Search > Results

You searched for: EV210096 (EV-TRACK ID)

Showing 1 - 6 of 6

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV210096 2/6 Homo sapiens Urine (d)(U)C
Filtration
Royo, Felix 2016 38%

Study summary

Full title
All authors
Felix Royo, Patricia Zuñiga-Garcia, Pilar Sanchez-Mosquera, Ainara Egia, Amparo Perez, Ana Loizaga, Raquel Arceo, Isabel Lacasa, Ainara Rabade, Edurne Arrieta, Roberto Bilbao, Miguel Unda, Arkaitz Carracedo, Juan M Falcon-Perez
Journal
J Extracell Vesicles
Abstract
Urine sample analysis is irreplaceable as a non-invasive method for disease diagnosis and follow-up. (show more...)Urine sample analysis is irreplaceable as a non-invasive method for disease diagnosis and follow-up. However, in urine samples, non-degraded protein and RNA may be only found in urinary extracellular vesicles (uEVs). In recent years, various methods of uEV enrichment using low volumes of urine and unsophisticated equipment have been developed, with variable success. We compared the results of the differential ultracentrifugation procedure with 4 of these methods. The methods tested were a lectin-based purification, Exoquick (System Biosciences), Total Exosome Isolation from Invitrogen and an in-house modified procedure employing the Exosomal RNA Kit from Norgen Biotek Corp. The analysis of selected gene transcripts and protein markers of extracellular vesicles (EVs) revealed that each method isolates a different mixture of uEV protein markers. In our conditions, the extraction with Norgen's reagent achieved the best performance in terms of gene transcript and protein detection and reproducibility. By using this method, we were able to detect alterations of EVs protein markers in urine samples from prostate cancer adenoma patients. Taken together, our results show that the isolation of uEVs is feasible from small volumes of urine and avoiding ultracentrifugation, making easier the analysis in a clinical facility. However, caution should be taken in the selection of the enrichment method since they have a differential affinity for protein uEVs markers and by extension for different subpopulation of EVs. (hide)
EV-METRIC
38% (73rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: TSG101/ CD63/ Flotillin1/ CD9/ CD26/ CD10/ AQP2/ AIP
non-EV: Tamm-Horsfall protein
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Flotillin1/ CD9/ CD63/ CD26/ CD10/ AQP2/ AIP/ TSG101
Detected contaminants
Tamm-Horsfall protein
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR;Capillary electrophoresis (e.g. Bioanalyzer)
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
EV210096 5/6 Homo sapiens Urine (d)(U)C
Filtration
Total Exosome Isolation
Royo, Felix 2016 38%

Study summary

Full title
All authors
Felix Royo, Patricia Zuñiga-Garcia, Pilar Sanchez-Mosquera, Ainara Egia, Amparo Perez, Ana Loizaga, Raquel Arceo, Isabel Lacasa, Ainara Rabade, Edurne Arrieta, Roberto Bilbao, Miguel Unda, Arkaitz Carracedo, Juan M Falcon-Perez
Journal
J Extracell Vesicles
Abstract
Urine sample analysis is irreplaceable as a non-invasive method for disease diagnosis and follow-up. (show more...)Urine sample analysis is irreplaceable as a non-invasive method for disease diagnosis and follow-up. However, in urine samples, non-degraded protein and RNA may be only found in urinary extracellular vesicles (uEVs). In recent years, various methods of uEV enrichment using low volumes of urine and unsophisticated equipment have been developed, with variable success. We compared the results of the differential ultracentrifugation procedure with 4 of these methods. The methods tested were a lectin-based purification, Exoquick (System Biosciences), Total Exosome Isolation from Invitrogen and an in-house modified procedure employing the Exosomal RNA Kit from Norgen Biotek Corp. The analysis of selected gene transcripts and protein markers of extracellular vesicles (EVs) revealed that each method isolates a different mixture of uEV protein markers. In our conditions, the extraction with Norgen's reagent achieved the best performance in terms of gene transcript and protein detection and reproducibility. By using this method, we were able to detect alterations of EVs protein markers in urine samples from prostate cancer adenoma patients. Taken together, our results show that the isolation of uEVs is feasible from small volumes of urine and avoiding ultracentrifugation, making easier the analysis in a clinical facility. However, caution should be taken in the selection of the enrichment method since they have a differential affinity for protein uEVs markers and by extension for different subpopulation of EVs. (hide)
EV-METRIC
38% (73rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Commercial method
Protein markers
EV: TSG101/ CD63/ Flotillin1/ CD9/ CD26/ CD10/ AQP2/ AIP
non-EV: Tamm-Horsfall protein
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Commercial kit
Total Exosome Isolation
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD26/ CD10/ AQP2/ AIP/ CD9/ CD63/ TSG101
Not detected EV-associated proteins
Flotillin1
Detected contaminants
Tamm-Horsfall protein
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR;Capillary electrophoresis (e.g. Bioanalyzer)
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
EV210096 6/6 Homo sapiens Urine (d)(U)C
Filtration
Extraction with biotinylated Solanum tuberosum (potato) lectin (STL) and streptavidin coated Dynabeads
Royo, Felix 2016 38%

