Search > Results

You searched for: 2019 (Year of publication)

Showing 101 - 150 of 963

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Experiment number
  • Experiments differ in Species, Sample origin
Experiment number
  • Experiments differ in Species, Sample origin
Experiment number
  • Experiments differ in Sample Origin
Experiment number
  • Experiments differ in Sample Origin
Experiment number
  • Experiments differ in Sample type, Sample condition
Experiment number
  • Experiments differ in Species, Sample type
Experiment number
  • Experiments differ in Separation protocol, Sample type
Experiment number
  • Experiments differ in Species, Sample type
Experiment number
  • Experiments differ in Species, Sample type
Experiment number
  • Experiments differ in Species, Sample type
Experiment number
  • Experiments differ in Sample origin
Experiment number
  • Experiments differ in Sample origin
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV210502 2/8 Homo sapiens Primary GBM Stem Cells RN1 (d)(U)C
Filtration
DG
Hallal S 2019 57%

Study summary

Full title
All authors
Hallal S, Mallawaaratchy DM, Wei H, Ebrahimkhani S, Stringer BW, Day BW, Boyd AW, Guillemin GJ, Buckland ME, Kaufman KL
Journal
Mol Neurobiol
Abstract
The role of astrocytes is becoming increasingly important to understanding how glioblastoma (GBM) tu (show more...)The role of astrocytes is becoming increasingly important to understanding how glioblastoma (GBM) tumor cells diffusely invade the brain. Yet, little is known of the contribution of extracellular vesicle (EV) signaling in GBM/astrocyte interactions. We modeled GBM-EV signaling to normal astrocytes in vitro to assess whether this mode of intercellular communication could support GBM progression. EVs were isolated and characterized from three patient-derived GBM stem cells (NES/CD133) and their differentiated (diff) progeny cells (NES/CD133). Uptake of GBM-EVs by normal primary astrocytes was confirmed by fluorescence microscopy, and changes in astrocyte podosome formation and gelatin degradation were measured. Quantitative mass spectrometry-based proteomics was performed on GBM-EV stimulated astrocytes. Interaction networks were generated from common, differentially abundant proteins using Ingenuity® (Qiagen Bioinformatics) and predicted upstream regulators were tested by qPCR assays. Podosome formation and Cy3-gelatin degradation were induced in astrocytes following 24-h exposure to GBM-stem and -diff EVs, with EVs released by GBM-stem cells eliciting a greater effect. More than 1700 proteins were quantified, and bioinformatics predicted activations of MYC, NFE2L2, FN1, and TGFβ1 and inhibition of TP53 in GBM-EV stimulated astrocytes that were then confirmed by qPCR. Further qPCR studies identified significantly decreased Δ133p53 and increased p53β in astrocytes exposed to GBM-EVs that might indicate the acquisition of a pro-inflammatory, tumor-promoting senescence-associated secretory phenotype (SASP). Inhibition of TP53 and activation of MYC signaling pathways in normal astrocytes exposed to GBM-EVs may be a mechanism by which GBM manipulates astrocytes to acquire a phenotype that promotes tumor progression. (hide)
EV-METRIC
57% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Density gradient
Protein markers
EV: None
non-EV: None
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Primary GBM Stem Cells RN1
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: time (min)
180
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12.5
Sample volume (mL)
0.5
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
12
Pelleting: duration (min)
240
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
142
EV210502 3/8 Homo sapiens Primary GBM Stem Cells RN1 (d)(U)C
Filtration
DG
Hallal S 2019 57%

Study summary

Full title
All authors
Hallal S, Mallawaaratchy DM, Wei H, Ebrahimkhani S, Stringer BW, Day BW, Boyd AW, Guillemin GJ, Buckland ME, Kaufman KL
Journal
Mol Neurobiol
Abstract
The role of astrocytes is becoming increasingly important to understanding how glioblastoma (GBM) tu (show more...)The role of astrocytes is becoming increasingly important to understanding how glioblastoma (GBM) tumor cells diffusely invade the brain. Yet, little is known of the contribution of extracellular vesicle (EV) signaling in GBM/astrocyte interactions. We modeled GBM-EV signaling to normal astrocytes in vitro to assess whether this mode of intercellular communication could support GBM progression. EVs were isolated and characterized from three patient-derived GBM stem cells (NES/CD133) and their differentiated (diff) progeny cells (NES/CD133). Uptake of GBM-EVs by normal primary astrocytes was confirmed by fluorescence microscopy, and changes in astrocyte podosome formation and gelatin degradation were measured. Quantitative mass spectrometry-based proteomics was performed on GBM-EV stimulated astrocytes. Interaction networks were generated from common, differentially abundant proteins using Ingenuity® (Qiagen Bioinformatics) and predicted upstream regulators were tested by qPCR assays. Podosome formation and Cy3-gelatin degradation were induced in astrocytes following 24-h exposure to GBM-stem and -diff EVs, with EVs released by GBM-stem cells eliciting a greater effect. More than 1700 proteins were quantified, and bioinformatics predicted activations of MYC, NFE2L2, FN1, and TGFβ1 and inhibition of TP53 in GBM-EV stimulated astrocytes that were then confirmed by qPCR. Further qPCR studies identified significantly decreased Δ133p53 and increased p53β in astrocytes exposed to GBM-EVs that might indicate the acquisition of a pro-inflammatory, tumor-promoting senescence-associated secretory phenotype (SASP). Inhibition of TP53 and activation of MYC signaling pathways in normal astrocytes exposed to GBM-EVs may be a mechanism by which GBM manipulates astrocytes to acquire a phenotype that promotes tumor progression. (hide)
EV-METRIC
57% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Differentiated
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Density gradient
Protein markers
EV: None
non-EV: None
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Primary GBM Stem Cells RN1
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: time (min)
180
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12.5
Sample volume (mL)
0.5
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
12
Pelleting: duration (min)
240
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
117
EV210502 4/8 Homo sapiens Primary GBM Stem Cells WK1 (d)(U)C
Filtration
DG
Hallal S 2019 57%

Study summary

Full title
All authors
Hallal S, Mallawaaratchy DM, Wei H, Ebrahimkhani S, Stringer BW, Day BW, Boyd AW, Guillemin GJ, Buckland ME, Kaufman KL
Journal
Mol Neurobiol
Abstract
The role of astrocytes is becoming increasingly important to understanding how glioblastoma (GBM) tu (show more...)The role of astrocytes is becoming increasingly important to understanding how glioblastoma (GBM) tumor cells diffusely invade the brain. Yet, little is known of the contribution of extracellular vesicle (EV) signaling in GBM/astrocyte interactions. We modeled GBM-EV signaling to normal astrocytes in vitro to assess whether this mode of intercellular communication could support GBM progression. EVs were isolated and characterized from three patient-derived GBM stem cells (NES/CD133) and their differentiated (diff) progeny cells (NES/CD133). Uptake of GBM-EVs by normal primary astrocytes was confirmed by fluorescence microscopy, and changes in astrocyte podosome formation and gelatin degradation were measured. Quantitative mass spectrometry-based proteomics was performed on GBM-EV stimulated astrocytes. Interaction networks were generated from common, differentially abundant proteins using Ingenuity® (Qiagen Bioinformatics) and predicted upstream regulators were tested by qPCR assays. Podosome formation and Cy3-gelatin degradation were induced in astrocytes following 24-h exposure to GBM-stem and -diff EVs, with EVs released by GBM-stem cells eliciting a greater effect. More than 1700 proteins were quantified, and bioinformatics predicted activations of MYC, NFE2L2, FN1, and TGFβ1 and inhibition of TP53 in GBM-EV stimulated astrocytes that were then confirmed by qPCR. Further qPCR studies identified significantly decreased Δ133p53 and increased p53β in astrocytes exposed to GBM-EVs that might indicate the acquisition of a pro-inflammatory, tumor-promoting senescence-associated secretory phenotype (SASP). Inhibition of TP53 and activation of MYC signaling pathways in normal astrocytes exposed to GBM-EVs may be a mechanism by which GBM manipulates astrocytes to acquire a phenotype that promotes tumor progression. (hide)
EV-METRIC
57% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Density gradient
Protein markers
EV: None
non-EV: None
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Primary GBM Stem Cells WK1
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: time (min)
180
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12.5
Sample volume (mL)
0.5
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
12
Pelleting: duration (min)
240
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
135
EV210502 5/8 Homo sapiens Primary GBM Stem Cells WK1 (d)(U)C
Filtration
DG
Hallal S 2019 57%

Study summary

Full title
All authors
Hallal S, Mallawaaratchy DM, Wei H, Ebrahimkhani S, Stringer BW, Day BW, Boyd AW, Guillemin GJ, Buckland ME, Kaufman KL
Journal
Mol Neurobiol
Abstract
The role of astrocytes is becoming increasingly important to understanding how glioblastoma (GBM) tu (show more...)The role of astrocytes is becoming increasingly important to understanding how glioblastoma (GBM) tumor cells diffusely invade the brain. Yet, little is known of the contribution of extracellular vesicle (EV) signaling in GBM/astrocyte interactions. We modeled GBM-EV signaling to normal astrocytes in vitro to assess whether this mode of intercellular communication could support GBM progression. EVs were isolated and characterized from three patient-derived GBM stem cells (NES/CD133) and their differentiated (diff) progeny cells (NES/CD133). Uptake of GBM-EVs by normal primary astrocytes was confirmed by fluorescence microscopy, and changes in astrocyte podosome formation and gelatin degradation were measured. Quantitative mass spectrometry-based proteomics was performed on GBM-EV stimulated astrocytes. Interaction networks were generated from common, differentially abundant proteins using Ingenuity® (Qiagen Bioinformatics) and predicted upstream regulators were tested by qPCR assays. Podosome formation and Cy3-gelatin degradation were induced in astrocytes following 24-h exposure to GBM-stem and -diff EVs, with EVs released by GBM-stem cells eliciting a greater effect. More than 1700 proteins were quantified, and bioinformatics predicted activations of MYC, NFE2L2, FN1, and TGFβ1 and inhibition of TP53 in GBM-EV stimulated astrocytes that were then confirmed by qPCR. Further qPCR studies identified significantly decreased Δ133p53 and increased p53β in astrocytes exposed to GBM-EVs that might indicate the acquisition of a pro-inflammatory, tumor-promoting senescence-associated secretory phenotype (SASP). Inhibition of TP53 and activation of MYC signaling pathways in normal astrocytes exposed to GBM-EVs may be a mechanism by which GBM manipulates astrocytes to acquire a phenotype that promotes tumor progression. (hide)
EV-METRIC
57% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Differentiated
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Density gradient
Protein markers
EV: None
non-EV: None
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Primary GBM Stem Cells WK1
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: time (min)
180
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12.5
Sample volume (mL)
0.5
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
12
Pelleting: duration (min)
240
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
112.5
EV210326 1/1 Spodoptera frugiperda Midgut epithelium (d)(U)C
DG
Fuzita FJ 2019 57%

Study summary

Full title
All authors
Fuzita FJ, Pimenta DC, Palmisano G, Terra WR, Ferreira C
Journal
Comp Biochem Physiol B Biochem Mol Biol
Abstract
The midgut from lepidopteran insects has a particular way to release proteins to the lumen, named mi (show more...)The midgut from lepidopteran insects has a particular way to release proteins to the lumen, named microapocrine secretion that could be an adaptation to release secretory contents into the lumen at water absorbing regions. In this process small vesicles (microapocrine vesicles) bud from the midgut microvilli as double membrane vesicles, where the inner membrane comes from the secretion vesicle and the outer one from the microvillar membrane. The molecular machinery associated with this process may be recruited by specific midgut microvilli membrane domains. To address to this, Spodoptera frugiperda midgut microvillar membranes, prepared by magnesium treatment and free from cytoskeleton with the hyperosmotic Tris procedure, were submitted to detergent extraction and fractionated by density gradient ultracentrifugation. Detergent-resistant membrane domains (DRM) were recovered and their proteins identified by proteomics. Microapocrine vesicles were isolated by washing the luminal surface of the midgut epithelium, followed by freezing and thawing plus centrifugation to recover only membranes. Proteins from purified microvillar membranes and microapocrine vesicle membranes were identified by proteomics. Comparison of the two populations suggests that the budding of microapocrine vesicles surrounded by microvillar membrane is not a random process, because only around 50% of the microvillar membrane proteins are in the microapocrine vesicles. From the 16 proteins from DRM, 14 were enriched in the microapocrine membrane vesicles. These results suggest that on budding, the microapocrine vesicle membrane is enclosed by DRM and a surrounding area of the microvillar membrane. It is proposed that the DRMs somehow recruit the proteins composing the secretory machinery. (hide)
EV-METRIC
57% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Midgut epithelium
Sample origin
Control condition
Focus vesicles
microapocrine vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Protein markers
EV: None
non-EV: None
Proteomics
yes
EV density (g/ml)
1.13-1.24
Show all info
Study aim
Function/ Identification of content (omics approaches)
Sample
Species
Spodoptera frugiperda
Sample Type
Midgut epithelium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
P40ST
Pelleting: speed (g)
100000
Density gradient
Type
Continuous
Lowest density fraction
25
Highest density fraction
60
Total gradient volume, incl. sample (mL)
Not reported
Sample volume (mL)
2
Orientation
Top-down
Rotor type
P40ST
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
0.5
Fraction processing
None
Characterization: Protein analysis
Protein Concentration Method
BCA
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV190020 1/3 Homo sapiens SW948 DG
(d)(U)C
Filtration
Kyuno, Daisuke 2019 57%

