Search > Results

You searched for: EV190025 (EV-TRACK ID)

Showing 1 - 4 of 4

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV190025 3/4 Homo sapiens ascites (d)(U)C
Filtration
Czystowska-Kuzmicz, Malgorzata 2019 78%

Study summary

Full title
All authors
Malgorzata Czystowska-Kuzmicz, Anna Sosnowska, Dominika Nowis, Kavita Ramji, Marta Szajnik, Justyna Chlebowska-Tuz, Ewa Wolinska, Pawel Gaj, Magdalena Grazul, Zofia Pilch, Abdessamad Zerrouqi, Agnieszka Graczyk-Jarzynka, Karolina Soroczynska, Szczepan Cierniak, Robert Koktysz, Esther Elishaev, Slawomir Gruca, Artur Stefanowicz, Roman Blaszczyk, Bartlomiej Borek, Anna Gzik, Theresa Whiteside, and Jakub Golab
Journal
Nat Commun
Abstract
Tumor-driven immune suppression is a major barrier to successful immunotherapy in ovarian carcinomas (show more...)Tumor-driven immune suppression is a major barrier to successful immunotherapy in ovarian carcinomas (OvCa). Among various mechanisms responsible for immune suppression, arginase-1 (ARG1)-carrying small extracellular vesicles (EVs) emerge as important contributors to tumor growth and tumor escape from the host immune system. Here, we report that small EVs found in the ascites and plasma of OvCa patients contain ARG1. EVs suppress proliferation of CD4+ and CD8+ T-cells in vitro and in vivo in OvCa mouse models. In mice, ARG1-containing EVs are transported to draining lymph nodes, taken up by dendritic cells and inhibit antigen-specific T-cell proliferation. Increased expression of ARG1 in mouse OvCa cells is associated with accelerated tumor progression that can be blocked by an arginase inhibitor. Altogether, our studies show that tumor cells use EVs as vehicles to carry over long distances and deliver to immune cells a metabolic checkpoint molecule – ARG1, mitigating anti-tumor immune responses. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
ascites
Sample origin
ovarian cancer
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: TSG101/ CD63/ CD81/ ARG1/ EpCAM/ CD9
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
ascites
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
110000
Wash: volume per pellet (ml)
8
Wash: time (min)
60
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
110000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ TSG101/ ARG1
Not detected contaminants
Calnexin
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Detected EV-associated proteins
EpCAM/ CD9/ CD81/ CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
125
EV concentration
Yes
TRPS
Report type
Mean
Reported size (nm)
116
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV190025 4/4 Homo sapiens ovarian cyst fluid (d)(U)C
Filtration
Czystowska-Kuzmicz, Malgorzata 2019 78%

Study summary

Full title
All authors
Malgorzata Czystowska-Kuzmicz, Anna Sosnowska, Dominika Nowis, Kavita Ramji, Marta Szajnik, Justyna Chlebowska-Tuz, Ewa Wolinska, Pawel Gaj, Magdalena Grazul, Zofia Pilch, Abdessamad Zerrouqi, Agnieszka Graczyk-Jarzynka, Karolina Soroczynska, Szczepan Cierniak, Robert Koktysz, Esther Elishaev, Slawomir Gruca, Artur Stefanowicz, Roman Blaszczyk, Bartlomiej Borek, Anna Gzik, Theresa Whiteside, and Jakub Golab
Journal
Nat Commun
Abstract
Tumor-driven immune suppression is a major barrier to successful immunotherapy in ovarian carcinomas (show more...)Tumor-driven immune suppression is a major barrier to successful immunotherapy in ovarian carcinomas (OvCa). Among various mechanisms responsible for immune suppression, arginase-1 (ARG1)-carrying small extracellular vesicles (EVs) emerge as important contributors to tumor growth and tumor escape from the host immune system. Here, we report that small EVs found in the ascites and plasma of OvCa patients contain ARG1. EVs suppress proliferation of CD4+ and CD8+ T-cells in vitro and in vivo in OvCa mouse models. In mice, ARG1-containing EVs are transported to draining lymph nodes, taken up by dendritic cells and inhibit antigen-specific T-cell proliferation. Increased expression of ARG1 in mouse OvCa cells is associated with accelerated tumor progression that can be blocked by an arginase inhibitor. Altogether, our studies show that tumor cells use EVs as vehicles to carry over long distances and deliver to immune cells a metabolic checkpoint molecule – ARG1, mitigating anti-tumor immune responses. (hide)
EV-METRIC
78% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
ovarian cyst fluid
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: TSG101/ ARG1/ CD63
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
ovarian cyst fluid
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
110000
Wash: volume per pellet (ml)
8
Wash: time (min)
60
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
110000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
ARG1/ CD63/ TSG101
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
124
EV concentration
Yes
TRPS
Report type
Mean
Reported size (nm)
120
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV190025 1/4 Homo sapiens Blood plasma (d)(U)C
Filtration
qEV
Czystowska-Kuzmicz, Malgorzata 2019 50%

