Search > Results

You searched for: EV220140 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV220140 1/1 Homo sapiens MCF7 (d)(U)C
Filtration
Potrich C 2017 33%

Study summary

Full title
All authors
Potrich C, Lunelli L, Vaghi V, Pasquardini L, Pederzolli C
Journal
Eur Biophys J
Abstract
A new communication route among cells was reported in recent years, via extracellular vesicles and t (show more...)A new communication route among cells was reported in recent years, via extracellular vesicles and their cargo. Exosomes in particular are attracting increasing interest as privileged mediators of this cell communication route. The exosome-mediated transfer of nucleic acids, especially of microRNAs, is particularly promising for their use both as biomarkers of pathologies and as a therapeutic tool. Here, a simplified model of interaction among cells, microRNAs and vesicles is studied using a biophysical approach. A synthetic and fluorescent microRNA (i.e. miR-1246 conjugated with TAMRA) was selected to model cell communication, monitoring its internalization in cells. The fluorescent miR-1246, either naked or included in synthetic or natural vesicles, was incubated with human breast adenocarcinoma cells (MCF7) for different times. A comparison between this human microRNA and its DNA copy or an exogenous microRNA (from Caenorhabditis elegans) allowed assessment of the specificity of the information transfer through microRNAs, and especially associated with exosomes. The uptake of naked miR-1246 was indeed higher both in terms of number of targeted cells and intensity of fluorescence signal with respect to the other nucleic acids tested. The same occurred with miR-1246 loaded exosomes, evidencing a specific uptake only partially due to the lipidic components and present only when the human microRNA was loaded in exosomes, which were themselves derived from the same MCF7 cells. (hide)
EV-METRIC
33% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: CD63/ TSG101/ CD9
non-EV: Calreticulin
Proteomics
no
Show all info
Study aim
Biomarker/Mechanism of uptake/transfer
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MCF7
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
70.1 Ti
Pelleting: speed (g)
100000
Wash: time (min)
90
Wash: Rotor Type
70.1 Ti
Wash: speed (g)
100000
Filtration steps
0.2 or 0.22 µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ TSG101/ CD9
Not detected contaminants
Calreticulin
Characterization: Lipid analysis
No
1 - 1 of 1
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV220140
species
Homo sapiens
sample type
Cell culture
cell type
MCF7
condition
Control condition
separation protocol
dUC/ Filtration
Exp. nr.
1
EV-METRIC %
33