Study summary

Full title
All authors
Kyuno D, Zhao K, Schnölzer M, Provaznik J, Hackert T, Zöller M.
Journal
Int J Cancer
Abstract
Claudin7 (cld7) is a cancer-initiating cell (CIC) marker in gastrointestinal tumors, a cld7-knockdow (show more...)Claudin7 (cld7) is a cancer-initiating cell (CIC) marker in gastrointestinal tumors, a cld7-knockdown (kd) being accompanied by loss of tumor progression. Tumor-exosomes (TEX) restoring CIC activities, we explored the contribution of cld7. This became particularly interesting, as tight junction (TJ)- and glycolipid-enriched membrane domain (GEM)-derived cld7 is recruited into distinct TEX. TEX were derived from CIC or cld7kd cells of a rat pancreatic and a human colon cancer line. TEX derived from pancreatic cancer cld7kd cells rescued with palmitoylation site-deficient cld7 (cld7mP) allowed selectively evaluating the contribution of GEM-derived TEX, only palmitoylated cld7 being integrated into GEM. Cld7 CIC-TEX promoted tumor cell dissemination and metastatic growth without a major impact on proliferation, apoptosis resistance and epithelial-mesenchymal transition. Instead, migration, invasion and (lymph)angiogenesis were strongly supported, only migration being selectively fostered by GEM-derived cld7 TEX. CIC-TEX coculture of cld7kd cells uncovered significant changes in the cld7kd cell protein and miRNA profiles. However, changes did not correspond to the CIC-TEX profile, CIC-TEX rather initiating integrin, protease and RTK, particularly lymphangiogenic receptor activation. CIC-TEX preferentially rescuing cld7kd-associated defects in signal transduction was backed up by an RTK inhibitor neutralizing the impact of CIC-TEX on tumor progression. In conclusion, cld7 contributes to selective steps of the metastatic cascade. Defects of cld7kd and cld7mP cells in migration, invasion and (lymph)angiogenesis are effaced by CIC-TEX that act by signaling cascade activation. Accordingly, RTK inhibitors are an efficient therapeutic defeating CIC-TEX. This article is protected by copyright. All rights reserved. (hide)
EV-METRIC
57% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
(d)(U)C
Filtration
Protein markers
EV:
non-EV:
Proteomics
yes
EV density (g/ml)
1.15-1.56
Show all info
Study aim
Function/Biogenesis/cargo sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SW948
EV-harvesting Medium
Serum free medium
Cell viability (%)
100
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
50
Wash: time (min)
120
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
3
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
4
Sample volume (mL)
0.8
Orientation
Bottom-up
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
960
Fraction volume (mL)
1.28
Fraction processing
Centrifugation
Pelleting: volume per fraction
50
Pelleting: duration (min)
150
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Pelleting-wash: volume per pellet (mL)
50
Pelleting-wash: duration (min)
150
Pelleting-wash: speed (g)
Type 45 Ti
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Bradford
Proteomics database
No
Characterization: RNA analysis
RNA analysis
Type
Database
Proteinase treatment
RNAse treatment
Characterization: Lipid analysis
No
EV190020 2/3 Rattus norvegicus ASML DG
(d)(U)C
Filtration
Kyuno, Daisuke 2019 57%

Study summary

Full title
All authors
Kyuno D, Zhao K, Schnölzer M, Provaznik J, Hackert T, Zöller M.
Journal
Int J Cancer
Abstract
Claudin7 (cld7) is a cancer-initiating cell (CIC) marker in gastrointestinal tumors, a cld7-knockdow (show more...)Claudin7 (cld7) is a cancer-initiating cell (CIC) marker in gastrointestinal tumors, a cld7-knockdown (kd) being accompanied by loss of tumor progression. Tumor-exosomes (TEX) restoring CIC activities, we explored the contribution of cld7. This became particularly interesting, as tight junction (TJ)- and glycolipid-enriched membrane domain (GEM)-derived cld7 is recruited into distinct TEX. TEX were derived from CIC or cld7kd cells of a rat pancreatic and a human colon cancer line. TEX derived from pancreatic cancer cld7kd cells rescued with palmitoylation site-deficient cld7 (cld7mP) allowed selectively evaluating the contribution of GEM-derived TEX, only palmitoylated cld7 being integrated into GEM. Cld7 CIC-TEX promoted tumor cell dissemination and metastatic growth without a major impact on proliferation, apoptosis resistance and epithelial-mesenchymal transition. Instead, migration, invasion and (lymph)angiogenesis were strongly supported, only migration being selectively fostered by GEM-derived cld7 TEX. CIC-TEX coculture of cld7kd cells uncovered significant changes in the cld7kd cell protein and miRNA profiles. However, changes did not correspond to the CIC-TEX profile, CIC-TEX rather initiating integrin, protease and RTK, particularly lymphangiogenic receptor activation. CIC-TEX preferentially rescuing cld7kd-associated defects in signal transduction was backed up by an RTK inhibitor neutralizing the impact of CIC-TEX on tumor progression. In conclusion, cld7 contributes to selective steps of the metastatic cascade. Defects of cld7kd and cld7mP cells in migration, invasion and (lymph)angiogenesis are effaced by CIC-TEX that act by signaling cascade activation. Accordingly, RTK inhibitors are an efficient therapeutic defeating CIC-TEX. This article is protected by copyright. All rights reserved. (hide)
EV-METRIC
57% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
(d)(U)C
Filtration
Protein markers
EV:
non-EV:
Proteomics
yes
EV density (g/ml)
1.15-1.56
Show all info
Study aim
Function/Biogenesis/cargo sorting
Sample
Species
Rattus norvegicus
Sample Type
Cell culture supernatant
EV-producing cells
ASML
EV-harvesting Medium
Serum free medium
Cell viability (%)
100
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
50
Wash: time (min)
120
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
3
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
4
Sample volume (mL)
0.8
Orientation
Bottom-up
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
960
Fraction volume (mL)
1.28
Fraction processing
Centrifugation
Pelleting: volume per fraction
50
Pelleting: duration (min)
150
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Pelleting-wash: volume per pellet (mL)
50
Pelleting-wash: duration (min)
150
Pelleting-wash: speed (g)
Type 45 Ti
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Bradford
Proteomics database
No
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR;Microarray
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
EV180072 1/4 Homo sapiens HCT116-TGFBR2 (d)(U)C
Total Exosome Isolation
UF
Fricke F 2019 57%

Study summary

Full title
All authors
Fricke F, Mussack V, Buschmann D, Hausser I, Pfaffl MW, Kopitz J, Gebert J.
Journal
Int J Oncol
Abstract
In colorectal cancer (CRC) with microsatellite instability (MSI), >90% of cases are affected by inac (show more...)In colorectal cancer (CRC) with microsatellite instability (MSI), >90% of cases are affected by inactivating frameshift mutations of transforming growth factor β receptor type 2 (TGFBR2). TGFBR2 deficiency is considered to drive MSI tumor progression by abrogating downstream TGF‑β signaling. This pathway can alter the expression of coding and non‑coding RNAs, including microRNAs (miRNAs), which are also present in extracellular vesicles (EVs) as post‑transcriptional modulators of gene expression. In our previous study, it was shown that TGFBR2 deficiency alters the protein composition and function of EVs in MSI tumors. To investigate whether mutant TGFBR2 may also affect the miRNA cargo of EVs, the present study characterized miRNAs in EVs and their parental MSI tumor cells that differed only in TGFBR2 expression status. The HCT116‑TGFBR2 MSI cell line model enables the doxycycline (dox)‑inducible reconstituted expression of TGFBR2 in an isogenic background (‑dox, TGFBR2 deficient; +dox, TGFBR2 proficient). Small RNA sequencing of cellular and EV miRNAs showed that the majority of the miRNAs (263/471; 56%) were shared between MSI tumor cells and their EVs. Exploratory data analysis revealed the TGBFR2‑dependent cluster separation of miRNA profiles in EVs and MSI tumor cells. This segregation appeared to result from two subsets of miRNAs, the expression of which were regulated in a TGFBR2‑dependent manner (EVs: n=10; MSI cells: n=15). In the EV subset, 7/10 miRNAs were downregulated and 3/10 were upregulated by TGFBR2 deficiency. In the cellular subset, 13/15 miRNAs were downregulated and 2/15 miRNAs were upregulated in the TGFBR2‑deficient cells. The present study emphasizes the general overlap of miRNA profiles in MSI tumor cells and their EVs, but also highlights the impact of a single tumor driver mutation on the expression of individual miRNAs, as exemplified by the downregulation of miR‑381‑3p in TGFBR2‑deficient MSI tumor cells and their secreted EVs. (hide)
EV-METRIC
57% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Total Exosome Isolation
UF
Protein markers
EV:
non-EV:
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HCT116-TGFBR2
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
ClickSeal Biocontainment Rotor with Lid; 24 x 1.5/2.0 mL Tubes
Pelleting: speed (g)
21100
Ultra filtration
Cut-off size (kDa)
10000
Membrane type
Polyethersulfone (PES)
Commercial kit
Total Exosome Isolation
Other
Name other separation method
Total Exosome Isolation
Characterization: Protein analysis
Protein Concentration Method
Bradford
Proteomics database
No
Characterization: RNA analysis
RNA analysis
Type
RNA sequencing;(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
128
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
30-150
EV180072 2/4 Homo sapiens HCT116-TGFBR2 (d)(U)C
Total Exosome Isolation
UF
Fricke F 2019 57%

Study summary

Full title
All authors
Fricke F, Mussack V, Buschmann D, Hausser I, Pfaffl MW, Kopitz J, Gebert J.
Journal
Int J Oncol
Abstract
In colorectal cancer (CRC) with microsatellite instability (MSI), >90% of cases are affected by inac (show more...)In colorectal cancer (CRC) with microsatellite instability (MSI), >90% of cases are affected by inactivating frameshift mutations of transforming growth factor β receptor type 2 (TGFBR2). TGFBR2 deficiency is considered to drive MSI tumor progression by abrogating downstream TGF‑β signaling. This pathway can alter the expression of coding and non‑coding RNAs, including microRNAs (miRNAs), which are also present in extracellular vesicles (EVs) as post‑transcriptional modulators of gene expression. In our previous study, it was shown that TGFBR2 deficiency alters the protein composition and function of EVs in MSI tumors. To investigate whether mutant TGFBR2 may also affect the miRNA cargo of EVs, the present study characterized miRNAs in EVs and their parental MSI tumor cells that differed only in TGFBR2 expression status. The HCT116‑TGFBR2 MSI cell line model enables the doxycycline (dox)‑inducible reconstituted expression of TGFBR2 in an isogenic background (‑dox, TGFBR2 deficient; +dox, TGFBR2 proficient). Small RNA sequencing of cellular and EV miRNAs showed that the majority of the miRNAs (263/471; 56%) were shared between MSI tumor cells and their EVs. Exploratory data analysis revealed the TGBFR2‑dependent cluster separation of miRNA profiles in EVs and MSI tumor cells. This segregation appeared to result from two subsets of miRNAs, the expression of which were regulated in a TGFBR2‑dependent manner (EVs: n=10; MSI cells: n=15). In the EV subset, 7/10 miRNAs were downregulated and 3/10 were upregulated by TGFBR2 deficiency. In the cellular subset, 13/15 miRNAs were downregulated and 2/15 miRNAs were upregulated in the TGFBR2‑deficient cells. The present study emphasizes the general overlap of miRNA profiles in MSI tumor cells and their EVs, but also highlights the impact of a single tumor driver mutation on the expression of individual miRNAs, as exemplified by the downregulation of miR‑381‑3p in TGFBR2‑deficient MSI tumor cells and their secreted EVs. (hide)
EV-METRIC
57% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
genetically modified cell line
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Total Exosome Isolation
UF
Protein markers
EV:
non-EV:
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HCT116-TGFBR2
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
ClickSeal Biocontainment Rotor with Lid Thermo Scientific
Pelleting: speed (g)
21100
Ultra filtration
Cut-off size (kDa)
10000
Membrane type
Polyethersulfone (PES)
Commercial kit
Total Exosome Isolation
Other
Name other separation method
Total Exosome Isolation
Characterization: Protein analysis
Protein Concentration Method
Bradford
Proteomics database
No
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing;(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
125
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
30-150
EV180060 1/2 Homo sapiens NA (d)(U)C
SEC
UF
Benedikter BJ 2019 57%

