Search > Results

You searched for: EV220081 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV220081 2/2 Homo sapiens Peritoneal dialysis efflux (d)(U)C
SEC (non-commercial)
UF
Filtration
Carreras-Planella L 2017 43%

Study summary

Full title
All authors
Carreras-Planella L, Soler-Majoral J, Rubio-Esteve C, Lozano-Ramos SI, Franquesa M, Bonet J, Troya-Saborido MI, Borràs FE
Journal
PLoS One
Abstract
Peritoneal Dialysis (PD) is considered the best option for a cost-effective mid-term dialysis in pat (show more...)Peritoneal Dialysis (PD) is considered the best option for a cost-effective mid-term dialysis in patients with Chronic Renal Failure. However, functional failure of the peritoneal membrane (PM) force many patients to stop PD treatment and start haemodialysis. Currently, PM functionality is monitored by the peritoneal equilibration test, a tedious technique that often show changes when the membrane damage is advanced. As in other pathologies, the identification and characterization of extracellular vesicles (EVs) in the peritoneal dialysis efflux (PDE) may represent a non-invasive alternative to identify biomarkers of membrane failure. Using size-exclusion chromatography, we isolated EVs from PDE in a group of patients. Vesicles were characterized by the presence of tetraspanin markers, nanoparticle tracking analysis profile, cryo-electron microscopy and mass spectrometry. Here, we report the isolation and characterization of PDE-EVs. Based on mass spectrometry, we have found a set of well-conserved proteins among patients. Interestingly, the peptide profile also revealed remarkable changes between newly enrolled and longer-treated PD patients. These results are the first step to the identification of PDE-EVs based new markers of PM damage, which could support clinicians in their decision-making in a non-invasive manner. (hide)
EV-METRIC
43% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Peritoneal dialysis efflux
Sample origin
>18 months on peritoneal dialysis
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial)
Ultrafiltration
Filtration
Protein markers
EV: CD63/ CD9
non-EV: None
Proteomics
yes
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Peritoneal dialysis efflux
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
12
Sample volume/column (mL)
0.8-2
Characterization: Protein analysis
Protein Concentration Method
Bradford
Flow cytometry aspecific beads
Antibody details provided?
No
Detected EV-associated proteins
CD9/ CD63
Flow cytometry specific beads
Antibody details provided?
Yes
Antibody dilution provided?
No
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
100-200
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Wide-field
EV220081 1/2 Homo sapiens Peritoneal dialysis efflux (d)(U)C
SEC (non-commercial)
UF
Filtration
Carreras-Planella L 2017 29%

Study summary

Full title
All authors
Carreras-Planella L, Soler-Majoral J, Rubio-Esteve C, Lozano-Ramos SI, Franquesa M, Bonet J, Troya-Saborido MI, Borràs FE
Journal
PLoS One
Abstract
Peritoneal Dialysis (PD) is considered the best option for a cost-effective mid-term dialysis in pat (show more...)Peritoneal Dialysis (PD) is considered the best option for a cost-effective mid-term dialysis in patients with Chronic Renal Failure. However, functional failure of the peritoneal membrane (PM) force many patients to stop PD treatment and start haemodialysis. Currently, PM functionality is monitored by the peritoneal equilibration test, a tedious technique that often show changes when the membrane damage is advanced. As in other pathologies, the identification and characterization of extracellular vesicles (EVs) in the peritoneal dialysis efflux (PDE) may represent a non-invasive alternative to identify biomarkers of membrane failure. Using size-exclusion chromatography, we isolated EVs from PDE in a group of patients. Vesicles were characterized by the presence of tetraspanin markers, nanoparticle tracking analysis profile, cryo-electron microscopy and mass spectrometry. Here, we report the isolation and characterization of PDE-EVs. Based on mass spectrometry, we have found a set of well-conserved proteins among patients. Interestingly, the peptide profile also revealed remarkable changes between newly enrolled and longer-treated PD patients. These results are the first step to the identification of PDE-EVs based new markers of PM damage, which could support clinicians in their decision-making in a non-invasive manner. (hide)
EV-METRIC
29% (25th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Peritoneal dialysis efflux
Sample origin
< 10 months on peritoneal dialysis
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial)
Ultrafiltration
Filtration
Protein markers
EV: CD63/ CD9
non-EV: None
Proteomics
yes
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Peritoneal dialysis efflux
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Size-exclusion chromatography
Total column volume (mL)
12
Sample volume/column (mL)
0.8-2
Characterization: Protein analysis
Protein Concentration Method
Bradford
Flow cytometry aspecific beads
Antibody details provided?
No
Detected EV-associated proteins
CD9/ CD63
Flow cytometry specific beads
Antibody details provided?
Yes
Antibody dilution provided?
No
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
EV concentration
Yes
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV220081
species
Homo sapiens
sample type
Peritoneal
dialysis efflux
condition
>18
months on peritoneal dialysis
<
10 months on peritoneal dialysis
separation protocol
dUC/ Size-exclusion
chromatography (non-commercial)/
Ultrafiltration/ Filtration
dUC/ Size-exclusion
chromatography (non-commercial)/
Ultrafiltration/ Filtration
Exp. nr.
2
1
EV-METRIC %
43
29