash: volume per pellet (ml)
11
Filtration steps
0.22µm or 0.2µm
Characterization: Particle analysis
EV150092 2/3 Homo sapiens Ascites dUC
Filtration
Tokuhisa M 2015 0%

Study summary

Full title
All authors
Tokuhisa M, Ichikawa Y, Kosaka N, Ochiya T, Yashiro M, Hirakawa K, Kosaka T, Makino H, Akiyama H, Kunisaki C, Endo I
Journal
PLoS One
Abstract
Peritoneal metastasis is the most frequent type of recurrence in patients with gastric cancer (GC) a (show more...)Peritoneal metastasis is the most frequent type of recurrence in patients with gastric cancer (GC) and is associated with poor prognosis. Peritoneal lavage cytology, used to evaluate the risk of peritoneal metastasis, has low sensitivity. Here, we assessed the diagnostic potential of exosomal miRNA profiles in peritoneal fluid for the prediction of peritoneal dissemination in GC. Total RNA was extracted from exosomes isolated from six gastric malignant ascites (MA) samples, 24 peritoneal lavage fluid (PLF) samples, and culture supernatants (CM) of two human gastric carcinoma cell lines that differ in their potential for peritoneal metastasis. Expression of exosomal miRNAs was evaluated with Agilent Human miRNA microarrays and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The microarray analysis indicated a low variability in the number and signal intensity of miRNAs detected among the samples. In the six MA fluids, miR-21 showed the highest signal intensity. We identified five miRNAs (miR-1225-5p, miR-320c, miR-1202, miR-1207-5p, and miR-4270) with high expression in MA samples, the PLF of serosa-invasive GC, and the CM of a highly metastatic GC cell line; these candidate miRNA species appear to be related to peritoneal dissemination. Differential expression of miR-21, miR-320c, and miR-1225-5p was validated in the PLF of serosa-invasive and non-invasive GC by qRT-PCR and miR-21 and miR-1225-5p were confirmed to be associated with serosal invasion in GC. PLF can be used to profile the expression of exosomal miRNAs. Our findings suggest that miR-21 and miR-1225-5p may serve as biomarkers of peritoneal recurrence after curative GC resection, thus providing a novel approach to early diagnosis of peritoneal dissemination of GC. (hide)
EV-METRIC
0% (median: 11% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Ascites
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Ascites
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
70
Wash: volume per pellet (ml)
11
Filtration steps
0.22µm or 0.2µm
Characterization: Particle analysis
EV150092 3/3 Homo sapiens Peritoneal lavage fluid dUC
Filtration
Tokuhisa M 2015 0%

Study summary

Full title
All authors
Tokuhisa M, Ichikawa Y, Kosaka N, Ochiya T, Yashiro M, Hirakawa K, Kosaka T, Makino H, Akiyama H, Kunisaki C, Endo I
Journal
PLoS One
Abstract
Peritoneal metastasis is the most frequent type of recurrence in patients with gastric cancer (GC) a (show more...)Peritoneal metastasis is the most frequent type of recurrence in patients with gastric cancer (GC) and is associated with poor prognosis. Peritoneal lavage cytology, used to evaluate the risk of peritoneal metastasis, has low sensitivity. Here, we assessed the diagnostic potential of exosomal miRNA profiles in peritoneal fluid for the prediction of peritoneal dissemination in GC. Total RNA was extracted from exosomes isolated from six gastric malignant ascites (MA) samples, 24 peritoneal lavage fluid (PLF) samples, and culture supernatants (CM) of two human gastric carcinoma cell lines that differ in their potential for peritoneal metastasis. Expression of exosomal miRNAs was evaluated with Agilent Human miRNA microarrays and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The microarray analysis indicated a low variability in the number and signal intensity of miRNAs detected among the samples. In the six MA fluids, miR-21 showed the highest signal intensity. We identified five miRNAs (miR-1225-5p, miR-320c, miR-1202, miR-1207-5p, and miR-4270) with high expression in MA samples, the PLF of serosa-invasive GC, and the CM of a highly metastatic GC cell line; these candidate miRNA species appear to be related to peritoneal dissemination. Differential expression of miR-21, miR-320c, and miR-1225-5p was validated in the PLF of serosa-invasive and non-invasive GC by qRT-PCR and miR-21 and miR-1225-5p were confirmed to be associated with serosal invasion in GC. PLF can be used to profile the expression of exosomal miRNAs. Our findings suggest that miR-21 and miR-1225-5p may serve as biomarkers of peritoneal recurrence after curative GC resection, thus providing a novel approach to early diagnosis of peritoneal dissemination of GC. (hide)
EV-METRIC
0% (median: 0% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Peritoneal lavage fluid
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Peritoneal lavage fluid
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
70
Wash: volume per pellet (ml)
11
Filtration steps
0.22µm or 0.2µm
Characterization: Particle analysis
EV150090 1/3 Homo sapiens Cell culture supernatant dUC Shi R 2015 0%