Study summary

Full title
All authors
Benedikter BJ, Bouwman FG, Heinzmann ACA, Vajen T, Mariman EC, Wouters EFM, Savelkoul PHM, Koenen RR, Rohde GGU, van Oerle R, Spronk HM, Stassen FRM
Journal
J Extracell Vesicles
Abstract
Airway epithelial cells secrete extracellular vesicles (EVs) under basal conditions and when exposed (show more...)Airway epithelial cells secrete extracellular vesicles (EVs) under basal conditions and when exposed to cigarette smoke extract (CSE). Getting insights into the composition of these EVs will help unravel their functions in homeostasis and smoking-induced pathology. Here, we characterized the proteomic composition of basal and CSE-induced airway epithelial EVs. BEAS-2B cells were left unexposed or exposed to 1% CSE for 24 h, followed by EV isolation using ultrafiltration and size exclusion chromatography. Isolated EVs were labelled with tandem mass tags and their proteomic composition was determined using nano-LC-MS/MS. Tissue factor (TF) activity was determined by a factor Xa generation assay, phosphatidylserine (PS) content by prothrombinase assay and thrombin generation using calibrated automated thrombogram (CAT). Nano-LC-MS/MS identified 585 EV-associated proteins with high confidence. Of these, 201 were differentially expressed in the CSE-EVs according to the moderated t-test, followed by false discovery rate (FDR) adjustment with the FDR threshold set to 0.1. Functional enrichment analysis revealed that 24 proteins of the pathway haemostasis were significantly up-regulated in CSE-EVs, including TF. Increased TF expression on CSE-EVs was confirmed by bead-based flow cytometry and was associated with increased TF activity. CSE-EVs caused faster and more thrombin generation in normal human plasma than control-EVs, which was partly TF-, but also PS-dependent. In conclusion, proteomic analysis allowed us to predict procoagulant properties of CSE-EVs which were confirmed in vitro. Cigarette smoke-induced EVs may contribute to the increased cardiovascular and respiratory risk observed in smokers. (hide)
EV-METRIC
57% (88th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
NA
Sample origin
Control condition
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
SEC
UF
Protein markers
EV: CD63/ MFGE8/ CD81/ TF/ HSP70/ CD9
non-EV:
Proteomics
yes
Show all info
Study aim
Function/Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
NA
EV-producing cells
BEAS-2B
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
80
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
0.5
Resin type
Sepharose CL-4B
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
HSP70/ CD81/ MFGE8/ CD63
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Detected EV-associated proteins
TF/ CD63/ CD81/ CD9
Proteomics database
Yes
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
TRPS
Report type
Size range/distribution
Reported size (nm)
80-250
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
Report size (nm)
70
EV180060 2/2 Homo sapiens NA (d)(U)C
SEC
UF
Benedikter BJ 2019 57%

Study summary

Full title
All authors
Benedikter BJ, Bouwman FG, Heinzmann ACA, Vajen T, Mariman EC, Wouters EFM, Savelkoul PHM, Koenen RR, Rohde GGU, van Oerle R, Spronk HM, Stassen FRM
Journal
J Extracell Vesicles
Abstract
Airway epithelial cells secrete extracellular vesicles (EVs) under basal conditions and when exposed (show more...)Airway epithelial cells secrete extracellular vesicles (EVs) under basal conditions and when exposed to cigarette smoke extract (CSE). Getting insights into the composition of these EVs will help unravel their functions in homeostasis and smoking-induced pathology. Here, we characterized the proteomic composition of basal and CSE-induced airway epithelial EVs. BEAS-2B cells were left unexposed or exposed to 1% CSE for 24 h, followed by EV isolation using ultrafiltration and size exclusion chromatography. Isolated EVs were labelled with tandem mass tags and their proteomic composition was determined using nano-LC-MS/MS. Tissue factor (TF) activity was determined by a factor Xa generation assay, phosphatidylserine (PS) content by prothrombinase assay and thrombin generation using calibrated automated thrombogram (CAT). Nano-LC-MS/MS identified 585 EV-associated proteins with high confidence. Of these, 201 were differentially expressed in the CSE-EVs according to the moderated t-test, followed by false discovery rate (FDR) adjustment with the FDR threshold set to 0.1. Functional enrichment analysis revealed that 24 proteins of the pathway haemostasis were significantly up-regulated in CSE-EVs, including TF. Increased TF expression on CSE-EVs was confirmed by bead-based flow cytometry and was associated with increased TF activity. CSE-EVs caused faster and more thrombin generation in normal human plasma than control-EVs, which was partly TF-, but also PS-dependent. In conclusion, proteomic analysis allowed us to predict procoagulant properties of CSE-EVs which were confirmed in vitro. Cigarette smoke-induced EVs may contribute to the increased cardiovascular and respiratory risk observed in smokers. (hide)
EV-METRIC
57% (88th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
NA
Sample origin
1% cigarette smoke extract
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
SEC
UF
Protein markers
EV: TF/ CD81/ CD63/ CD9
non-EV:
Proteomics
yes
Show all info
Study aim
Function/Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
NA
EV-producing cells
BEAS-2B
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Cell viability (%)
80
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
0.5
Resin type
Sepharose CL-4B
Characterization: Protein analysis
Protein Concentration Method
Bradford
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Detected EV-associated proteins
TF/ CD63/ CD81/ CD9
Proteomics database
Yes
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
TRPS
Report type
Size range/distribution
Reported size (nm)
80-250
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
Report size (nm)
65
EV180009 3/3 Danio rerio Dissociated embryo (d)(U)C
IAF
Frederik J.Verweij 2019 57%

Study summary

Full title
All authors
Frederik J.Verweij, Celine Revenu, Guillaume Arras, Florent Dingli, Damarys Loew, Michiel D.Pegtel, Gautier Follain, Guillaume Allio, Jacky G.Goetz, Pascale Zimmermann, Philippe Herbomel, Filippo Del Bene, GraçaRaposo, Guillaumevan Niel
Journal
Cell Press
Abstract
Extracellular vesicles (EVs) are released by most cell types but providing evidence for their physio (show more...)Extracellular vesicles (EVs) are released by most cell types but providing evidence for their physiological relevance remains challenging due to a lack of appropriate model organisms. Here, we developed an in vivo model to study EV function by expressing CD63-pHluorin in zebrafish embryos. A combination of imaging methods and proteomic analysis allowed us to study biogenesis, composition, transfer, uptake, and fate of individual endogenous EVs. We identified a subpopulation of EVs with exosome features, released in a syntenin-dependent manner from the yolk syncytial layer into the blood circulation. These exosomes are captured, endocytosed, and degraded by patrolling macrophages and endothelial cells in the caudal vein plexus (CVP) in a scavenger receptor- and dynamin-dependent manner. Interference with exosome biogenesis affected CVP growth, suggesting a role in trophic support. Altogether, our work represents a system for studying endogenous EV function in vivo with high spatiotemporal accuracy, demonstrating functional inter-organ communication by exosomes. (hide)
EV-METRIC
57% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Dissociated embryo
Sample origin
Overexpression of CD63-phluorin in yolk syncitial layer
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
IAF
Adj. k-factor
41.45 (pelleting) / 41.45 (washing)
Protein markers
EV: None
non-EV: None
Proteomics
yes
Show all info
Study aim
Function, Biogenesis/cargo sorting, Mechanism of uptake/transfer, New methodological development, Identification of content (omics approaches), Interorgan transfer of EVs in vivo
Sample
Species
Danio rerio
Sample Type
Dissociated embryo
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
TLA-120.1
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
41.45
Wash: time (min)
60
Wash: Rotor Type
TLA-120.2
Wash: speed (g)
100000
Wash: adjusted k-factor
41.45
Immunoaffinity capture
Selected surface protein(s)
GFP
Characterization: Protein analysis
Protein Concentration Method
Not determined
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
PMID previous EV particle analysis
Nanoparticle tracking analysis
Extra particle analysis
NTA
Report type
Modus
Reported size (nm)
108
EV concentration
Yes
Particle yield
860000000000
EM
EM-type
Immune-EM
EM protein
GFP
Image type
Close-up, Wide-field
Report size (nm)
60-200
Extra information
We have developed live cell imaging method to visualize and quantify exosome release (Verweij et al., JCB 2018). This method could be added to EV-track, e.g. as a measure to positively identify the endosomal origin of an EV population.
EV180078 10/10 Danio rerio Zmel1 (d)(U)C Hyenne V 2019 57%

Study summary

Full title
All authors
Hyenne V, Ghoroghi S, Collot M, Bons J, Follain G, Harlepp S, Mary B, Bauer J, Mercier L, Busnelli I, Lefebvre O, Fekonja N, Garcia-Leon MJ, Machado P, Delalande F, López AA, Silva SG, Verweij FJ, van Niel G, Djouad F, Peinado H, Carapito C, Klymchenko AS, Goetz JG.
Journal
Dev cell
Abstract
Tumor extracellular vesicles (EVs) mediate the communication between tumor and stromal cells mostly (show more...)Tumor extracellular vesicles (EVs) mediate the communication between tumor and stromal cells mostly to the benefit of tumor progression. Notably, tumor EVs travel in the bloodstream, reach distant organs, and locally modify the microenvironment. However, visualizing these events in vivo still faces major hurdles. Here, we describe an approach for tracking circulating tumor EVs in a living organism: we combine chemical and genetically encoded probes with the zebrafish embryo as an animal model. We provide a first description of tumor EVs hemodynamic behavior and document their intravascular arrest. We show that circulating tumor EVs are rapidly taken up by endothelial cells and blood patrolling macrophages and subsequently stored in degradative compartments. Finally, we demonstrate that tumor EVs activate macrophages and promote metastatic outgrowth. Overall, our study proves the usefulness and prospects of zebrafish embryo to track tumor EVs and dissect their role in metastatic niches formation in vivo. (hide)
EV-METRIC
57% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV:
non-EV:
Proteomics
yes
Show all info
Study aim
Function/New methodological development/Identification of content (omics approaches)/Mechanism of uptake/transfer
Sample
Species
Danio rerio
Sample Type
Cell culture supernatant
EV-producing cells
Zmel1
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
16
Wash: time (min)
70
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
150
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
90
EV210173 1/5 Homo sapiens U87MG (d)(U)C
Filtration
Wang, Huayi 2019 56%

