Search > Results

You searched for: EV210173 (EV-TRACK ID)

Showing 1 - 5 of 5

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV210173 1/5 Homo sapiens U87MG (d)(U)C
Filtration
Wang, Huayi 2019 56%

Study summary

Full title
All authors
Huayi Wang, Dengzhi Jiang, Wenzhe Li, Xiang Xiang, Jun Zhao, Bin Yu, Chen Wang, Zhaohui He, Ling Zhu, Yanlian Yang
Journal
Theranostics
Abstract
Rationale: Glioma is the most common malignant primary brain tumor in the central nervous system (CN (show more...)Rationale: Glioma is the most common malignant primary brain tumor in the central nervous system (CNS). The lack of reliable noninvasive diagnostic and prognostic methods is one of the main reasons for the high mortality of glioma. Serum has become a useful biomarker for the diagnosis and prognosis prediction of glioma because extracellular vesicles (EVs) carry molecular components from their parental cells. Methods: To detect EVs and perform molecular analysis of serum EVs, we established and optimized a microbead-assisted method based on flow cytometry and estimated the efficacy of EGFR protein expression and NLGN3 and PTTG1 mRNA in serum EVs from glioma patients (n=23) and healthy individuals (n=12). We evaluated the ability of EGFR+ EVs to differentiate high-grade and low-grade glioma patients and checked the correlation between EGFR in EVs and the ki-67 labeling index (LI) in the tumor tissue. Results: We demonstrated that EGFR+ EVs are effective diagnostic and prognostic markers of glioma. The expression of EGFR in serum EVs can accurately differentiate high-grade and low-grade glioma patients, and EGFR in EVs positively correlates with ki-67 LI in the tumor tissue. We also showed the potential of NLGN3 and PTTG1 mRNA in EVs for detecting glioma patients. Conclusions: We demonstrate that the protein expression of EGFR in serum EVs is an effective diagnostic marker of glioma. EGFR in EVs highly correlates with the malignancy of glioma. We also show the potential of NLGN3 and PTTG1 in EVs for detecting glioma. The optimized flow cytometry with the aid of microbead-based EV enrichment show its potential as a noninvasive method for the detection of glioma and will be beneficial to the management of glioma. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: CD81/ Flotillin1/ EGFR
non-EV: Grp94
Proteomics
no
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
U87MG
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Not specified
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
Not specified
Wash: time (min)
120
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Flotillin1/ EGFR/ CD81
Not detected contaminants
Grp94
Flow cytometry aspecific beads
Antibody details provided?
No
Detected EV-associated proteins
EGFR
Characterization: Lipid analysis
No
EV210173 2/5 Homo sapiens U251 (d)(U)C
Filtration
Wang, Huayi 2019 56%

Study summary

Full title
All authors
Huayi Wang, Dengzhi Jiang, Wenzhe Li, Xiang Xiang, Jun Zhao, Bin Yu, Chen Wang, Zhaohui He, Ling Zhu, Yanlian Yang
Journal
Theranostics
Abstract
Rationale: Glioma is the most common malignant primary brain tumor in the central nervous system (CN (show more...)Rationale: Glioma is the most common malignant primary brain tumor in the central nervous system (CNS). The lack of reliable noninvasive diagnostic and prognostic methods is one of the main reasons for the high mortality of glioma. Serum has become a useful biomarker for the diagnosis and prognosis prediction of glioma because extracellular vesicles (EVs) carry molecular components from their parental cells. Methods: To detect EVs and perform molecular analysis of serum EVs, we established and optimized a microbead-assisted method based on flow cytometry and estimated the efficacy of EGFR protein expression and NLGN3 and PTTG1 mRNA in serum EVs from glioma patients (n=23) and healthy individuals (n=12). We evaluated the ability of EGFR+ EVs to differentiate high-grade and low-grade glioma patients and checked the correlation between EGFR in EVs and the ki-67 labeling index (LI) in the tumor tissue. Results: We demonstrated that EGFR+ EVs are effective diagnostic and prognostic markers of glioma. The expression of EGFR in serum EVs can accurately differentiate high-grade and low-grade glioma patients, and EGFR in EVs positively correlates with ki-67 LI in the tumor tissue. We also showed the potential of NLGN3 and PTTG1 mRNA in EVs for detecting glioma patients. Conclusions: We demonstrate that the protein expression of EGFR in serum EVs is an effective diagnostic marker of glioma. EGFR in EVs highly correlates with the malignancy of glioma. We also show the potential of NLGN3 and PTTG1 in EVs for detecting glioma. The optimized flow cytometry with the aid of microbead-based EV enrichment show its potential as a noninvasive method for the detection of glioma and will be beneficial to the management of glioma. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: CD81/ Flotillin1/ EGFR
non-EV: Grp94
Proteomics
no
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
U251
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Not specified
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
Not specified
Wash: time (min)
120
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Flotillin1/ EGFR/ CD81
Not detected contaminants
Grp94
Flow cytometry aspecific beads
Antibody details provided?
No
Detected EV-associated proteins
EGFR
Characterization: Lipid analysis
No
EV210173 3/5 Homo sapiens HA (d)(U)C
Filtration
Wang, Huayi 2019 56%