Study summary

Full title
All authors
Shi R, Wang PY, Li XY, Chen JX, Li Y, Zhang XZ, Zhang CG, Jiang T, Li WB, Ding W, Cheng SJ
Journal
Oncotarget
Abstract
Glioma is a most common type of primary brain tumors. Extracellular vesicles, in the form of exosome (show more...)Glioma is a most common type of primary brain tumors. Extracellular vesicles, in the form of exosomes, are known to mediate cell-cell communication by transporting cell-derived proteins and nucleic acids, including various microRNAs (miRNAs). Here we examined the cerebrospinal fluid (CSF) from patients with recurrent glioma for the levels of cancer-related miRNAs, and evaluated the values for prognosis by comparing the measures of CSF-, serum-, and exosome-contained miR-21 levels. Samples from seventy glioma patients following surgery were compared with those from brain trauma patients as a non-tumor control group. Exosomal miR-21 levels in the CSF of glioma patients were found significantly higher than in the controls; whereas no difference was detected in serum-derived exosomal miR-21 expression. The CSF-derived exosomal miR-21 levels correlated with tumor spinal/ventricle metastasis and the recurrence with anatomical site preference. From additional 198 glioma tissue samples, we verified that miR-21 levels associated with tumor grade of diagnosis and negatively correlated with the median values of patient overall survival time. We further used a lentiviral inhibitor to suppress miR-21 expression in U251 cells. The results showed that the levels of miR-21 target genes of PTEN, RECK and PDCD4 were up-regulated at protein levels. Therefore, we concluded that the exosomal miR-21 levels could be demonstrated as a promising indicator for glioma diagnosis and prognosis, particularly with values to predict tumor recurrence or metastasis. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting: time(min)
90
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV150090 2/3 Homo sapiens Serum dUC Shi R 2015 0%

Study summary

Full title
All authors
Shi R, Wang PY, Li XY, Chen JX, Li Y, Zhang XZ, Zhang CG, Jiang T, Li WB, Ding W, Cheng SJ
Journal
Oncotarget
Abstract
Glioma is a most common type of primary brain tumors. Extracellular vesicles, in the form of exosome (show more...)Glioma is a most common type of primary brain tumors. Extracellular vesicles, in the form of exosomes, are known to mediate cell-cell communication by transporting cell-derived proteins and nucleic acids, including various microRNAs (miRNAs). Here we examined the cerebrospinal fluid (CSF) from patients with recurrent glioma for the levels of cancer-related miRNAs, and evaluated the values for prognosis by comparing the measures of CSF-, serum-, and exosome-contained miR-21 levels. Samples from seventy glioma patients following surgery were compared with those from brain trauma patients as a non-tumor control group. Exosomal miR-21 levels in the CSF of glioma patients were found significantly higher than in the controls; whereas no difference was detected in serum-derived exosomal miR-21 expression. The CSF-derived exosomal miR-21 levels correlated with tumor spinal/ventricle metastasis and the recurrence with anatomical site preference. From additional 198 glioma tissue samples, we verified that miR-21 levels associated with tumor grade of diagnosis and negatively correlated with the median values of patient overall survival time. We further used a lentiviral inhibitor to suppress miR-21 expression in U251 cells. The results showed that the levels of miR-21 target genes of PTEN, RECK and PDCD4 were up-regulated at protein levels. Therefore, we concluded that the exosomal miR-21 levels could be demonstrated as a promising indicator for glioma diagnosis and prognosis, particularly with values to predict tumor recurrence or metastasis. (hide)
EV-METRIC
0% (median: 13% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: CD63
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting: time(min)
90
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD63
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV150090 3/3 Homo sapiens "Cerebrospinal fluid" dUC Shi R 2015 0%