Study summary

Full title
All authors
Huayi Wang, Dengzhi Jiang, Wenzhe Li, Xiang Xiang, Jun Zhao, Bin Yu, Chen Wang, Zhaohui He, Ling Zhu, Yanlian Yang
Journal
Theranostics
Abstract
Rationale: Glioma is the most common malignant primary brain tumor in the central nervous system (CN (show more...)Rationale: Glioma is the most common malignant primary brain tumor in the central nervous system (CNS). The lack of reliable noninvasive diagnostic and prognostic methods is one of the main reasons for the high mortality of glioma. Serum has become a useful biomarker for the diagnosis and prognosis prediction of glioma because extracellular vesicles (EVs) carry molecular components from their parental cells. Methods: To detect EVs and perform molecular analysis of serum EVs, we established and optimized a microbead-assisted method based on flow cytometry and estimated the efficacy of EGFR protein expression and NLGN3 and PTTG1 mRNA in serum EVs from glioma patients (n=23) and healthy individuals (n=12). We evaluated the ability of EGFR+ EVs to differentiate high-grade and low-grade glioma patients and checked the correlation between EGFR in EVs and the ki-67 labeling index (LI) in the tumor tissue. Results: We demonstrated that EGFR+ EVs are effective diagnostic and prognostic markers of glioma. The expression of EGFR in serum EVs can accurately differentiate high-grade and low-grade glioma patients, and EGFR in EVs positively correlates with ki-67 LI in the tumor tissue. We also showed the potential of NLGN3 and PTTG1 mRNA in EVs for detecting glioma patients. Conclusions: We demonstrate that the protein expression of EGFR in serum EVs is an effective diagnostic marker of glioma. EGFR in EVs highly correlates with the malignancy of glioma. We also show the potential of NLGN3 and PTTG1 in EVs for detecting glioma. The optimized flow cytometry with the aid of microbead-based EV enrichment show its potential as a noninvasive method for the detection of glioma and will be beneficial to the management of glioma. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: CD81/ Flotillin1/ EGFR
non-EV: Grp94
Proteomics
no
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
U87MG
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Not specified
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
Not specified
Wash: time (min)
120
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Flotillin1/ EGFR/ CD81
Not detected contaminants
Grp94
Flow cytometry aspecific beads
Antibody details provided?
No
Detected EV-associated proteins
EGFR
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV210173 2/5 Homo sapiens U251 (d)(U)C
Filtration
Wang, Huayi 2019 56%

Study summary

Full title
All authors
Huayi Wang, Dengzhi Jiang, Wenzhe Li, Xiang Xiang, Jun Zhao, Bin Yu, Chen Wang, Zhaohui He, Ling Zhu, Yanlian Yang
Journal
Theranostics
Abstract
Rationale: Glioma is the most common malignant primary brain tumor in the central nervous system (CN (show more...)Rationale: Glioma is the most common malignant primary brain tumor in the central nervous system (CNS). The lack of reliable noninvasive diagnostic and prognostic methods is one of the main reasons for the high mortality of glioma. Serum has become a useful biomarker for the diagnosis and prognosis prediction of glioma because extracellular vesicles (EVs) carry molecular components from their parental cells. Methods: To detect EVs and perform molecular analysis of serum EVs, we established and optimized a microbead-assisted method based on flow cytometry and estimated the efficacy of EGFR protein expression and NLGN3 and PTTG1 mRNA in serum EVs from glioma patients (n=23) and healthy individuals (n=12). We evaluated the ability of EGFR+ EVs to differentiate high-grade and low-grade glioma patients and checked the correlation between EGFR in EVs and the ki-67 labeling index (LI) in the tumor tissue. Results: We demonstrated that EGFR+ EVs are effective diagnostic and prognostic markers of glioma. The expression of EGFR in serum EVs can accurately differentiate high-grade and low-grade glioma patients, and EGFR in EVs positively correlates with ki-67 LI in the tumor tissue. We also showed the potential of NLGN3 and PTTG1 mRNA in EVs for detecting glioma patients. Conclusions: We demonstrate that the protein expression of EGFR in serum EVs is an effective diagnostic marker of glioma. EGFR in EVs highly correlates with the malignancy of glioma. We also show the potential of NLGN3 and PTTG1 in EVs for detecting glioma. The optimized flow cytometry with the aid of microbead-based EV enrichment show its potential as a noninvasive method for the detection of glioma and will be beneficial to the management of glioma. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: CD81/ Flotillin1/ EGFR
non-EV: Grp94
Proteomics
no
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
U251
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Not specified
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
Not specified
Wash: time (min)
120
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Flotillin1/ EGFR/ CD81
Not detected contaminants
Grp94
Flow cytometry aspecific beads
Antibody details provided?
No
Detected EV-associated proteins
EGFR
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV210173 3/5 Homo sapiens HA (d)(U)C
Filtration
Wang, Huayi 2019 56%

Study summary

Full title
All authors
Huayi Wang, Dengzhi Jiang, Wenzhe Li, Xiang Xiang, Jun Zhao, Bin Yu, Chen Wang, Zhaohui He, Ling Zhu, Yanlian Yang
Journal
Theranostics
Abstract
Rationale: Glioma is the most common malignant primary brain tumor in the central nervous system (CN (show more...)Rationale: Glioma is the most common malignant primary brain tumor in the central nervous system (CNS). The lack of reliable noninvasive diagnostic and prognostic methods is one of the main reasons for the high mortality of glioma. Serum has become a useful biomarker for the diagnosis and prognosis prediction of glioma because extracellular vesicles (EVs) carry molecular components from their parental cells. Methods: To detect EVs and perform molecular analysis of serum EVs, we established and optimized a microbead-assisted method based on flow cytometry and estimated the efficacy of EGFR protein expression and NLGN3 and PTTG1 mRNA in serum EVs from glioma patients (n=23) and healthy individuals (n=12). We evaluated the ability of EGFR+ EVs to differentiate high-grade and low-grade glioma patients and checked the correlation between EGFR in EVs and the ki-67 labeling index (LI) in the tumor tissue. Results: We demonstrated that EGFR+ EVs are effective diagnostic and prognostic markers of glioma. The expression of EGFR in serum EVs can accurately differentiate high-grade and low-grade glioma patients, and EGFR in EVs positively correlates with ki-67 LI in the tumor tissue. We also showed the potential of NLGN3 and PTTG1 mRNA in EVs for detecting glioma patients. Conclusions: We demonstrate that the protein expression of EGFR in serum EVs is an effective diagnostic marker of glioma. EGFR in EVs highly correlates with the malignancy of glioma. We also show the potential of NLGN3 and PTTG1 in EVs for detecting glioma. The optimized flow cytometry with the aid of microbead-based EV enrichment show its potential as a noninvasive method for the detection of glioma and will be beneficial to the management of glioma. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: CD81/ Flotillin1/ EGFR
non-EV: GRP94
Proteomics
no
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HA
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Not specified
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
Not specified
Wash: time (min)
120
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Flotillin1/ CD81
Not detected EV-associated proteins
EGFR
Not detected contaminants
GRP94
Flow cytometry aspecific beads
Antibody details provided?
No
Detected EV-associated proteins
EGFR
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV190080 1/3 Homo sapiens OVCAR5 DG
(d)(U)C
SEC
SEC (non-commercial)
Zaborowski MP 2019 56%

Study summary

Full title
All authors
Zaborowski MP, Cheah PS, Zhang X, Bushko I, Lee K, Sammarco A, Zappulli V, Maas SLN, Allen RM, Rumde P, György B, Aufiero M, Schweiger MW, Lai CP, Weissleder R, Lee H, Vickers KC, Tannous BA, Breakefield XO.
Journal
Sci Rep
Abstract
Extracellular vesicles (EVs) released by cells play a role in intercellular communication. Reporter (show more...)Extracellular vesicles (EVs) released by cells play a role in intercellular communication. Reporter and targeting proteins can be modified and exposed on the surface of EVs to investigate their half-life and biodistribution. A characterization of membrane-bound Gaussia luciferase (mbGluc) revealed that its signal was detected also in a form smaller than common EVs (<70 nm). We demonstrated that mbGluc initially exposed on the surface of EVs, likely undergoes proteolytic cleavage and processed fragments of the protein are released into the extracellular space in active form. Based on this observation, we developed a new assay to quantitatively track shedding of membrane proteins from the surface of EVs. We used this assay to show that ectodomain shedding in EVs is continuous and is mediated by specific proteases, e.g. metalloproteinases. Here, we present a novel tool to study membrane protein cleavage and release using both in vitro and in vivo models. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
(d)(U)C
SEC
SEC (non-commercial)
Protein markers
EV: CD63
non-EV:
Proteomics
no
EV density (g/ml)
1.11
Show all info
Study aim
New methodological development/Biogenesis/cargo sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
OVCAR5
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
120101
Wash: volume per pellet (ml)
40
Wash: time (min)
120
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
120101
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
8%
Highest density fraction
60%
Total gradient volume, incl. sample (mL)
4
Sample volume (mL)
0.5
Orientation
Top-down
Rotor type
MLS-50
Speed (g)
200620
Duration (min)
38
Fraction volume (mL)
350
Fraction processing
None
Size-exclusion chromatography
Total column volume (mL)
24
Sample volume/column (mL)
1
Resin type
Superdex 200
Other
Name other separation method
SEC (non-commercial)
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63
Other 1
https://www.ncbi.nlm.nih.gov/pubmed/30943406
Characterization: Lipid analysis
No
EM
EM-type
Transmission-EM
Image type
Close-up
Report size (nm)
50-120
Other particle analysis name(1)
Report type
EV-concentration
EV190049 1/3 Homo sapiens Expi293F (d)(U)C
qEV
Bliss CM 2019 56%

Study summary

Full title
All authors
Bliss CM, Parsons AJ, Nachbagauer R, Hamilton JR, Cappuccini F, Ulaszewska M, Webber JP, Clayton A, Hill AVS, Coughlan L.
Journal
Matters
Abstract
Adenoviral (Ad) vectors represent promising vaccine platforms for infectious disease. To overcome pr (show more...)Adenoviral (Ad) vectors represent promising vaccine platforms for infectious disease. To overcome pre-existing immunity to commonly used human adenovirus serotype 5 (Ad5), vectors based on rare species or non-human Ads are being developed. However, these vectors often exhibit reduced potency compared with Ad5, necessitating the use of innovative approaches to augment the immunogenicity of the encoded antigen (Ag). To achieve this, we engineered model Ag, enhanced green fluorescent protein (EGFP), for targeting to the surface of host-derived extracellular vesicles (EVs), namely exosomes. Exosomes are nano-sized EVs that play important roles in cell-to-cell communication and in regulating immune responses. Directed targeting of Ag to the surface of EVs/exosomes is achieved by "exosome display," through fusion of Ag to the C1C2 domain of lactadherin, a protein highly enriched in exosomes. Herein, we engineered chimpanzee adenovirus ChAdOx1 and Ad5-based vaccines encoding EGFP, or EGFP targeted to EVs (EGFP_C1C2), and compared vaccine immunogenicity in mice. We determined that exosome display substantially increases Ag-specific humoral immunity following intramuscular and intranasal vaccination, improving the immunological potency of both ChAdOx1 and Ad5. We propose that this Ag-engineering approach could increase the immunogenicity of diverse Ad vectors that exhibit desirable manufacturing characteristics, but currently lack the potency of Ad5. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
qEV
Protein markers
EV: CD81/ Alix/ CD63/ CD9
non-EV: GRP94
Proteomics
no
Show all info
Study aim
Antigen targeting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Commercial kit
qEV
Other
Name other separation method
qEV
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix
Not detected contaminants
GRP94
ELISA
Antibody details provided?
No
Detected EV-associated proteins
CD63/ CD81/ CD9
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV190049 2/3 Homo sapiens Expi293F (d)(U)C
qEV
Bliss CM 2019 56%

Study summary

Full title
All authors
Bliss CM, Parsons AJ, Nachbagauer R, Hamilton JR, Cappuccini F, Ulaszewska M, Webber JP, Clayton A, Hill AVS, Coughlan L.
Journal
Matters
Abstract
Adenoviral (Ad) vectors represent promising vaccine platforms for infectious disease. To overcome pr (show more...)Adenoviral (Ad) vectors represent promising vaccine platforms for infectious disease. To overcome pre-existing immunity to commonly used human adenovirus serotype 5 (Ad5), vectors based on rare species or non-human Ads are being developed. However, these vectors often exhibit reduced potency compared with Ad5, necessitating the use of innovative approaches to augment the immunogenicity of the encoded antigen (Ag). To achieve this, we engineered model Ag, enhanced green fluorescent protein (EGFP), for targeting to the surface of host-derived extracellular vesicles (EVs), namely exosomes. Exosomes are nano-sized EVs that play important roles in cell-to-cell communication and in regulating immune responses. Directed targeting of Ag to the surface of EVs/exosomes is achieved by "exosome display," through fusion of Ag to the C1C2 domain of lactadherin, a protein highly enriched in exosomes. Herein, we engineered chimpanzee adenovirus ChAdOx1 and Ad5-based vaccines encoding EGFP, or EGFP targeted to EVs (EGFP_C1C2), and compared vaccine immunogenicity in mice. We determined that exosome display substantially increases Ag-specific humoral immunity following intramuscular and intranasal vaccination, improving the immunological potency of both ChAdOx1 and Ad5. We propose that this Ag-engineering approach could increase the immunogenicity of diverse Ad vectors that exhibit desirable manufacturing characteristics, but currently lack the potency of Ad5. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Transfected with plasmid expressing EGFP
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
qEV
Protein markers
EV: CD81/ Alix/ CD63/ CD9
non-EV: GRP94
Proteomics
no
Show all info
Study aim
Antigen targeting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Commercial kit
qEV
Other
Name other separation method
qEV
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix
Not detected contaminants
GRP94
ELISA
Antibody details provided?
No
Detected EV-associated proteins
CD63/ CD81/ CD9
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
161
EV concentration
Yes
EV190049 3/3 Homo sapiens Expi293F (d)(U)C
qEV
Bliss CM 2019 56%

