Search > Results

You searched for: EV220196 (EV-TRACK ID)

Showing 1 - 4 of 4

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV220196 1/4 Bos taurus BL20 (immortalised bovine lymphosarcoma) (d)(U)C Gillan V 2019 44%

Study summary

Full title
All authors
Gillan V, Simpson DM, Kinnaird J, Maitland K, Shiels B, Devaney E
Journal
Cell Microbiol
Abstract
The protozoan parasites Theileria annulata and Theileria parva are unique amongst intracellular euka (show more...)The protozoan parasites Theileria annulata and Theileria parva are unique amongst intracellular eukaryotic pathogens as they induce a transformation-like phenotype in their bovine host cell. T. annulata causes tropical theileriosis, which is frequently fatal, with infected leukocytes becoming metastatic and forming foci in multiple organs resulting in destruction of the lymphoid system. Exosomes, a subset of extracellular vesicles (EV), are critical in metastatic progression in many cancers. Here, we characterised the cargo of EV from a control bovine lymphosarcoma cell line (BL20) and BL20 infected with T. annulata (TBL20) by comparative mass spectrometry and microRNA (miRNA) profiling (data available via ProteomeXchange, identifier PXD010713 and NCBI GEO, accession number GSE118456, respectively). Ingenuity pathway analysis that many infection-associated proteins essential to migration and extracellular matrix digestion were upregulated in EV from TBL20 cells compared with BL20 controls. An altered repertoire of host miRNA, many with known roles in tumour and/or infection biology, was also observed. Focusing on the tumour suppressor miRNA, bta-miR-181a and bta-miR-181b, we identified putative messenger RNA targets and confirmed the interaction of bta-miR181a with ICAM-1. We propose that EV and their miRNA cargo play an important role in the manipulation of the host cell phenotype and the pathobiology of Theileria infection. (hide)
EV-METRIC
44% (84th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: Rab-5B/ CD63
non-EV: Cyc1
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Bos taurus
Sample Type
Cell culture supernatant
EV-producing cells
BL20 (immortalised bovine lymphosarcoma)
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
Surespin 630 (17 ml)
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
11
Wash: time (min)
70
Wash: Rotor Type
Surespin 630 (17 ml)
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63/ Rab-5B
Not detected contaminants
Cyc1
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR/ RNA sequencing
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
EM
EM-type
Transmission-EM
Image type
Close-up
Report size (nm)
100
Other particle analysis name(1)
No
EV220196 3/4 Bos taurus BL20 (immortalised bovine lymphosarcoma) (d)(U)C Gillan V 2019 44%

Study summary

Full title
All authors
Gillan V, Simpson DM, Kinnaird J, Maitland K, Shiels B, Devaney E
Journal
Cell Microbiol
Abstract
The protozoan parasites Theileria annulata and Theileria parva are unique amongst intracellular euka (show more...)The protozoan parasites Theileria annulata and Theileria parva are unique amongst intracellular eukaryotic pathogens as they induce a transformation-like phenotype in their bovine host cell. T. annulata causes tropical theileriosis, which is frequently fatal, with infected leukocytes becoming metastatic and forming foci in multiple organs resulting in destruction of the lymphoid system. Exosomes, a subset of extracellular vesicles (EV), are critical in metastatic progression in many cancers. Here, we characterised the cargo of EV from a control bovine lymphosarcoma cell line (BL20) and BL20 infected with T. annulata (TBL20) by comparative mass spectrometry and microRNA (miRNA) profiling (data available via ProteomeXchange, identifier PXD010713 and NCBI GEO, accession number GSE118456, respectively). Ingenuity pathway analysis that many infection-associated proteins essential to migration and extracellular matrix digestion were upregulated in EV from TBL20 cells compared with BL20 controls. An altered repertoire of host miRNA, many with known roles in tumour and/or infection biology, was also observed. Focusing on the tumour suppressor miRNA, bta-miR-181a and bta-miR-181b, we identified putative messenger RNA targets and confirmed the interaction of bta-miR181a with ICAM-1. We propose that EV and their miRNA cargo play an important role in the manipulation of the host cell phenotype and the pathobiology of Theileria infection. (hide)
EV-METRIC
44% (84th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Theileria annulata infected (TBL20)
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: Rab-5B/ CD63
non-EV: Cyc1
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Bos taurus
Sample Type
Cell culture supernatant
EV-producing cells
BL20 (immortalised bovine lymphosarcoma)
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
Surespin 630 (17 ml)
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
11
Wash: time (min)
70
Wash: Rotor Type
Surespin 630 (17 ml)
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63/ Rab-5B
Not detected contaminants
Cyc1
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR/ RNAsequencing
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
EM
EM-type
Transmission-EM
Image type
Close-up
Report size (nm)
100
Other particle analysis name(1)
No
EV220196 2/4 Bos taurus BL20 (immortalised bovine lymphosarcoma) (d)(U)C
UF
exoEasy Maxi Kit
Gillan V 2019 0%