Study summary

Full title
All authors
Shi R, Wang PY, Li XY, Chen JX, Li Y, Zhang XZ, Zhang CG, Jiang T, Li WB, Ding W, Cheng SJ
Journal
Oncotarget
Abstract
Glioma is a most common type of primary brain tumors. Extracellular vesicles, in the form of exosome (show more...)Glioma is a most common type of primary brain tumors. Extracellular vesicles, in the form of exosomes, are known to mediate cell-cell communication by transporting cell-derived proteins and nucleic acids, including various microRNAs (miRNAs). Here we examined the cerebrospinal fluid (CSF) from patients with recurrent glioma for the levels of cancer-related miRNAs, and evaluated the values for prognosis by comparing the measures of CSF-, serum-, and exosome-contained miR-21 levels. Samples from seventy glioma patients following surgery were compared with those from brain trauma patients as a non-tumor control group. Exosomal miR-21 levels in the CSF of glioma patients were found significantly higher than in the controls; whereas no difference was detected in serum-derived exosomal miR-21 expression. The CSF-derived exosomal miR-21 levels correlated with tumor spinal/ventricle metastasis and the recurrence with anatomical site preference. From additional 198 glioma tissue samples, we verified that miR-21 levels associated with tumor grade of diagnosis and negatively correlated with the median values of patient overall survival time. We further used a lentiviral inhibitor to suppress miR-21 expression in U251 cells. The results showed that the levels of miR-21 target genes of PTEN, RECK and PDCD4 were up-regulated at protein levels. Therefore, we concluded that the exosomal miR-21 levels could be demonstrated as a promising indicator for glioma diagnosis and prognosis, particularly with values to predict tumor recurrence or metastasis. (hide)
EV-METRIC
0% (median: 18% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
"Cerebrospinal fluid"
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: CD63
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
"Cerebrospinal fluid"
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting: time(min)
90
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD63
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV150063 1/2 Homo sapiens Serum Filtration
IAF
Microfluidics
Shao H 2015 0%

Study summary

Full title
All authors
Shao H, Chung J, Lee K, Balaj L, Min C, Carter BS, Hochberg FH, Breakefield XO, Lee H, Weissleder R
Journal
Nat Commun
Abstract
Real-time monitoring of drug efficacy in glioblastoma multiforme (GBM) is a major clinical problem a (show more...)Real-time monitoring of drug efficacy in glioblastoma multiforme (GBM) is a major clinical problem as serial re-biopsy of primary tumours is often not a clinical option. MGMT (O(6)-methylguanine DNA methyltransferase) and APNG (alkylpurine-DNA-N-glycosylase) are key enzymes capable of repairing temozolomide-induced DNA damages and their levels in tissue are inversely related to treatment efficacy. Yet, serial clinical analysis remains difficult, and, when done, primarily relies on promoter methylation studies of tumour biopsy material at the time of initial surgery. Here we present a microfluidic chip to analyse mRNA levels of MGMT and APNG in enriched tumour exosomes obtained from blood. We show that exosomal mRNA levels of these enzymes correlate well with levels found in parental cells and that levels change considerably during treatment of seven patients. We propose that if validated on a larger cohort of patients, the method may be used to predict drug response in GBM patients. (hide)
EV-METRIC
0% (median: 13% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Filtration + IAF + Microfluidics
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
Filtration steps
> 0.45 µm,
Other
Name other separation method
Microfluidics
Characterization: Particle analysis
EV150089 1/1 Homo sapiens Cell culture supernatant dUC
ExoQuick
Senfter D 2015 0%