Study summary

Full title
All authors
Bliss CM, Parsons AJ, Nachbagauer R, Hamilton JR, Cappuccini F, Ulaszewska M, Webber JP, Clayton A, Hill AVS, Coughlan L.
Journal
Matters
Abstract
Adenoviral (Ad) vectors represent promising vaccine platforms for infectious disease. To overcome pr (show more...)Adenoviral (Ad) vectors represent promising vaccine platforms for infectious disease. To overcome pre-existing immunity to commonly used human adenovirus serotype 5 (Ad5), vectors based on rare species or non-human Ads are being developed. However, these vectors often exhibit reduced potency compared with Ad5, necessitating the use of innovative approaches to augment the immunogenicity of the encoded antigen (Ag). To achieve this, we engineered model Ag, enhanced green fluorescent protein (EGFP), for targeting to the surface of host-derived extracellular vesicles (EVs), namely exosomes. Exosomes are nano-sized EVs that play important roles in cell-to-cell communication and in regulating immune responses. Directed targeting of Ag to the surface of EVs/exosomes is achieved by "exosome display," through fusion of Ag to the C1C2 domain of lactadherin, a protein highly enriched in exosomes. Herein, we engineered chimpanzee adenovirus ChAdOx1 and Ad5-based vaccines encoding EGFP, or EGFP targeted to EVs (EGFP_C1C2), and compared vaccine immunogenicity in mice. We determined that exosome display substantially increases Ag-specific humoral immunity following intramuscular and intranasal vaccination, improving the immunological potency of both ChAdOx1 and Ad5. We propose that this Ag-engineering approach could increase the immunogenicity of diverse Ad vectors that exhibit desirable manufacturing characteristics, but currently lack the potency of Ad5. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Transfected with plasmid expressing EGFP_C1C2
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
qEV
Protein markers
EV: CD81/ Alix/ CD63/ CD9
non-EV: GRP94
Proteomics
no
Show all info
Study aim
Antigen targeting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Expi293F
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Commercial kit
qEV
Other
Name other separation method
qEV
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix
Not detected contaminants
GRP94
ELISA
Antibody details provided?
No
Detected EV-associated proteins
CD63/ CD81/ CD9
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
157
EV concentration
Yes
EV190027 1/1 Mus musculus primary oligodendrocytes (d)(U)C Auber M 2019 56%

Study summary

Full title
All authors
Auber M, Fröhlich D, Drechsel O, Karaulanov E, Krämer-Albers EM.
Journal
J Extracell Vesicles
Abstract
Recent studies on extracellular RNA raised awareness that extracellular vesicles (EVs) isolated from (show more...)Recent studies on extracellular RNA raised awareness that extracellular vesicles (EVs) isolated from cultured cells may co-purify RNAs derived from media supplements such as fetal bovine serum (FBS) confounding EV-associated RNA. Defined culture media supplemented with a range of nutrient components provide an alternative to FBS addition and allow EV-collection under full medium conditions avoiding starvation and cell stress during the collection period. However, the potential contribution of serum-free media supplements to EV-RNA contamination has remained elusive and has never been assessed. Here, we report that RNA isolated from EVs harvested from cells under serum-replacement conditions includes miRNA contaminants carried into the sample by defined media components. Subjecting unconditioned, EV-free medium to differential centrifugation followed by reverse transcription quantitative PCR (RT-qPCR) on RNA isolated from the pellet resulted in detection of miRNAs that had been classified as EV-enriched by RNA-seq or RT-qPCR of an isolated EV-fraction. Ribonuclease (RNase-A) and detergent treatment removed most but not all of the contaminating miRNAs. Further analysis of the defined media constituents identified Catalase as a main source of miRNAs co-isolating together with EVs. Hence, miRNA contaminants can be carried into EV-samples even under serum-free harvesting conditions using culture media that are expected to be chemically defined. Formulation of miRNA-free media supplements may provide a solution to collect EVs clean from confounding miRNAs, which however still remains a challenging task. Differential analysis of EVs collected under full medium and supplement-deprived conditions appears to provide a strategy to discriminate confounding and EV-associated RNA. In conclusion, we recommend careful re-evaluation and validation of EV small RNA-seq and RT-qPCR datasets by determining potential medium background. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
primary oligodendrocytes
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
103000
Characterization: Protein analysis
PMID previous EV protein analysis
Protein Concentration Method
Not determined
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR;RNA sequencing;Capillary electrophoresis (e.g. Bioanalyzer)
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
EV190026 1/2 Homo sapiens Serum (d)(U)C
qEV
Gualerzi A 2019 56%

Study summary

Full title
All authors
Gualerzi A, Picciolini S, Carlomagno C, Terenzi F, Ramat S, Sorbi S, Bedoni M.
Journal
Nanomedicine
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disorder, characterized by considerable clin (show more...)Parkinson's disease (PD) is a chronic neurodegenerative disorder, characterized by considerable clinical heterogeneity. Extracellular vesicles (EVs) were proposed as new biomarkers for PD because of their role as vehicles of multiple PD related molecules, but technical limitations exist in their detection and characterization in a clinical environment. We propose herein a Raman based protocol for the label-free analysis of circulating EVs as diagnostic and predictive tool for PD. After purification from serum of PD patients and healthy subjects, EVs were analyzed by Raman spectroscopy demonstrating the feasibility and reproducibility of the proposed biophotonic approach, its moderate accuracy in distinguishing PD patients from controls by their EV profile and the correlation between Raman data and clinical scales. Once validated, the Raman spectroscopy of circulating EVs could represent a reliable, automatable and sensitive method for the stratification of PD patients and for the evaluation of the effectiveness of rehabilitation and pharmacological treatments. (hide)
EV-METRIC
56% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
qEV
Protein markers
EV: CD63/ Flotillin1/ alpha-synuclein
non-EV: Albumin
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 60 Ti
Pelleting: speed (g)
100000
Commercial kit
qEV
Other
Name other separation method
qEV
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Flotillin1/ CD63/ alpha-synuclein
Detected contaminants
Albumin
Characterization: Lipid analysis
No
EM
EM-type
Transmission-EM
Image type
Close-up
EV190026 2/2 Homo sapiens Serum (d)(U)C
qEV
Gualerzi A 2019 56%

Study summary

Full title
All authors
Gualerzi A, Picciolini S, Carlomagno C, Terenzi F, Ramat S, Sorbi S, Bedoni M.
Journal
Nanomedicine
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disorder, characterized by considerable clin (show more...)Parkinson's disease (PD) is a chronic neurodegenerative disorder, characterized by considerable clinical heterogeneity. Extracellular vesicles (EVs) were proposed as new biomarkers for PD because of their role as vehicles of multiple PD related molecules, but technical limitations exist in their detection and characterization in a clinical environment. We propose herein a Raman based protocol for the label-free analysis of circulating EVs as diagnostic and predictive tool for PD. After purification from serum of PD patients and healthy subjects, EVs were analyzed by Raman spectroscopy demonstrating the feasibility and reproducibility of the proposed biophotonic approach, its moderate accuracy in distinguishing PD patients from controls by their EV profile and the correlation between Raman data and clinical scales. Once validated, the Raman spectroscopy of circulating EVs could represent a reliable, automatable and sensitive method for the stratification of PD patients and for the evaluation of the effectiveness of rehabilitation and pharmacological treatments. (hide)
EV-METRIC
56% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Parkinson's disease
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
qEV
Protein markers
EV: CD63/ Flotillin1/ alpha-synuclein
non-EV: Albumin
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 60 Ti
Pelleting: speed (g)
100000
Commercial kit
qEV
Other
Name other separation method
qEV
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Flotillin1/ CD63/ alpha-synuclein
Detected contaminants
Albumin
Characterization: Lipid analysis
No
EM
EM-type
Transmission-EM
Image type
Close-up
EV180078 6/10 Mus musculus 4T1 (d)(U)C
DG
Hyenne V 2019 56%

Study summary

Full title
All authors
Hyenne V, Ghoroghi S, Collot M, Bons J, Follain G, Harlepp S, Mary B, Bauer J, Mercier L, Busnelli I, Lefebvre O, Fekonja N, Garcia-Leon MJ, Machado P, Delalande F, López AA, Silva SG, Verweij FJ, van Niel G, Djouad F, Peinado H, Carapito C, Klymchenko AS, Goetz JG.
Journal
Dev cell
Abstract
Tumor extracellular vesicles (EVs) mediate the communication between tumor and stromal cells mostly (show more...)Tumor extracellular vesicles (EVs) mediate the communication between tumor and stromal cells mostly to the benefit of tumor progression. Notably, tumor EVs travel in the bloodstream, reach distant organs, and locally modify the microenvironment. However, visualizing these events in vivo still faces major hurdles. Here, we describe an approach for tracking circulating tumor EVs in a living organism: we combine chemical and genetically encoded probes with the zebrafish embryo as an animal model. We provide a first description of tumor EVs hemodynamic behavior and document their intravascular arrest. We show that circulating tumor EVs are rapidly taken up by endothelial cells and blood patrolling macrophages and subsequently stored in degradative compartments. Finally, we demonstrate that tumor EVs activate macrophages and promote metastatic outgrowth. Overall, our study proves the usefulness and prospects of zebrafish embryo to track tumor EVs and dissect their role in metastatic niches formation in vivo. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
Protein markers
EV: Alix/ TSG101
non-EV:
Proteomics
yes
EV density (g/ml)
1.14
Show all info
Study aim
Function/New methodological development/Identification of content (omics approaches)/Mechanism of uptake/transfer
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
4T1
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW 28
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
16
Wash: time (min)
70
Wash: Rotor Type
SW 28
Wash: speed (g)
100000
Density gradient
Only used for validation of main results
Yes
Type
Continuous
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
16
Sample volume (mL)
1
Orientation
Top-down
Rotor type
SW 28
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
16
Pelleting: duration (min)
3
Pelleting: rotor type
SW 28
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix/ TSG101
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV200141 1/2 Homo sapiens Blood plasma Exoquick Zhang, Weiting 2019 50%

Study summary

Full title
All authors
Weiting Zhang, Sen Lu, Dandan Pu, Haiping Zhang, Lin Yang, Peng Zeng, Fengxia Su, Zhichao Chen, Mei Guo, Ying Gu, Yanmei Luo, Huamei Hu, Yanping Lu, Fang Chen, Ya Gao
Journal
BMC Genomics
Abstract
Background: During human pregnancy, placental trophectoderm cells release extracellular vesicles (EV (show more...)Background: During human pregnancy, placental trophectoderm cells release extracellular vesicles (EVs) into maternal circulation. Trophoblasts also give rise to cell-free DNA (cfDNA) in maternal blood, and has been used for noninvasive prenatal screening for chromosomal aneuploidy. We intended to prove the existence of DNA in the EVs (evDNA) of maternal blood, and compared evDNA with plasma cfDNA in terms of genome distribution, fragment length, and the possibility of detecting genetic diseases. Methods: Maternal blood from 20 euploid pregnancies, 9 T21 pregnancies, 3 T18 pregnancies, 1 T13 pregnancy, and 2 pregnancies with FGFR3 mutations were obtained. EVs were separated from maternal plasma, and confirmed by transmission electronic microscopy (TEM), western blotting, and flow cytometry (FACS). evDNA was extracted and its fetal origin was confirmed by quantitative PCR (qPCR). Pair-end (PE) whole genome sequencing was performed to characterize evDNA, and the results were compared with that of cfDNA. The fetal risk of aneuploidy and monogenic diseases was analyzed using the evDNA sequencing data. Results: EVs separated from maternal plasma were confirmed with morphology by TEM, and protein markers of CD9, CD63, CD81 as well as the placental specific protein placental alkaline phosphatase (PLAP) were confirmed by western blotting or flow cytometry. EvDNA could be successfully extracted for qPCR and sequencing from the plasma EVs. Sequencing data showed that evDNA span on all 23 pairs of chromosomes and mitochondria, sharing a similar distribution pattern and higher GC content comparing with cfDNA. EvDNA showed shorter fragments yet lower fetal fraction than cfDNA. EvDNA could be used to correctly determine fetal gender, trisomies, and de novo FGFR3 mutations. Conclusions: We proved that fetal DNA could be detected in EVs separated from maternal plasma. EvDNA shared some similar features to plasma cfDNA, and could potentially be used to detect genetic diseases in fetus. (hide)
EV-METRIC
50% (83rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Healthy pregnant
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Exoquick
Protein markers
EV: CD81/ PLAP/ CD63/ CD9
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Function/Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Commercial kit
Exoquick
Other
Name other separation method
Exoquick
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ CD63/ PLAP/ CD81
Not detected contaminants
Calnexin
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Selected surface protein(s)
CD9
Detected EV-associated proteins
CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
30-50nm
EV200048 1/2 Gallus gallus semen IAF
(d)(U)C
ExoQuick
Filtration
Sheng Chen 2019 50%

