Search > Results

You searched for: EV140118 (EV-TRACK ID)

Showing 1 - 3 of 3

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Experiment number
  • Experiments differ in Vesicle type
Experiment number
  • Experiments differ in Vesicle type
Experiment number
  • Experiments differ in Vesicle type
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV140118 3/3 Sus scrofa NAY (d)(U)C
Filtration
Comelli L 2014 33%

Study summary

Full title
All authors
Comelli L, Rocchiccioli S, Smirni S, Salvetti A, Signore G, Citti L, Trivella MG, Cecchettini A
Journal
Mol Biosyst
Abstract
The artery medial layer is mainly composed of vascular smooth muscle cells (VSMCs). These cells cont (show more...)The artery medial layer is mainly composed of vascular smooth muscle cells (VSMCs). These cells contribute to the formation of neointima and atherosclerotic plaques by switching from the quiescent-contractile to migratory-activated state. Apoptotic blebs, microvesicles and exosomes are secreted vesicles, with differences in composition and size, involved in cellular communication at multiple levels. In this article, an untargeted, proteomics approach was exploited to characterise VSMC released vesicles and a preliminary protein profile for microvesicles and exosomes of different cell phenotypes was obtained. Enriched samples of vesicles from serum-free and serum-activated VSMCs were analysed by a LC-MS/MS strategy leading to the identification of 349 proteins. In microvesicles, the most abundant classes of identified proteins were cytoplasmic or organelle associated, house keeping and metabolic factors. Otherwise, exosomes from different phenotypes revealed a sharper peculiarity thus, as suggested by the high percentage of ECM and ECM related proteins and cell adhesion molecules, they seem to play an important role in outward or cell-to-cell signalling. Comparison between exosomes or microvesicles from quiescent and activated VSMCs evidenced 29 differentially expressed proteins. Among these, in microvesicles there are several proteins that are involved in vesicle trafficking while in exosomes focal adhesion and ECM related factors are the most interesting. These data, although preliminary, are promising for a possible identification of potential circulating markers of a cell state. (hide)
EV-METRIC
33% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: CD81/ HSP70/ TSG101/ Flotilin1
non-EV: Cell organelle protein
Proteomics
yes
Show all info
Study aim
Omics
Sample
Species
Sus scrofa
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD81/ Flotilin1/ HSP70/ TSG101
Detected contaminants
Cell organelle protein
Characterization: Particle analysis
DLS
EM
EM-type
transmission EM
Image type
Wide-field
EV140118 1/3 Sus scrofa NAY (d)(U)C Comelli L 2014 22%

Study summary

Full title
All authors
Comelli L, Rocchiccioli S, Smirni S, Salvetti A, Signore G, Citti L, Trivella MG, Cecchettini A
Journal
Mol Biosyst
Abstract
The artery medial layer is mainly composed of vascular smooth muscle cells (VSMCs). These cells cont (show more...)The artery medial layer is mainly composed of vascular smooth muscle cells (VSMCs). These cells contribute to the formation of neointima and atherosclerotic plaques by switching from the quiescent-contractile to migratory-activated state. Apoptotic blebs, microvesicles and exosomes are secreted vesicles, with differences in composition and size, involved in cellular communication at multiple levels. In this article, an untargeted, proteomics approach was exploited to characterise VSMC released vesicles and a preliminary protein profile for microvesicles and exosomes of different cell phenotypes was obtained. Enriched samples of vesicles from serum-free and serum-activated VSMCs were analysed by a LC-MS/MS strategy leading to the identification of 349 proteins. In microvesicles, the most abundant classes of identified proteins were cytoplasmic or organelle associated, house keeping and metabolic factors. Otherwise, exosomes from different phenotypes revealed a sharper peculiarity thus, as suggested by the high percentage of ECM and ECM related proteins and cell adhesion molecules, they seem to play an important role in outward or cell-to-cell signalling. Comparison between exosomes or microvesicles from quiescent and activated VSMCs evidenced 29 differentially expressed proteins. Among these, in microvesicles there are several proteins that are involved in vesicle trafficking while in exosomes focal adhesion and ECM related factors are the most interesting. These data, although preliminary, are promising for a possible identification of potential circulating markers of a cell state. (hide)
EV-METRIC
22% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: Prohibitin
non-EV:
Proteomics
yes
Show all info
Study aim
Omics
Sample
Species
Sus scrofa
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Pelleting performed
Yes
Pelleting: time(min)
30
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Prohibitin
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Prohibitin
Characterization: Particle analysis
DLS
EM
EM-type
transmission EM
Image type
Close-up
EV140118 2/3 Sus scrofa NAY (d)(U)C Comelli L 2014 22%

Study summary

Full title
All authors
Comelli L, Rocchiccioli S, Smirni S, Salvetti A, Signore G, Citti L, Trivella MG, Cecchettini A
Journal
Mol Biosyst
Abstract
The artery medial layer is mainly composed of vascular smooth muscle cells (VSMCs). These cells cont (show more...)The artery medial layer is mainly composed of vascular smooth muscle cells (VSMCs). These cells contribute to the formation of neointima and atherosclerotic plaques by switching from the quiescent-contractile to migratory-activated state. Apoptotic blebs, microvesicles and exosomes are secreted vesicles, with differences in composition and size, involved in cellular communication at multiple levels. In this article, an untargeted, proteomics approach was exploited to characterise VSMC released vesicles and a preliminary protein profile for microvesicles and exosomes of different cell phenotypes was obtained. Enriched samples of vesicles from serum-free and serum-activated VSMCs were analysed by a LC-MS/MS strategy leading to the identification of 349 proteins. In microvesicles, the most abundant classes of identified proteins were cytoplasmic or organelle associated, house keeping and metabolic factors. Otherwise, exosomes from different phenotypes revealed a sharper peculiarity thus, as suggested by the high percentage of ECM and ECM related proteins and cell adhesion molecules, they seem to play an important role in outward or cell-to-cell signalling. Comparison between exosomes or microvesicles from quiescent and activated VSMCs evidenced 29 differentially expressed proteins. Among these, in microvesicles there are several proteins that are involved in vesicle trafficking while in exosomes focal adhesion and ECM related factors are the most interesting. These data, although preliminary, are promising for a possible identification of potential circulating markers of a cell state. (hide)
EV-METRIC
22% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: CD81/ TSG101/ Prohibitin
non-EV:
Proteomics
yes
Show all info
Study aim
Omics
Sample
Species
Sus scrofa
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD81/ TSG101/ Prohibitin
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Prohibitin
Characterization: Particle analysis
DLS
EM
EM-type
transmission EM
Image type
Close-up
1 - 3 of 3
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV140118
species
Sus scrofa
sample type
Cell culture
cell type
NAY
condition
NAY
separation protocol
(d)(U)C
Filtration
(d)(U)C
(d)(U)C
Exp. nr.
3
1
2
EV-METRIC %
33
22
22