Study summary

Full title
All authors
Huayi Wang, Dengzhi Jiang, Wenzhe Li, Xiang Xiang, Jun Zhao, Bin Yu, Chen Wang, Zhaohui He, Ling Zhu, Yanlian Yang
Journal
Theranostics
Abstract
Rationale: Glioma is the most common malignant primary brain tumor in the central nervous system (CN (show more...)Rationale: Glioma is the most common malignant primary brain tumor in the central nervous system (CNS). The lack of reliable noninvasive diagnostic and prognostic methods is one of the main reasons for the high mortality of glioma. Serum has become a useful biomarker for the diagnosis and prognosis prediction of glioma because extracellular vesicles (EVs) carry molecular components from their parental cells. Methods: To detect EVs and perform molecular analysis of serum EVs, we established and optimized a microbead-assisted method based on flow cytometry and estimated the efficacy of EGFR protein expression and NLGN3 and PTTG1 mRNA in serum EVs from glioma patients (n=23) and healthy individuals (n=12). We evaluated the ability of EGFR+ EVs to differentiate high-grade and low-grade glioma patients and checked the correlation between EGFR in EVs and the ki-67 labeling index (LI) in the tumor tissue. Results: We demonstrated that EGFR+ EVs are effective diagnostic and prognostic markers of glioma. The expression of EGFR in serum EVs can accurately differentiate high-grade and low-grade glioma patients, and EGFR in EVs positively correlates with ki-67 LI in the tumor tissue. We also showed the potential of NLGN3 and PTTG1 mRNA in EVs for detecting glioma patients. Conclusions: We demonstrate that the protein expression of EGFR in serum EVs is an effective diagnostic marker of glioma. EGFR in EVs highly correlates with the malignancy of glioma. We also show the potential of NLGN3 and PTTG1 in EVs for detecting glioma. The optimized flow cytometry with the aid of microbead-based EV enrichment show its potential as a noninvasive method for the detection of glioma and will be beneficial to the management of glioma. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: CD81/ Flotillin1/ EGFR
non-EV: GRP94
Proteomics
no
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HA
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Not specified
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
Not specified
Wash: time (min)
120
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Flotillin1/ CD81
Not detected EV-associated proteins
EGFR
Not detected contaminants
GRP94
Flow cytometry aspecific beads
Antibody details provided?
No
Detected EV-associated proteins
EGFR
Characterization: Lipid analysis
No
EV210173 5/5 Homo sapiens Serum (d)(U)C
Filtration
Wang, Huayi 2019 33%