Study summary

Full title
All authors
Malgorzata Czystowska-Kuzmicz, Anna Sosnowska, Dominika Nowis, Kavita Ramji, Marta Szajnik, Justyna Chlebowska-Tuz, Ewa Wolinska, Pawel Gaj, Magdalena Grazul, Zofia Pilch, Abdessamad Zerrouqi, Agnieszka Graczyk-Jarzynka, Karolina Soroczynska, Szczepan Cierniak, Robert Koktysz, Esther Elishaev, Slawomir Gruca, Artur Stefanowicz, Roman Blaszczyk, Bartlomiej Borek, Anna Gzik, Theresa Whiteside, and Jakub Golab
Journal
Nat Commun
Abstract
Tumor-driven immune suppression is a major barrier to successful immunotherapy in ovarian carcinomas (show more...)Tumor-driven immune suppression is a major barrier to successful immunotherapy in ovarian carcinomas (OvCa). Among various mechanisms responsible for immune suppression, arginase-1 (ARG1)-carrying small extracellular vesicles (EVs) emerge as important contributors to tumor growth and tumor escape from the host immune system. Here, we report that small EVs found in the ascites and plasma of OvCa patients contain ARG1. EVs suppress proliferation of CD4+ and CD8+ T-cells in vitro and in vivo in OvCa mouse models. In mice, ARG1-containing EVs are transported to draining lymph nodes, taken up by dendritic cells and inhibit antigen-specific T-cell proliferation. Increased expression of ARG1 in mouse OvCa cells is associated with accelerated tumor progression that can be blocked by an arginase inhibitor. Altogether, our studies show that tumor cells use EVs as vehicles to carry over long distances and deliver to immune cells a metabolic checkpoint molecule – ARG1, mitigating anti-tumor immune responses. (hide)
EV-METRIC
50% (83rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
qEV
Protein markers
EV: TSG101/ ARG1/ CD63
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Commercial kit
qEV
Other
Name other separation method
qEV
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ ARG1/ TSG101
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
128
EV concentration
Yes
TRPS
Report type
Mean
Reported size (nm)
65
EV concentration
Yes
EV190025 2/4 Homo sapiens Blood plasma (d)(U)C
Filtration
qEV
Czystowska-Kuzmicz, Malgorzata 2019 50%

Study summary

Full title
All authors
Malgorzata Czystowska-Kuzmicz, Anna Sosnowska, Dominika Nowis, Kavita Ramji, Marta Szajnik, Justyna Chlebowska-Tuz, Ewa Wolinska, Pawel Gaj, Magdalena Grazul, Zofia Pilch, Abdessamad Zerrouqi, Agnieszka Graczyk-Jarzynka, Karolina Soroczynska, Szczepan Cierniak, Robert Koktysz, Esther Elishaev, Slawomir Gruca, Artur Stefanowicz, Roman Blaszczyk, Bartlomiej Borek, Anna Gzik, Theresa Whiteside, and Jakub Golab
Journal
Nat Commun
Abstract
Tumor-driven immune suppression is a major barrier to successful immunotherapy in ovarian carcinomas (show more...)Tumor-driven immune suppression is a major barrier to successful immunotherapy in ovarian carcinomas (OvCa). Among various mechanisms responsible for immune suppression, arginase-1 (ARG1)-carrying small extracellular vesicles (EVs) emerge as important contributors to tumor growth and tumor escape from the host immune system. Here, we report that small EVs found in the ascites and plasma of OvCa patients contain ARG1. EVs suppress proliferation of CD4+ and CD8+ T-cells in vitro and in vivo in OvCa mouse models. In mice, ARG1-containing EVs are transported to draining lymph nodes, taken up by dendritic cells and inhibit antigen-specific T-cell proliferation. Increased expression of ARG1 in mouse OvCa cells is associated with accelerated tumor progression that can be blocked by an arginase inhibitor. Altogether, our studies show that tumor cells use EVs as vehicles to carry over long distances and deliver to immune cells a metabolic checkpoint molecule – ARG1, mitigating anti-tumor immune responses. (hide)
EV-METRIC
50% (83rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
ovarian cancer
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
qEV
Protein markers
EV: TSG101/ ARG1/ CD63
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Commercial kit
qEV
Other
Name other separation method
qEV
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ ARG1/ TSG101
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
126
EV concentration
Yes
TRPS
Report type
Mean
Reported size (nm)
58
EV concentration
Yes
1 - 4 of 4
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV190025
species
Homo sapiens
sample type
ascites
ovarian cyst fluid
Blood plasma
Blood plasma
condition
ovarian cancer
Control condition
Control condition
ovarian cancer
separation protocol
(d)(U)C
Filtration
(d)(U)C
Filtration
(d)(U)C
Filtration
qEV
(d)(U)C
Filtration
qEV
Exp. nr.
3
4
1
2
EV-METRIC %
78
78
50
50