Study summary

Full title
All authors
Felix Royo, Patricia Zuñiga-Garcia, Pilar Sanchez-Mosquera, Ainara Egia, Amparo Perez, Ana Loizaga, Raquel Arceo, Isabel Lacasa, Ainara Rabade, Edurne Arrieta, Roberto Bilbao, Miguel Unda, Arkaitz Carracedo, Juan M Falcon-Perez
Journal
J Extracell Vesicles
Abstract
Urine sample analysis is irreplaceable as a non-invasive method for disease diagnosis and follow-up. (show more...)Urine sample analysis is irreplaceable as a non-invasive method for disease diagnosis and follow-up. However, in urine samples, non-degraded protein and RNA may be only found in urinary extracellular vesicles (uEVs). In recent years, various methods of uEV enrichment using low volumes of urine and unsophisticated equipment have been developed, with variable success. We compared the results of the differential ultracentrifugation procedure with 4 of these methods. The methods tested were a lectin-based purification, Exoquick (System Biosciences), Total Exosome Isolation from Invitrogen and an in-house modified procedure employing the Exosomal RNA Kit from Norgen Biotek Corp. The analysis of selected gene transcripts and protein markers of extracellular vesicles (EVs) revealed that each method isolates a different mixture of uEV protein markers. In our conditions, the extraction with Norgen's reagent achieved the best performance in terms of gene transcript and protein detection and reproducibility. By using this method, we were able to detect alterations of EVs protein markers in urine samples from prostate cancer adenoma patients. Taken together, our results show that the isolation of uEVs is feasible from small volumes of urine and avoiding ultracentrifugation, making easier the analysis in a clinical facility. However, caution should be taken in the selection of the enrichment method since they have a differential affinity for protein uEVs markers and by extension for different subpopulation of EVs. (hide)
EV-METRIC
38% (73rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Extraction with biotinylated Solanum tuberosum (potato) lectin (STL) and streptavidin coated Dynabeads
Protein markers
EV: TSG101/ CD63/ AIP/ CD26/ CD10/ AQP2/ Flotillin1/ CD9
non-EV: Tamm-Horsfall protein
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Other
Name other separation method
Extraction with biotinylated Solanum tuberosum (potato) lectin (STL) and streptavidin coated Dynabeads
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Flotillin1/ CD26/ CD10/ AQP2/ TSG101/ CD9/ CD63
Not detected EV-associated proteins
AIP
Detected contaminants
Tamm-Horsfall protein
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR;Capillary electrophoresis (e.g. Bioanalyzer)
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
EV210096 1/6 Homo sapiens Urine (d)(U)C
Filtration
Urine Exosome RNA Isolation Kit (Norgen Biotek Corp)
Royo, Felix 2016 25%