Study summary

Full title
All authors
Senfter D, Holzner S, Kalipciyan M, Staribacher A, Walzl A, Huttary N, Krieger S, Brenner S, Jäger W, Krupitza G, Dolznig H, Mader RM
Journal
Hum Mol Genet
Abstract
Invasive colorectal cancer is associated with poor prognosis requiring treatment with systemic chemo (show more...)Invasive colorectal cancer is associated with poor prognosis requiring treatment with systemic chemotherapies usually including 5-fluorouracil. A consequence of prolonged treatment is the acquisition of resistance eventually resulting in the recurrence of highly metastatic cancer cells. To address the relationship between drug resistance and increased lymphatic metastatic potential, we used a 3D co-culture model of colon tumour cell spheroids of parent CCL227 cells and subclones with gradually increasing resistance against 5-fluorouracil. From each investigated cell line, homogeneous tumour spheroids were generated in the presence of methylcellulose yielding emboli of ?700 µm diameter. When invasive, tumour spheroids disrupt the continuous lymphendothelial cell (LEC) layer and generate a circular chemorepellent-induced defect (CCID), reminiscent of the entry gates through which tumour emboli intravasate lymphatic vasculature. Here we provide evidence that increasingly chemoresistant colon cancer spheroids were strongly associated with enhanced intravasative properties. In naïve CCL227 spheroids, miR-200 family members were released into exosomes thereby repressing the epithelial to mesenchymal transition-regulating transcription factors ZEB1 and SLUG in LEC. As a consequence of attenuated plasticity and migration of LEC, CCID formation was impaired. Loss of exosomal transferred miR-200c in resistant colon cells rendered LEC more susceptible to pro-migratory signals that were generated and directly transmitted by colon cancer spheroids. This observation indicates a common molecular axis in colon cancer and LEC where miR-200 family members act as regulators of ZEB proteins. The data support the notion that horizontal miR-200 signalling prevents the permeation of cells into adjacent epithelia and contributes to organ integrity. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + ExoQuick
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Commercial kit
ExoQuick
Characterization: Particle analysis
EV150088 1/1 Homo sapiens Serum dUC Schumacher N 2015 0%

Study summary

Full title
All authors
Schumacher N, Meyer D, Mauermann A, von der Heyde J, Wolf J, Schwarz J, Knittler K, Murphy G, Michalek M, Garbers C, Bartsch JW, Guo S, Schacher B, Eickholz P, Chalaris A, Rose-John S, Rabe B
Journal
J Biol Chem
Abstract
Generation of the soluble interleukin-6 receptor (sIL-6R) is a prerequisite for pathogenic IL-6 tran (show more...)Generation of the soluble interleukin-6 receptor (sIL-6R) is a prerequisite for pathogenic IL-6 trans-signaling, which constitutes a distinct signaling pathway of the pleiotropic cytokine interleukin-6 (IL-6). Although in vitro experiments using ectopically overexpressed IL-6R and candidate proteases revealed major roles for the metalloproteinases ADAM10 and ADAM17 in IL-6R shedding, the identity of the protease(s) cleaving IL-6R in more physiological settings, or even in vivo, remains unknown. By taking advantage of specific pharmacological inhibitors and primary cells from ADAM-deficient mice we established that endogenous IL-6R of both human and murine origin is shed by ADAM17 in an induced manner, whereas constitutive release of endogenous IL-6R is largely mediated by ADAM10. Although circulating IL-6R levels are altered in various diseases, the origin of blood-borne IL-6R is still poorly understood. It has been shown previously that ADAM17 hypomorphic mice exhibit unaltered levels of serum sIL-6R. Here, by quantification of serum sIL-6R in protease-deficient mice as well as human patients we also excluded ADAM10, ADAM8, neutrophil elastase, cathepsin G, and proteinase 3 from contributing to circulating sIL-6R. Furthermore, we ruled out alternative splicing of the IL-6R mRNA as a potential source of circulating sIL-6R in the mouse. Instead, we found full-length IL-6R on circulating microvesicles, establishing microvesicle release as a novel mechanism for sIL-6R generation. (hide)
EV-METRIC
0% (median: 13% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
DNF
Focus vesicles
microvesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: HSP70
non-EV:
Proteomics
no
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
HSP70
Characterization: Particle analysis
DLS
EV150048 1/4 Homo sapiens Cell culture supernatant dUC Samsonov R 2015 0%