Study summary

Full title
All authors
Gillan V, Simpson DM, Kinnaird J, Maitland K, Shiels B, Devaney E
Journal
Cell Microbiol
Abstract
The protozoan parasites Theileria annulata and Theileria parva are unique amongst intracellular euka (show more...)The protozoan parasites Theileria annulata and Theileria parva are unique amongst intracellular eukaryotic pathogens as they induce a transformation-like phenotype in their bovine host cell. T. annulata causes tropical theileriosis, which is frequently fatal, with infected leukocytes becoming metastatic and forming foci in multiple organs resulting in destruction of the lymphoid system. Exosomes, a subset of extracellular vesicles (EV), are critical in metastatic progression in many cancers. Here, we characterised the cargo of EV from a control bovine lymphosarcoma cell line (BL20) and BL20 infected with T. annulata (TBL20) by comparative mass spectrometry and microRNA (miRNA) profiling (data available via ProteomeXchange, identifier PXD010713 and NCBI GEO, accession number GSE118456, respectively). Ingenuity pathway analysis that many infection-associated proteins essential to migration and extracellular matrix digestion were upregulated in EV from TBL20 cells compared with BL20 controls. An altered repertoire of host miRNA, many with known roles in tumour and/or infection biology, was also observed. Focusing on the tumour suppressor miRNA, bta-miR-181a and bta-miR-181b, we identified putative messenger RNA targets and confirmed the interaction of bta-miR181a with ICAM-1. We propose that EV and their miRNA cargo play an important role in the manipulation of the host cell phenotype and the pathobiology of Theileria infection. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Ultrafiltration
Commercial method
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Bos taurus
Sample Type
Cell culture supernatant
EV-producing cells
BL20 (immortalised bovine lymphosarcoma)
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Polyethersulfone (PES)
Commercial kit
exoEasy Maxi Kit
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
EV220196 4/4 Bos taurus BL20 (immortalised bovine lymphosarcoma) (d)(U)C
UF
exoEasy Maxi Kit
Gillan V 2019 0%

Study summary

Full title
All authors
Gillan V, Simpson DM, Kinnaird J, Maitland K, Shiels B, Devaney E
Journal
Cell Microbiol
Abstract
The protozoan parasites Theileria annulata and Theileria parva are unique amongst intracellular euka (show more...)The protozoan parasites Theileria annulata and Theileria parva are unique amongst intracellular eukaryotic pathogens as they induce a transformation-like phenotype in their bovine host cell. T. annulata causes tropical theileriosis, which is frequently fatal, with infected leukocytes becoming metastatic and forming foci in multiple organs resulting in destruction of the lymphoid system. Exosomes, a subset of extracellular vesicles (EV), are critical in metastatic progression in many cancers. Here, we characterised the cargo of EV from a control bovine lymphosarcoma cell line (BL20) and BL20 infected with T. annulata (TBL20) by comparative mass spectrometry and microRNA (miRNA) profiling (data available via ProteomeXchange, identifier PXD010713 and NCBI GEO, accession number GSE118456, respectively). Ingenuity pathway analysis that many infection-associated proteins essential to migration and extracellular matrix digestion were upregulated in EV from TBL20 cells compared with BL20 controls. An altered repertoire of host miRNA, many with known roles in tumour and/or infection biology, was also observed. Focusing on the tumour suppressor miRNA, bta-miR-181a and bta-miR-181b, we identified putative messenger RNA targets and confirmed the interaction of bta-miR181a with ICAM-1. We propose that EV and their miRNA cargo play an important role in the manipulation of the host cell phenotype and the pathobiology of Theileria infection. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Theileria annulata infected (TBL20)
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Ultrafiltration
Commercial method
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Bos taurus
Sample Type
Cell culture supernatant
EV-producing cells
BL20 (immortalised bovine lymphosarcoma)
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Polyethersulfone (PES)
Commercial kit
exoEasy Maxi Kit
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
1 - 4 of 4
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV220196
species
Bos taurus
sample type
Cell culture
cell type
BL20
(immortalised bovine
lymphosarcoma)
condition
Control condition
Theileria
annulata infected (TBL20)
Control condition
Theileria
annulata infected (TBL20)
separation protocol
dUC
dUC
dUC/
Ultrafiltration/ exoEasy Maxi Kit
dUC/
Ultrafiltration/ exoEasy Maxi Kit
Exp. nr.
1
3
2
4
EV-METRIC %
44
44
0
0