Study summary

Full title
All authors
Felix Royo, Patricia Zuñiga-Garcia, Pilar Sanchez-Mosquera, Ainara Egia, Amparo Perez, Ana Loizaga, Raquel Arceo, Isabel Lacasa, Ainara Rabade, Edurne Arrieta, Roberto Bilbao, Miguel Unda, Arkaitz Carracedo, Juan M Falcon-Perez
Journal
J Extracell Vesicles
Abstract
Urine sample analysis is irreplaceable as a non-invasive method for disease diagnosis and follow-up. (show more...)Urine sample analysis is irreplaceable as a non-invasive method for disease diagnosis and follow-up. However, in urine samples, non-degraded protein and RNA may be only found in urinary extracellular vesicles (uEVs). In recent years, various methods of uEV enrichment using low volumes of urine and unsophisticated equipment have been developed, with variable success. We compared the results of the differential ultracentrifugation procedure with 4 of these methods. The methods tested were a lectin-based purification, Exoquick (System Biosciences), Total Exosome Isolation from Invitrogen and an in-house modified procedure employing the Exosomal RNA Kit from Norgen Biotek Corp. The analysis of selected gene transcripts and protein markers of extracellular vesicles (EVs) revealed that each method isolates a different mixture of uEV protein markers. In our conditions, the extraction with Norgen's reagent achieved the best performance in terms of gene transcript and protein detection and reproducibility. By using this method, we were able to detect alterations of EVs protein markers in urine samples from prostate cancer adenoma patients. Taken together, our results show that the isolation of uEVs is feasible from small volumes of urine and avoiding ultracentrifugation, making easier the analysis in a clinical facility. However, caution should be taken in the selection of the enrichment method since they have a differential affinity for protein uEVs markers and by extension for different subpopulation of EVs. (hide)
EV-METRIC
25% (56th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Prostate cancer
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Commercial method
Protein markers
EV: TSG101/ CD63/ Flotillin1/ CD9/ CD26/ CD10/ AQP2/ AIP
non-EV: Tamm-Horsfall protein
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Commercial kit
Urine Exosome RNA Isolation Kit (Norgen Biotek Corp)
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Flotillin1/ CD9/ CD63/ CD26/ CD10/ AQP2/ AIP/ TSG101
Detected contaminants
Tamm-Horsfall protein
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
EV210096 3/6 Homo sapiens Urine (d)(U)C
Filtration
ExoQuick
Royo, Felix 2016 25%

Study summary

Full title
All authors
Felix Royo, Patricia Zuñiga-Garcia, Pilar Sanchez-Mosquera, Ainara Egia, Amparo Perez, Ana Loizaga, Raquel Arceo, Isabel Lacasa, Ainara Rabade, Edurne Arrieta, Roberto Bilbao, Miguel Unda, Arkaitz Carracedo, Juan M Falcon-Perez
Journal
J Extracell Vesicles
Abstract
Urine sample analysis is irreplaceable as a non-invasive method for disease diagnosis and follow-up. (show more...)Urine sample analysis is irreplaceable as a non-invasive method for disease diagnosis and follow-up. However, in urine samples, non-degraded protein and RNA may be only found in urinary extracellular vesicles (uEVs). In recent years, various methods of uEV enrichment using low volumes of urine and unsophisticated equipment have been developed, with variable success. We compared the results of the differential ultracentrifugation procedure with 4 of these methods. The methods tested were a lectin-based purification, Exoquick (System Biosciences), Total Exosome Isolation from Invitrogen and an in-house modified procedure employing the Exosomal RNA Kit from Norgen Biotek Corp. The analysis of selected gene transcripts and protein markers of extracellular vesicles (EVs) revealed that each method isolates a different mixture of uEV protein markers. In our conditions, the extraction with Norgen's reagent achieved the best performance in terms of gene transcript and protein detection and reproducibility. By using this method, we were able to detect alterations of EVs protein markers in urine samples from prostate cancer adenoma patients. Taken together, our results show that the isolation of uEVs is feasible from small volumes of urine and avoiding ultracentrifugation, making easier the analysis in a clinical facility. However, caution should be taken in the selection of the enrichment method since they have a differential affinity for protein uEVs markers and by extension for different subpopulation of EVs. (hide)
EV-METRIC
25% (56th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Commercial method
Protein markers
EV: TSG101/ CD63/ CD10/ AQP2/ AIP/ CD26/ Flotillin1/ CD9
non-EV: Tamm-Horsfall protein
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Commercial kit
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ CD63/ CD26
Not detected EV-associated proteins
Flotillin1/ CD10/ AQP2/ AIP/ TSG101
Detected contaminants
Tamm-Horsfall protein
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR;Capillary electrophoresis (e.g. Bioanalyzer)
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
EM
EM-type
Cryo-EM
Image type
Wide-field
EV210096 4/6 Homo sapiens Urine (d)(U)C
Filtration
Urine Exosome RNA Isolation Kit (Norgen Biotek Corp)
Royo, Felix 2016 25%