Study summary

Full title
All authors
Samsonov R, Shtam T, Burdakov V, Glotov A, Tsyrlina E, Berstein L, Nosov A, Evtushenko V, Filatov M, Malek A
Journal
Prostate
Abstract
BACKGROUND: Prostate cancer is the most common cancer in men. Prostate-specific antigen has, however (show more...)BACKGROUND: Prostate cancer is the most common cancer in men. Prostate-specific antigen has, however, insufficient diagnostic specificity. Novel complementary diagnostic approaches are greatly needed. MiRNAs are small regulatory RNAs which play an important role in tumorogenesis and are being investigated as a cancer biomarker. In addition to their intracellular regulatory functions, miRNAs are secreted into the extracellular space and can be found in various body fluids, including urine. The stability of extracellular miRNAs is defined by association with proteins, lipoprotein particles, and membrane vesicles. Among the known forms of miRNA packaging, tumour-derived exosome-enclosed miRNAs is thought to reflect the vital activity of cancer cells. The assessment of the exosomal fraction of urinary miRNA may present a new and highly specific method for prostate cancer diagnostics; however, this is challenged by the absence of reliable and inexpensive methods for isolation of exosomes. METHODS: Prostate cancer (PC) cell lines and urine samples collected from 35 PC patients and 35 healthy donors were used in the study. Lectins, phytohemagglutinin, and concanavalin A were used to induce agglutination of exosomes. The efficiency of isolation process was evaluated by AFM and DLS assays. The protein content of isolated exosomes was analysed by western blotting. Exosomal RNA was assayed by automated electrophoresis and expression level of selected miRNAs was evaluated by RT-qPCR. The diagnostic potency of the urinary exosomal miRNA assessment was estimated by the ROC method. RESULTS: The formation of multi-vesicular agglutinates in urine can be induced by incubation with lectin at a final concentration of 2 mg/ml. These agglutinates contain urinary exosomes and may be pelleted by centrifugation with a relatively low G-force. The analysis of PC-related miRNA in urinary exosomes revealed significant up-regulation of miR-574-3p, miR-141-5p, and miR-21-5p associated with PC. CONCLUSIONS: Lectin-induced aggregation is a low-cost and easily performed method for isolation of exosomes from urine. Isolated exosomes can be further analysed in terms of miRNA content. The miRNA profile of urinary exosomes reflects development of prostate cancer and may present a promising diagnostic tool. Prostate © 2015 Wiley Periodicals, Inc. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
70
Characterization: Particle analysis
EM
EM-type
atomic force EM
Image type
Wide-field
EV150048 2/4 Homo sapiens Urine dUC Samsonov R 2015 0%

Study summary

Full title
All authors
Samsonov R, Shtam T, Burdakov V, Glotov A, Tsyrlina E, Berstein L, Nosov A, Evtushenko V, Filatov M, Malek A
Journal
Prostate
Abstract
BACKGROUND: Prostate cancer is the most common cancer in men. Prostate-specific antigen has, however (show more...)BACKGROUND: Prostate cancer is the most common cancer in men. Prostate-specific antigen has, however, insufficient diagnostic specificity. Novel complementary diagnostic approaches are greatly needed. MiRNAs are small regulatory RNAs which play an important role in tumorogenesis and are being investigated as a cancer biomarker. In addition to their intracellular regulatory functions, miRNAs are secreted into the extracellular space and can be found in various body fluids, including urine. The stability of extracellular miRNAs is defined by association with proteins, lipoprotein particles, and membrane vesicles. Among the known forms of miRNA packaging, tumour-derived exosome-enclosed miRNAs is thought to reflect the vital activity of cancer cells. The assessment of the exosomal fraction of urinary miRNA may present a new and highly specific method for prostate cancer diagnostics; however, this is challenged by the absence of reliable and inexpensive methods for isolation of exosomes. METHODS: Prostate cancer (PC) cell lines and urine samples collected from 35 PC patients and 35 healthy donors were used in the study. Lectins, phytohemagglutinin, and concanavalin A were used to induce agglutination of exosomes. The efficiency of isolation process was evaluated by AFM and DLS assays. The protein content of isolated exosomes was analysed by western blotting. Exosomal RNA was assayed by automated electrophoresis and expression level of selected miRNAs was evaluated by RT-qPCR. The diagnostic potency of the urinary exosomal miRNA assessment was estimated by the ROC method. RESULTS: The formation of multi-vesicular agglutinates in urine can be induced by incubation with lectin at a final concentration of 2 mg/ml. These agglutinates contain urinary exosomes and may be pelleted by centrifugation with a relatively low G-force. The analysis of PC-related miRNA in urinary exosomes revealed significant up-regulation of miR-574-3p, miR-141-5p, and miR-21-5p associated with PC. CONCLUSIONS: Lectin-induced aggregation is a low-cost and easily performed method for isolation of exosomes from urine. Isolated exosomes can be further analysed in terms of miRNA content. The miRNA profile of urinary exosomes reflects development of prostate cancer and may present a promising diagnostic tool. Prostate © 2015 Wiley Periodicals, Inc. (hide)
EV-METRIC
0% (median: 25% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting: time(min)
70
Characterization: Particle analysis
EV150086 1/1 Homo sapiens Cell culture supernatant dUC Osterman CJ 2015 0%