Study summary

Full title
All authors
Huayi Wang, Dengzhi Jiang, Wenzhe Li, Xiang Xiang, Jun Zhao, Bin Yu, Chen Wang, Zhaohui He, Ling Zhu, Yanlian Yang
Journal
Theranostics
Abstract
Rationale: Glioma is the most common malignant primary brain tumor in the central nervous system (CN (show more...)Rationale: Glioma is the most common malignant primary brain tumor in the central nervous system (CNS). The lack of reliable noninvasive diagnostic and prognostic methods is one of the main reasons for the high mortality of glioma. Serum has become a useful biomarker for the diagnosis and prognosis prediction of glioma because extracellular vesicles (EVs) carry molecular components from their parental cells. Methods: To detect EVs and perform molecular analysis of serum EVs, we established and optimized a microbead-assisted method based on flow cytometry and estimated the efficacy of EGFR protein expression and NLGN3 and PTTG1 mRNA in serum EVs from glioma patients (n=23) and healthy individuals (n=12). We evaluated the ability of EGFR+ EVs to differentiate high-grade and low-grade glioma patients and checked the correlation between EGFR in EVs and the ki-67 labeling index (LI) in the tumor tissue. Results: We demonstrated that EGFR+ EVs are effective diagnostic and prognostic markers of glioma. The expression of EGFR in serum EVs can accurately differentiate high-grade and low-grade glioma patients, and EGFR in EVs positively correlates with ki-67 LI in the tumor tissue. We also showed the potential of NLGN3 and PTTG1 mRNA in EVs for detecting glioma patients. Conclusions: We demonstrate that the protein expression of EGFR in serum EVs is an effective diagnostic marker of glioma. EGFR in EVs highly correlates with the malignancy of glioma. We also show the potential of NLGN3 and PTTG1 in EVs for detecting glioma. The optimized flow cytometry with the aid of microbead-based EV enrichment show its potential as a noninvasive method for the detection of glioma and will be beneficial to the management of glioma. (hide)
EV-METRIC
33% (76th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Glioma
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: EGFR/ EGFR/ FGF2/ CD81/ Flotillin-1
non-EV: HSA
Proteomics
no
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
480
Pelleting: rotor type
Not specified
Pelleting: speed (g)
150000
Wash: volume per pellet (ml)
26
Wash: time (min)
120
Wash: Rotor Type
Not specified
Wash: speed (g)
150000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
EGFR/ FGF2/ CD81/ Flotillin-1
Not detected contaminants
HSA
Flow cytometry aspecific beads
Antibody details provided?
No
Detected EV-associated proteins
EGFR
Characterization: RNA analysis
RNA analysis
Type
(RT)­(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
EV210173 4/5 Homo sapiens Serum (d)(U)C
Filtration
Wang, Huayi 2019 13%

Study summary

Full title
All authors
Huayi Wang, Dengzhi Jiang, Wenzhe Li, Xiang Xiang, Jun Zhao, Bin Yu, Chen Wang, Zhaohui He, Ling Zhu, Yanlian Yang
Journal
Theranostics
Abstract
Rationale: Glioma is the most common malignant primary brain tumor in the central nervous system (CN (show more...)Rationale: Glioma is the most common malignant primary brain tumor in the central nervous system (CNS). The lack of reliable noninvasive diagnostic and prognostic methods is one of the main reasons for the high mortality of glioma. Serum has become a useful biomarker for the diagnosis and prognosis prediction of glioma because extracellular vesicles (EVs) carry molecular components from their parental cells. Methods: To detect EVs and perform molecular analysis of serum EVs, we established and optimized a microbead-assisted method based on flow cytometry and estimated the efficacy of EGFR protein expression and NLGN3 and PTTG1 mRNA in serum EVs from glioma patients (n=23) and healthy individuals (n=12). We evaluated the ability of EGFR+ EVs to differentiate high-grade and low-grade glioma patients and checked the correlation between EGFR in EVs and the ki-67 labeling index (LI) in the tumor tissue. Results: We demonstrated that EGFR+ EVs are effective diagnostic and prognostic markers of glioma. The expression of EGFR in serum EVs can accurately differentiate high-grade and low-grade glioma patients, and EGFR in EVs positively correlates with ki-67 LI in the tumor tissue. We also showed the potential of NLGN3 and PTTG1 mRNA in EVs for detecting glioma patients. Conclusions: We demonstrate that the protein expression of EGFR in serum EVs is an effective diagnostic marker of glioma. EGFR in EVs highly correlates with the malignancy of glioma. We also show the potential of NLGN3 and PTTG1 in EVs for detecting glioma. The optimized flow cytometry with the aid of microbead-based EV enrichment show its potential as a noninvasive method for the detection of glioma and will be beneficial to the management of glioma. (hide)
EV-METRIC
13% (47th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: EGFR
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
480
Pelleting: rotor type
Not specified
Pelleting: speed (g)
150000
Wash: volume per pellet (ml)
26
Wash: time (min)
120
Wash: Rotor Type
Not specified
Wash: speed (g)
150000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Flow cytometry aspecific beads
Antibody details provided?
No
Detected EV-associated proteins
EGFR
Characterization: RNA analysis
RNA analysis
Type
(RT)­(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
1 - 5 of 5
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV210173
species
Homo sapiens
sample type
Cell culture
Cell culture
Cell culture
Serum
Serum
cell type
U87MG
U251
HA
NA
NA
medium
EV-depleted medium
EV-depleted medium
EV-depleted medium
NA
NA
condition
Control condition
Control condition
Control condition
Glioma
Control condition
separation protocol
(d)(U)C
Filtration
(d)(U)C
Filtration
(d)(U)C
Filtration
(d)(U)C
Filtration
(d)(U)C
Filtration
Exp. nr.
1
2
3
5
4
EV-METRIC %
56
56
56
33
13