Study summary

Full title
All authors
Sheng Chen, Liqin Liao, Qiqi Zhao, Xinheng Zhang, Hongxin Li, Wencheng Lin, Feng Chen, Qingmei Xie
Journal
Virus Res
Abstract
MicroRNAs(miRNAs) have been reported to regulate gene expression in many processes. MiRNA in extrace (show more...)MicroRNAs(miRNAs) have been reported to regulate gene expression in many processes. MiRNA in extracellular vesicles (EVs) also have been widely investigated, while there is no studies of miRNAs in seminal EVs. Subgroup J of Avian leukosis virus (ALV-J) can be transmitted vertically, but the mechanism of it is not clear enough. This study was to examine the miRNA expression profile in seminal EVs and inquire into the relation between it and the vertical transmission by performing gene ontology (GO) and pathway enrichment analysis. Here, we first isolated and characterized seminal EVs by Nanoparticle Tracking Analysis、Western Blot and Transmission electron microscopy experiments. By deep sequencing of each EVs miRNA library, 9 typical differentially expressed miRNA, including 6 up-regulated and 3 down-regulated, were identified. Gene target prediction, GO annotation and KEGG pathway enrichment analysis showed possible function associated with these miRNAs. Overall, these findings will increase our understanding of the content and composition of miRNA in seminal EVs and provide new insights into the important role of the seminal EVs miRNAs regulation in ALV-J transmission. (hide)
EV-METRIC
50% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
semen
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Immunoaffinity capture (non-commercial)
(d)(U)C
Commercial method
Filtration
Protein markers
EV: CD81/ HSP70/ TSG101/ CD63/ CD9
non-EV: GRP78
Proteomics
no
Show all info
Study aim
NA
Sample
Species
Gallus gallus
Sample Type
semen
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Commercial kit
ExoQuick
Immunoaffinity capture
Selected surface protein(s)
CD63
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ CD63/ TSG101/ HSP70/ CD81
Not detected EV-associated proteins
HSP70/ CD81/ TSG101/ CD63/ CD9
Not detected contaminants
GRP78
ELISA
Antibody details provided?
No
Detected EV-associated proteins
HSP70/ CD63/ CD81/ CD9/ TSG101
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR;RNAsequencing
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
110
EV concentration
Yes
Particle yield
particles/ml;Yes, other: 858000000
EV200045 3/5 Homo sapiens PCI-13 (d)(U)C
SEC (non-commercial)
Filtration
UF
Ludwig Nils 2019 50%

Study summary

Full title
All authors
Ludwig N, Hong CS, Ludwig S, Azambuja JH, Sharma P, Theodoraki MN, Whiteside TL.
Journal
Current Protocols in Immunology
Abstract
A method for isolation of exosomes from tumor cell supernatants or cancer patients' plasma is presen (show more...)A method for isolation of exosomes from tumor cell supernatants or cancer patients' plasma is presented. Tumor-derived exosomes (TEX) are defined as a subset of extracellular vesicles (EVs) sized at 30 to 150 nm and originating from multivesicular bodies (MVBs). The method utilizes size exclusion chromatography (SEC) for recovery of exosomes from cell-line supernatants or cancer patients' plasma. The recovered exosomes are morphologically intact, aggregate-free, and functionally competent. Their molecular content parallels that of the parent tumor cells and they carry various immunoregulatory ligands known to modulate functions of immune cells. All exosomes isolated from tumor cell lines are TEX, while those isolated from plasma of cancer patients have to be fractionated into TEX and non-TEX. Mini-SEC allows for exosome isolation and recovery in quantities sufficient for molecular profiling, functional studies, and, in the case of plasma, further fractionation into TEX and non-TEX. The mini-SEC method can also be used for comparative studies of the exosome content in serial specimens of cancer patients' body fluids. (hide)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
SEC (non-commercial)
Filtration
UF
Protein markers
EV: None
non-EV:
Proteomics
no
Show all info
Study aim
Function/New methodological development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
PCI-13
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Polyethersulfone
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
1
Resin type
Sepharose CL-2B
Other
Name other separation method
SEC (non-commercial)
PMID previous EV protein analysis
PMID 30042174 + PMID 30370252
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
PMID 30042174 / PMID 30370252
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Not Reported
EM
EM-type
Transmission-EM
Image type
Wide-field
EV190040 3/12 Homo sapiens HEK293T DG
UF
Geeurickx E 2019 50%

Study summary

Full title
All authors
Geeurickx E, Tulkens J, Dhondt B, Van Deun J, Lippens L, Vergauwen G, Heyrman E, De Sutter D, Gevaert K, Impens F, Miinalainen I, Van Bockstal PJ, De Beer T, Wauben MHM, Nolte-'t-Hoen ENM, Bloch K, Swinnen JV, van der Pol E, Nieuwland R, Braems G, Callewaert N, Mestdagh P, Vandesompele J, Denys H, Eyckerman S, De Wever O, Hendrix A.
Journal
Nat Commun
Abstract
Recent years have seen an increase of extracellular vesicle (EV) research geared towards biological (show more...)Recent years have seen an increase of extracellular vesicle (EV) research geared towards biological understanding, diagnostics and therapy. However, EV data interpretation remains challenging owing to complexity of biofluids and technical variation introduced during sample preparation and analysis. To understand and mitigate these limitations, we generated trackable recombinant EV (rEV) as a biological reference material. Employing complementary characterization methods, we demonstrate that rEV are stable and bear physical and biochemical traits characteristic of sample EV. Furthermore, rEV can be quantified using fluorescence-, RNA- and protein-based technologies available in routine laboratories. Spiking rEV in biofluids allows recovery efficiencies of commonly implemented EV separation methods to be identified, intra-method and inter-user variability induced by sample handling to be defined, and to normalize and improve sensitivity of EV enumerations. We anticipate that rEV will aid EV-based sample preparation and analysis, data normalization, method development and instrument calibration in various research and biomedical applications. (hide)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
gag-EGFP
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
UF
Protein markers
EV:
non-EV:
Proteomics
yes
EV density (g/ml)
1.086-1.119
Show all info
Study aim
New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HEK293T
EV-harvesting Medium
Serum free medium
Cell viability (%)
96
Separation Method
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5
Highest density fraction
40
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
1
Orientation
Top-down
Rotor type
SW 32.1 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
16
Pelleting: duration (min)
180
Pelleting: rotor type
SW 32.1 Ti
Pelleting: speed (g)
100000
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
EV-subtype
Used subtypes
1.046 1.068 g/ml
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Proteomics database
Yes:
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EV190040 8/12 Homo sapiens primary fibroblasts DG
UF
Geeurickx E 2019 50%

Study summary

Full title
All authors
Geeurickx E, Tulkens J, Dhondt B, Van Deun J, Lippens L, Vergauwen G, Heyrman E, De Sutter D, Gevaert K, Impens F, Miinalainen I, Van Bockstal PJ, De Beer T, Wauben MHM, Nolte-'t-Hoen ENM, Bloch K, Swinnen JV, van der Pol E, Nieuwland R, Braems G, Callewaert N, Mestdagh P, Vandesompele J, Denys H, Eyckerman S, De Wever O, Hendrix A.
Journal
Nat Commun
Abstract
Recent years have seen an increase of extracellular vesicle (EV) research geared towards biological (show more...)Recent years have seen an increase of extracellular vesicle (EV) research geared towards biological understanding, diagnostics and therapy. However, EV data interpretation remains challenging owing to complexity of biofluids and technical variation introduced during sample preparation and analysis. To understand and mitigate these limitations, we generated trackable recombinant EV (rEV) as a biological reference material. Employing complementary characterization methods, we demonstrate that rEV are stable and bear physical and biochemical traits characteristic of sample EV. Furthermore, rEV can be quantified using fluorescence-, RNA- and protein-based technologies available in routine laboratories. Spiking rEV in biofluids allows recovery efficiencies of commonly implemented EV separation methods to be identified, intra-method and inter-user variability induced by sample handling to be defined, and to normalize and improve sensitivity of EV enumerations. We anticipate that rEV will aid EV-based sample preparation and analysis, data normalization, method development and instrument calibration in various research and biomedical applications. (hide)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
UF
Protein markers
EV:
non-EV:
Proteomics
yes
EV density (g/ml)
1.086-1.119
Show all info
Study aim
New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
primary fibroblasts
EV-harvesting Medium
Serum free medium
Cell viability (%)
96
Separation Method
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5
Highest density fraction
40
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
1
Orientation
Top-down
Rotor type
SW 32.1 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
16
Pelleting: duration (min)
180
Pelleting: rotor type
SW 32.1 Ti
Pelleting: speed (g)
100000
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Proteomics database
Yes:
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EV190025 1/4 Homo sapiens Blood plasma (d)(U)C
Filtration
qEV
Czystowska-Kuzmicz, Malgorzata 2019 50%

Study summary

Full title
All authors
Malgorzata Czystowska-Kuzmicz, Anna Sosnowska, Dominika Nowis, Kavita Ramji, Marta Szajnik, Justyna Chlebowska-Tuz, Ewa Wolinska, Pawel Gaj, Magdalena Grazul, Zofia Pilch, Abdessamad Zerrouqi, Agnieszka Graczyk-Jarzynka, Karolina Soroczynska, Szczepan Cierniak, Robert Koktysz, Esther Elishaev, Slawomir Gruca, Artur Stefanowicz, Roman Blaszczyk, Bartlomiej Borek, Anna Gzik, Theresa Whiteside, and Jakub Golab
Journal
Nat Commun
Abstract
Tumor-driven immune suppression is a major barrier to successful immunotherapy in ovarian carcinomas (show more...)Tumor-driven immune suppression is a major barrier to successful immunotherapy in ovarian carcinomas (OvCa). Among various mechanisms responsible for immune suppression, arginase-1 (ARG1)-carrying small extracellular vesicles (EVs) emerge as important contributors to tumor growth and tumor escape from the host immune system. Here, we report that small EVs found in the ascites and plasma of OvCa patients contain ARG1. EVs suppress proliferation of CD4+ and CD8+ T-cells in vitro and in vivo in OvCa mouse models. In mice, ARG1-containing EVs are transported to draining lymph nodes, taken up by dendritic cells and inhibit antigen-specific T-cell proliferation. Increased expression of ARG1 in mouse OvCa cells is associated with accelerated tumor progression that can be blocked by an arginase inhibitor. Altogether, our studies show that tumor cells use EVs as vehicles to carry over long distances and deliver to immune cells a metabolic checkpoint molecule – ARG1, mitigating anti-tumor immune responses. (hide)
EV-METRIC
50% (83rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
qEV
Protein markers
EV: TSG101/ ARG1/ CD63
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Commercial kit
qEV
Other
Name other separation method
qEV
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ ARG1/ TSG101
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
128
EV concentration
Yes
TRPS
Report type
Mean
Reported size (nm)
65
EV concentration
Yes
EV190025 2/4 Homo sapiens Blood plasma (d)(U)C
Filtration
qEV
Czystowska-Kuzmicz, Malgorzata 2019 50%