Study summary

Full title
All authors
Felix Royo, Patricia Zuñiga-Garcia, Pilar Sanchez-Mosquera, Ainara Egia, Amparo Perez, Ana Loizaga, Raquel Arceo, Isabel Lacasa, Ainara Rabade, Edurne Arrieta, Roberto Bilbao, Miguel Unda, Arkaitz Carracedo, Juan M Falcon-Perez
Journal
J Extracell Vesicles
Abstract
Urine sample analysis is irreplaceable as a non-invasive method for disease diagnosis and follow-up. (show more...)Urine sample analysis is irreplaceable as a non-invasive method for disease diagnosis and follow-up. However, in urine samples, non-degraded protein and RNA may be only found in urinary extracellular vesicles (uEVs). In recent years, various methods of uEV enrichment using low volumes of urine and unsophisticated equipment have been developed, with variable success. We compared the results of the differential ultracentrifugation procedure with 4 of these methods. The methods tested were a lectin-based purification, Exoquick (System Biosciences), Total Exosome Isolation from Invitrogen and an in-house modified procedure employing the Exosomal RNA Kit from Norgen Biotek Corp. The analysis of selected gene transcripts and protein markers of extracellular vesicles (EVs) revealed that each method isolates a different mixture of uEV protein markers. In our conditions, the extraction with Norgen's reagent achieved the best performance in terms of gene transcript and protein detection and reproducibility. By using this method, we were able to detect alterations of EVs protein markers in urine samples from prostate cancer adenoma patients. Taken together, our results show that the isolation of uEVs is feasible from small volumes of urine and avoiding ultracentrifugation, making easier the analysis in a clinical facility. However, caution should be taken in the selection of the enrichment method since they have a differential affinity for protein uEVs markers and by extension for different subpopulation of EVs. (hide)
EV-METRIC
25% (56th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Commercial method
Protein markers
EV: TSG101/ CD63/ Flotillin1/ CD9/ CD26/ CD10/ AQP2/ AIP
non-EV: Tamm-Horsfall protein
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Commercial kit
Urine Exosome RNA Isolation Kit (Norgen Biotek Corp)
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Flotillin1/ CD26/ CD10/ AQP2/ AIP/ CD9/ CD63/ TSG101
Detected contaminants
Tamm-Horsfall protein
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR;Capillary electrophoresis (e.g. Bioanalyzer)
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
EM
EM-type
Cryo-EM
Image type
Wide-field
1 - 6 of 6
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV210096
species
Homo
sapiens
sample type
Urine
condition
Control
condition
Control
condition
Control
condition
Prostate
cancer
Control
condition
Control
condition
separation protocol
(d)(U)C
Filtration
(d)(U)C
Filtration
Total
Exosome
Isolation
(d)(U)C
Filtration
Extraction
with
biotinylated
Solanum
tuberosum
(potato)
lectin
(STL)
and
streptavidin
coated
Dynabeads
(d)(U)C
Filtration
Urine
Exosome
RNA
Isolation
Kit
(Norgen
Biotek
Corp)
(d)(U)C
Filtration
ExoQuick
(d)(U)C
Filtration
Urine
Exosome
RNA
Isolation
Kit
(Norgen
Biotek
Corp)
Exp. nr.
2
5
6
1
3
4
EV-METRIC %
38
38
38
25
25
25