Study summary

Full title
All authors
Osterman CJ, Lynch JC, Leaf P, Gonda A, Ferguson Bennit HR, Griffiths D, Wall NR
Journal
PLoS One
Abstract
Pancreatic cancer has the highest mortality rates of all cancer types. One potential explanation for (show more...)Pancreatic cancer has the highest mortality rates of all cancer types. One potential explanation for the aggressiveness of this disease is that cancer cells have been found to communicate with one another using membrane-bound vesicles known as exosomes. These exosomes carry pro-survival molecules and increase the proliferation, survival, and metastatic potential of recipient cells, suggesting that tumor-derived exosomes are powerful drivers of tumor progression. Thus, to successfully address and eradicate pancreatic cancer, it is imperative to develop therapeutic strategies that neutralize cancer cells and exosomes simultaneously. Curcumin, a turmeric root derivative, has been shown to have potent anti-cancer and anti-inflammatory effects in vitro and in vivo. Recent studies have suggested that exosomal curcumin exerts anti-inflammatory properties on recipient cells. However, curcumin's effects on exosomal pro-tumor function have yet to be determined. We hypothesize that curcumin will alter the pro-survival role of exosomes from pancreatic cancer cells toward a pro-death role, resulting in reduced cell viability of recipient pancreatic cancer cells. The main objective of this study was to determine the functional alterations of exosomes released by pancreatic cancer cells exposed to curcumin compared to exosomes from untreated pancreatic cancer cells. We demonstrate, using an in vitro cell culture model involving pancreatic adenocarcinoma cell lines PANC-1 and MIA PaCa-2, that curcumin is incorporated into exosomes isolated from curcumin-treated pancreatic cancer cells as observed by spectral studies and fluorescence microscopy. Furthermore, curcumin is delivered to recipient pancreatic cancer cells via exosomes, promoting cytotoxicity as demonstrated by Hoffman modulation contrast microscopy as well as AlamarBlue and Trypan blue exclusion assays. Collectively, these data suggest that the efficacy of curcumin may be enhanced in pancreatic cancer cells through exosomal facilitation. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Protein markers
EV: AChE
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Western Blot
Detected EV-associated proteins
AChE
ELISA
Detected EV-associated proteins
AChE
Characterization: Particle analysis
DLS
NTA
EV150061 1/2 Homo sapiens Cell culture supernatant dUC
ExoQuick
O'Brien K 2015 0%

Study summary

Full title
All authors
O'Brien K, Lowry MC, Corcoran C, Martinez VG, Daly M, Rani S, Gallagher WM, Radomski MW, MacLeod RA, O'Driscoll L
Journal
Oncotarget
Abstract
Exosomes (EVs) have relevance in cell-to-cell communication carrying pro-tumorigenic factors that pa (show more...)Exosomes (EVs) have relevance in cell-to-cell communication carrying pro-tumorigenic factors that participate in oncogenesis and drug resistance and are proposed to have potential as self-delivery systems. Advancing on our studies of EVs in triple-negative breast cancer, here we more comprehensively analysed isogenic cell line variants and their EV populations, tissues cell line variants and their EV populations, as well as breast tumour and normal tissues. Profiling 384 miRNAs showed EV miRNA content to be highly representative of their cells of origin. miRNAs most substantially down-regulated in aggressive cells and their EVs originated from 14q32. Analysis of miR-134, the most substantially down-regulated miRNA, supported its clinical relevance in breast tumours compared to matched normal breast tissue. Functional studies indicated that miR-134 controls STAT5B which, in turn, controls Hsp90. miR-134 delivered by direct transfection into Hs578Ts(i)8 cells (in which it was greatly down-regulated) reduced STAT5B, Hsp90, and Bcl-2 levels, reduced cellular proliferation, and enhanced cisplatin-induced apoptosis. Delivery via miR-134-enriched EVs also reduced STAT5B and Hsp90, reduced cellular migration and invasion, and enhanced sensitivity to anti-Hsp90 drugs. While the differing effects achieved by transfection or EV delivery are likely to be, at least partly, due to specific amounts of miR-134 delivered by these routes, these EV-based studies identified miRNA-134 as a potential biomarker and therapeutic for breast cancer. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + ExoQuick
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Commercial kit
ExoQuick