Study summary

Full title
All authors
Malgorzata Czystowska-Kuzmicz, Anna Sosnowska, Dominika Nowis, Kavita Ramji, Marta Szajnik, Justyna Chlebowska-Tuz, Ewa Wolinska, Pawel Gaj, Magdalena Grazul, Zofia Pilch, Abdessamad Zerrouqi, Agnieszka Graczyk-Jarzynka, Karolina Soroczynska, Szczepan Cierniak, Robert Koktysz, Esther Elishaev, Slawomir Gruca, Artur Stefanowicz, Roman Blaszczyk, Bartlomiej Borek, Anna Gzik, Theresa Whiteside, and Jakub Golab
Journal
Nat Commun
Abstract
Tumor-driven immune suppression is a major barrier to successful immunotherapy in ovarian carcinomas (show more...)Tumor-driven immune suppression is a major barrier to successful immunotherapy in ovarian carcinomas (OvCa). Among various mechanisms responsible for immune suppression, arginase-1 (ARG1)-carrying small extracellular vesicles (EVs) emerge as important contributors to tumor growth and tumor escape from the host immune system. Here, we report that small EVs found in the ascites and plasma of OvCa patients contain ARG1. EVs suppress proliferation of CD4+ and CD8+ T-cells in vitro and in vivo in OvCa mouse models. In mice, ARG1-containing EVs are transported to draining lymph nodes, taken up by dendritic cells and inhibit antigen-specific T-cell proliferation. Increased expression of ARG1 in mouse OvCa cells is associated with accelerated tumor progression that can be blocked by an arginase inhibitor. Altogether, our studies show that tumor cells use EVs as vehicles to carry over long distances and deliver to immune cells a metabolic checkpoint molecule – ARG1, mitigating anti-tumor immune responses. (hide)
EV-METRIC
50% (83rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
ovarian cancer
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
qEV
Protein markers
EV: TSG101/ ARG1/ CD63
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Commercial kit
qEV
Other
Name other separation method
qEV
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ ARG1/ TSG101
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
126
EV concentration
Yes
TRPS
Report type
Mean
Reported size (nm)
58
EV concentration
Yes
EV190021 2/4 Homo sapiens Blood plasma (d)(U)C
UF
Yunusova, Natalia 2019 50%

Study summary

Full title
All authors
Natalia V Yunusova, Marina R Patysheva, Sergey V Molchanov, Elena A Zambalova, Alina E Grigor'eva, Larisa A Kolomiets, Maxim O Ochirov, Svetlana N Tamkovich, Irina V Kondakova
Journal
Clinica Chimica Acta
Abstract
Metalloproteinases and their extracellular matrix metalloproteinase inducer (EMMPRIN) play an essent (show more...)Metalloproteinases and their extracellular matrix metalloproteinase inducer (EMMPRIN) play an essential role in the regulation of signaling from growth factors receptors and adhesion molecules, cell motility and extracellular matrix degradation. The aim of the study was to evaluate the relationship between the levels of small extracellular vesicles (sEVs) metalloproteinases, such as ADAM10, ADAM17, MMP2, MMP9 and EMMPRIN and ascites volume and peritoneal canceromatosis index in advanced ovarian cancer patients (OCPs). The subpopulations of metalloproteinases at the surface of sEVs of borderline ovarian tumor patients (BOTPs) (n = 20, 36.5 ± 2.5 years) and previously untreated advanced OCPs (n = 35, 56.5 ± 2.5 years) were evaluated using flow cytometry. The metalloproteinase subpopulations of CD9-positive sEVs isolated from plasma of BOTPs and OCPs appeared to be quite similar. However, a significant difference in the expression of ADAM-metalloproteinases in ascites sEVs was found between BOTPs and OCPs. The level of sEVs metalloproteinases in OCPs significantly depended on the ascites volume. A statistically significant relationship between the level of ADAM10+/ADAM17- subpopulation in plasma sEVs and the peritoneal canceromatosis index was found (R = 0.66, p < .05). The levels of metalloproteinases and EMMPRIN in circulating sEVs, as well as the assessment of individual subpopulations may be promising approaches to OCPs managing. (hide)
EV-METRIC
50% (83rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
advanced ovarian cancer, pretreatment
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
UF
Protein markers
EV: / CD81/ CD63/ CD9/ CD24
non-EV: /
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
16
Wash: time (min)
90
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Polyethersulfone (PES)
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Detected EV-associated proteins
CD24/ CD9/ CD63/ CD81
Not detected EV-associated proteins
Detected contaminants
Not detected contaminants
Characterization: Lipid analysis
No
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
100
EV190021 3/4 Homo sapiens ascites (d)(U)C
UF
Yunusova, Natalia 2019 50%

Study summary

Full title
All authors
Natalia V Yunusova, Marina R Patysheva, Sergey V Molchanov, Elena A Zambalova, Alina E Grigor'eva, Larisa A Kolomiets, Maxim O Ochirov, Svetlana N Tamkovich, Irina V Kondakova
Journal
Clinica Chimica Acta
Abstract
Metalloproteinases and their extracellular matrix metalloproteinase inducer (EMMPRIN) play an essent (show more...)Metalloproteinases and their extracellular matrix metalloproteinase inducer (EMMPRIN) play an essential role in the regulation of signaling from growth factors receptors and adhesion molecules, cell motility and extracellular matrix degradation. The aim of the study was to evaluate the relationship between the levels of small extracellular vesicles (sEVs) metalloproteinases, such as ADAM10, ADAM17, MMP2, MMP9 and EMMPRIN and ascites volume and peritoneal canceromatosis index in advanced ovarian cancer patients (OCPs). The subpopulations of metalloproteinases at the surface of sEVs of borderline ovarian tumor patients (BOTPs) (n = 20, 36.5 ± 2.5 years) and previously untreated advanced OCPs (n = 35, 56.5 ± 2.5 years) were evaluated using flow cytometry. The metalloproteinase subpopulations of CD9-positive sEVs isolated from plasma of BOTPs and OCPs appeared to be quite similar. However, a significant difference in the expression of ADAM-metalloproteinases in ascites sEVs was found between BOTPs and OCPs. The level of sEVs metalloproteinases in OCPs significantly depended on the ascites volume. A statistically significant relationship between the level of ADAM10+/ADAM17- subpopulation in plasma sEVs and the peritoneal canceromatosis index was found (R = 0.66, p < .05). The levels of metalloproteinases and EMMPRIN in circulating sEVs, as well as the assessment of individual subpopulations may be promising approaches to OCPs managing. (hide)
EV-METRIC
50% (84th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
ascites
Sample origin
borderline ovarian tumors, control pts
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
UF
Protein markers
EV: / CD81/ CD63/ CD9/ CD24
non-EV: /
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
ascites
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
16
Wash: time (min)
90
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Polyethersulfone (PES)
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Detected EV-associated proteins
CD24/ CD9/ CD81/ CD63
Not detected EV-associated proteins
Detected contaminants
Not detected contaminants
Characterization: Lipid analysis
No
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
100
EV190021 4/4 Homo sapiens ascites (d)(U)C
UF
Yunusova, Natalia 2019 50%

Study summary

Full title
All authors
Natalia V Yunusova, Marina R Patysheva, Sergey V Molchanov, Elena A Zambalova, Alina E Grigor'eva, Larisa A Kolomiets, Maxim O Ochirov, Svetlana N Tamkovich, Irina V Kondakova
Journal
Clinica Chimica Acta
Abstract
Metalloproteinases and their extracellular matrix metalloproteinase inducer (EMMPRIN) play an essent (show more...)Metalloproteinases and their extracellular matrix metalloproteinase inducer (EMMPRIN) play an essential role in the regulation of signaling from growth factors receptors and adhesion molecules, cell motility and extracellular matrix degradation. The aim of the study was to evaluate the relationship between the levels of small extracellular vesicles (sEVs) metalloproteinases, such as ADAM10, ADAM17, MMP2, MMP9 and EMMPRIN and ascites volume and peritoneal canceromatosis index in advanced ovarian cancer patients (OCPs). The subpopulations of metalloproteinases at the surface of sEVs of borderline ovarian tumor patients (BOTPs) (n = 20, 36.5 ± 2.5 years) and previously untreated advanced OCPs (n = 35, 56.5 ± 2.5 years) were evaluated using flow cytometry. The metalloproteinase subpopulations of CD9-positive sEVs isolated from plasma of BOTPs and OCPs appeared to be quite similar. However, a significant difference in the expression of ADAM-metalloproteinases in ascites sEVs was found between BOTPs and OCPs. The level of sEVs metalloproteinases in OCPs significantly depended on the ascites volume. A statistically significant relationship between the level of ADAM10+/ADAM17- subpopulation in plasma sEVs and the peritoneal canceromatosis index was found (R = 0.66, p < .05). The levels of metalloproteinases and EMMPRIN in circulating sEVs, as well as the assessment of individual subpopulations may be promising approaches to OCPs managing. (hide)
EV-METRIC
50% (84th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
ascites
Sample origin
advanced ovarian cancer, pretreatment
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
UF
Protein markers
EV: / CD81/ CD63/ CD9/ CD24
non-EV: /
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
ascites
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
16
Wash: time (min)
90
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Polyethersulfone (PES)
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Detected EV-associated proteins
CD24/ CD9/ CD63/ CD81
Not detected EV-associated proteins
Detected contaminants
Not detected contaminants
Characterization: Lipid analysis
No
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
100
EV190003 1/1 Homo sapiens Urine (d)(U)C Sabaratnam R 2019 50%

Study summary

Full title
All authors
Sabaratnam R, Geertsen L, Skjødt K, Hojlund K, Dimke H, Lund L, Svenningsen P.
Journal
Am J Physiol Renal Physiol
Abstract
Human urinary extracellular vesicles (uEVs) contain proteins from all nephron segments. An assumptio (show more...)Human urinary extracellular vesicles (uEVs) contain proteins from all nephron segments. An assumption for years has been that uEVs might provide a non-invasive liquid biopsy that reflect physiological regulation of transporter protein expression in human. We hypothesized that protein abundance in human kidney tissue and uEV are directly related and tested this in paired collections of nephrectomy tissue and urine sample from 12 patients. Kidney tissue was fractioned into total kidney protein, crude membrane (plasma membrane and large intracellular vesicles) and intracellular vesicle enriched fractions, as well as sections for immunolabelling. uEVs were isolated from spot urine samples. Antibodies were used to quantify 6 segment-specific proteins (proximal tubular expressed Na/Phosphate cotransporter NaPi-2a, thick ascending limb expressed Tamm-Horsfall protein and renal-outer-medullary K+channel ROMK, distal convoluted tubular expressed NaCl cotransporter NCC, intercalated cell expressed proton-pump subunit ATP6V1G3 and principal cell expressed aquaporin 2 (AQP2)) and 3 uEV markers (exosomal CD63, microvesicle marker VAMP3 and β-actin) in each fractions. By western blotting and immunofluorescence labelling, we found significant positive correlations between abundance of CD63, NCC, AQP2 and ATP6V1G3, respectively, within the different kidney-derived fractions. We detected all 9 proteins in uEVs, but their level did not correlate with kidney tissue protein abundance. The uEV protein levels showed higher inter-patient variability than the kidney-derived fractions, indicating that factors, besides kidney protein abundance, contribute to the uEV protein level. Our data suggest that, in a random sample of nephrectomy patients, uEV protein level is not a predictor of kidney protein abundance. (hide)
EV-METRIC
50% (86th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
pre-nephrectomy
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: SLC34A1/ VAMP3/ CD63/ beta-actin/ ROMK
non-EV: Tamm-Horsfall protein
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ VAMP3/ beta-actin/ SLC34A1/ ROMK
Detected contaminants
Tamm-Horsfall protein
Characterization: Lipid analysis
No
EV180071 2/3 Homo sapiens Blood plasma SEC
UF
Brahmer A 2019 50%

Study summary

Full title
All authors
Brahmer A, Neuberger E, Esch-Heisser L, Haller N, Jorgensen MM, Baek R, Möbius W, Simon P, Krämer-Albers EM.
Journal
J Extracell Vesicles
Abstract
Physical activity initiates a wide range of multi-systemic adaptations that promote mental and physi (show more...)Physical activity initiates a wide range of multi-systemic adaptations that promote mental and physical health. Recent work demonstrated that exercise triggers the release of extracellular vesicles (EVs) into the circulation, possibly contributing to exercise-associated adaptive systemic signalling. Circulating EVs comprise a heterogeneous collection of different EV-subclasses released from various cell types. So far, a comprehensive picture of the parental and target cell types, EV-subpopulation diversity and functional properties of EVs released during exercise (ExerVs) is lacking. Here, we performed a detailed EV-phenotyping analysis to explore the cellular origin and potential subtypes of ExerVs. Healthy male athletes were subjected to an incremental cycling test until exhaustion and blood was drawn before, during, and immediately after the test. Analysis of total blood plasma by EV Array suggested endothelial and leukocyte characteristics of ExerVs. We further purified ExerVs from plasma by size exclusion chromatography as well as CD9-, CD63- or CD81-immunobead isolation to examine ExerV-subclass dynamics. EV-marker analysis demonstrated increasing EV-levels during cycling exercise, with highest levels at peak exercise in all EV-subclasses analysed. Phenotyping of ExerVs using a multiplexed flow-cytometry platform revealed a pattern of cell surface markers associated with ExerVs and identified lymphocytes (CD4, CD8), monocytes (CD14), platelets (CD41, CD42, CD62P), endothelial cells (CD105, CD146) and antigen presenting cells (MHC-II) as ExerV-parental cells. We conclude that multiple cell types associated with the circulatory system contribute to a pool of heterogeneous ExerVs, which may be involved in exercise-related signalling mechanisms and tissue crosstalk. (hide)
EV-METRIC
50% (83rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
RQ 0.9 during exercise
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
SEC
UF
Protein markers
EV: TSG101/ CD31/ CD209/ CD326/ CD133/1/ CD8/ CD9/ CD49e/ CD81/ CD86/ Syntenin/ CD41b/ CD29/ CD63/ CD42a/ CD44/ CD20/ CD40/ Sarcoglycan-alpha/ CD24/ CD146/ CD69/ MHC2/ ROR1/ MHC1/ SSEA4/ CD105/ MCSP/ CD62p/ CD19/ CD142
non-EV: / ApoA1
Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Ultra filtration
Cut-off size (kDa)
30
Membrane type
Regenerated cellulose
Commercial kit
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
2
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD81/ TSG101/ CD9/ Syntenin/ CD41b/ CD63
Not detected EV-associated proteins
Sarcoglycan-alpha
Detected contaminants
ApoA1
Not detected contaminants
Detected EV-associated proteins
CD63/ CD9/ CD81/ CD8/ CD19/ CD20/ CD24/ CD29/ CD31/ CD40/ CD41b/ CD42a/ CD44/ CD49e/ CD62p/ CD69/ CD86/ CD105/ CD133/1/ CD142/ CD146/ CD209/ CD326/ MHC1/ MHC2/ MCSP/ ROR1/ SSEA4
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV180071 3/3 Homo sapiens Blood plasma SEC
UF
Brahmer A 2019 50%

Study summary

Full title
All authors
Brahmer A, Neuberger E, Esch-Heisser L, Haller N, Jorgensen MM, Baek R, Möbius W, Simon P, Krämer-Albers EM.
Journal
J Extracell Vesicles
Abstract
Physical activity initiates a wide range of multi-systemic adaptations that promote mental and physi (show more...)Physical activity initiates a wide range of multi-systemic adaptations that promote mental and physical health. Recent work demonstrated that exercise triggers the release of extracellular vesicles (EVs) into the circulation, possibly contributing to exercise-associated adaptive systemic signalling. Circulating EVs comprise a heterogeneous collection of different EV-subclasses released from various cell types. So far, a comprehensive picture of the parental and target cell types, EV-subpopulation diversity and functional properties of EVs released during exercise (ExerVs) is lacking. Here, we performed a detailed EV-phenotyping analysis to explore the cellular origin and potential subtypes of ExerVs. Healthy male athletes were subjected to an incremental cycling test until exhaustion and blood was drawn before, during, and immediately after the test. Analysis of total blood plasma by EV Array suggested endothelial and leukocyte characteristics of ExerVs. We further purified ExerVs from plasma by size exclusion chromatography as well as CD9-, CD63- or CD81-immunobead isolation to examine ExerV-subclass dynamics. EV-marker analysis demonstrated increasing EV-levels during cycling exercise, with highest levels at peak exercise in all EV-subclasses analysed. Phenotyping of ExerVs using a multiplexed flow-cytometry platform revealed a pattern of cell surface markers associated with ExerVs and identified lymphocytes (CD4, CD8), monocytes (CD14), platelets (CD41, CD42, CD62P), endothelial cells (CD105, CD146) and antigen presenting cells (MHC-II) as ExerV-parental cells. We conclude that multiple cell types associated with the circulatory system contribute to a pool of heterogeneous ExerVs, which may be involved in exercise-related signalling mechanisms and tissue crosstalk. (hide)
EV-METRIC
50% (83rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
post exercise
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
SEC
UF
Protein markers
EV: TSG101/ CD31/ CD209/ CD326/ CD133/1/ CD8/ CD9/ CD49e/ CD81/ CD86/ Syntenin/ CD41b/ CD29/ CD63/ CD42a/ CD44/ CD20/ CD40/ Sarcoglycan-alpha/ CD24/ CD146/ CD69/ MHC2/ ROR1/ MHC1/ SSEA4/ CD105/ MCSP/ CD62p/ CD19/ CD142
non-EV: / ApoA1
Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Ultra filtration
Cut-off size (kDa)
30
Membrane type
Regenerated cellulose
Commercial kit
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
2
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD81/ TSG101/ CD9/ Syntenin/ CD41b/ CD63
Not detected EV-associated proteins
Sarcoglycan-alpha
Detected contaminants
ApoA1
Not detected contaminants
Detected EV-associated proteins
CD63/ CD9/ CD81/ CD8/ CD19/ CD20/ CD24/ CD29/ CD31/ CD40/ CD41b/ CD42a/ CD44/ CD49e/ CD62p/ CD69/ CD86/ CD105/ CD133/1/ CD142/ CD146/ CD209/ CD326/ MHC1/ MHC2/ MCSP/ ROR1/ SSEA4
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV210242 1/2 Homo sapiens Blood plasma (d)(U)C
SEC (non-commercial)
Filtration
Jayabalan N 2019 45%

Study summary

Full title
All authors
Jayabalan N, Lai A, Nair S, Guanzon D, Scholz-Romero K, Palma C, McIntyre HD, Lappas M, Salomon C
Journal
Proteomics
Abstract
Several factors including placental hormones (PH) released from the human placenta have been associa (show more...)Several factors including placental hormones (PH) released from the human placenta have been associated with the development of insulin resistance and gestational diabetes mellitus (GDM). However, circulating levels of PH does not correlate well with maternal insulin sensitivity across gestation, suggesting that other, previously unrecognized, mechanisms may be involved. The levels of circulating exosomes are higher in GDM compared to normal. GDM derived exosomes produce greater release of pro-inflammatory cytokines from endothelial cells compared to exosomes from normal, suggesting that their contents may differ compared to normal pregnancies. Using a quantitative, information-independent acquisition (Sequential Windowed Acquisition of All Theoretical Mass Spectra [SWATH]) approach, differentially abundant circulating exosome proteins are identified in women with normal glucose tolerance (NGT) and GDM at the time of GDM diagnosis. A total of 78 statistically significant proteins in the relative expression of exosomal proteins in GDM are compared with NGT. Bioinformatic analysis shows that the exosomal proteins in GDM target pathways are mainly associated with energy production, inflammation, and metabolism. Finally, an independent cohort of patients is used to validate some of the proteins identified by SWATH. The data obtained may be of utility in elucidating the underlying physiological mechanisms associated with insulin resistance in GDM. (hide)
EV-METRIC
45% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Healthy pregnant
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial)
Filtration
Protein markers
EV: CD9/ TSG101/ CD63
non-EV: Grp94
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
T-8100
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
Not specified
Wash: time (min)
120
Wash: Rotor Type
T-8100
Wash: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
0.3
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ TSG101/ CD63
Detected contaminants
Grp94
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
105 +/- 15nm
EV concentration
Yes
Particle yield
No: 0.00e+0
EV210242 2/2 Homo sapiens Blood plasma (d)(U)C
SEC (non-commercial)
Filtration
Jayabalan N 2019 45%

Study summary

Full title
All authors
Jayabalan N, Lai A, Nair S, Guanzon D, Scholz-Romero K, Palma C, McIntyre HD, Lappas M, Salomon C
Journal
Proteomics
Abstract
Several factors including placental hormones (PH) released from the human placenta have been associa (show more...)Several factors including placental hormones (PH) released from the human placenta have been associated with the development of insulin resistance and gestational diabetes mellitus (GDM). However, circulating levels of PH does not correlate well with maternal insulin sensitivity across gestation, suggesting that other, previously unrecognized, mechanisms may be involved. The levels of circulating exosomes are higher in GDM compared to normal. GDM derived exosomes produce greater release of pro-inflammatory cytokines from endothelial cells compared to exosomes from normal, suggesting that their contents may differ compared to normal pregnancies. Using a quantitative, information-independent acquisition (Sequential Windowed Acquisition of All Theoretical Mass Spectra [SWATH]) approach, differentially abundant circulating exosome proteins are identified in women with normal glucose tolerance (NGT) and GDM at the time of GDM diagnosis. A total of 78 statistically significant proteins in the relative expression of exosomal proteins in GDM are compared with NGT. Bioinformatic analysis shows that the exosomal proteins in GDM target pathways are mainly associated with energy production, inflammation, and metabolism. Finally, an independent cohort of patients is used to validate some of the proteins identified by SWATH. The data obtained may be of utility in elucidating the underlying physiological mechanisms associated with insulin resistance in GDM. (hide)
EV-METRIC
45% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Pregnant with gestational diabetes mellitus
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial)
Filtration
Protein markers
EV: CD9/ TSG101/ CD63
non-EV: Grp94
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
T-8100
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
Not specified
Wash: time (min)
120
Wash: Rotor Type
T-8100
Wash: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
0.3
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ TSG101/ CD63
Detected contaminants
Grp94
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
102 +/- 17nm
EV concentration
Yes
Particle yield
No: 0.00e+0
EV200143 1/2 Homo sapiens Blood plasma (d)(U)C
Filtration
Ramkumar, Menon 2019 45%

Study summary

Full title
All authors
Ramkumar Menon, Chirantan Debnath, Andrew Lai, Dominic Guanzon, Shinjini Bhatnagar, Pallavi K Kshetrapal, Samantha Sheller-Miller, Carlos Salomon, Garbhini Study Team
Journal
Endocrinology
Abstract
Despite decades of research in the field of human reproduction, the mechanisms responsible for human (show more...)Despite decades of research in the field of human reproduction, the mechanisms responsible for human parturition still remain elusive. The objective of this study was to describe the changes in the exosomal miRNA concentrations circulating in the maternal plasma between mothers delivering term and preterm neonates, across gestation using a longitudinal study design. This descriptive study identifies the miRNA content in exosomes present in maternal plasma of term and preterm birth (PTB) (n = 20 and n = 10 per each gestational period, respectively) across gestation (i.e., first, second, and third trimesters and at the time of delivery). Changes in exosomal miRNA signature in maternal plasma during term and preterm gestation were determined using the NextSeq 500 high-output 75 cycles sequencing platform. A total of 167 and 153 miRNAs were found to significantly change (P < 0.05) as a function of the gestational age across term and PTB pregnancies, respectively. Interestingly, a comparison analysis between the exosomal miRNA profile between term and PTB reveals a total of 173 miRNAs that significantly change (P < 0.05) across gestation. Specific trends of changes (i.e., increase, decrease, and both) as a function of the gestational age were also identified. The bioinformatics analyses establish that the differences in the miRNA profile are targeting signaling pathways associated with TGF-β signaling, p53, and glucocorticoid receptor signaling, respectively. These data suggest that the miRNA content of circulating exosomes in maternal blood might represent a biomolecular fingerprint of the progression of pregnancy. (hide)
EV-METRIC
45% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Normal pregnancy
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: TSG101/ CD63/ CD9
non-EV: Grp94
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
T-8100
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
10
Wash: time (min)
120
Wash: Rotor Type
T-8100
Wash: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
CD9/ CD63/ TSG101
Not detected contaminants
Grp94
Characterization: RNA analysis
RNA analysis
Type
RNA sequencing
Database
Yes
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-120nm
EM
EM-type
Transmission-EM
Image type
Close-up
101 - 150 of 963 keyboard_arrow_leftkeyboard_arrow_right