Search > Results

You searched for: EV140019 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV140019 1/1 Sus scrofa NAY (d)(U)C
Filtration
UF
Aboul Naga SH 2014 33%

Study summary

Full title
All authors
Aboul Naga SH, Dithmer M, Chitadze G, Kabelitz D, Lucius R, Roider J, Klettner A
Journal
Exp Eye Res
Abstract
The anti-VEGF antibody bevacizumab is widely used off-label for the treatment of various ocular dise (show more...)The anti-VEGF antibody bevacizumab is widely used off-label for the treatment of various ocular diseases, most commonly in age-related macular degeneration and diabetic macular edema. Bevacizumab is able to penetrate the retina and is found in the choroid after intravitreal injection in a time dependent manner. It has previously been shown to be taken up by the retinal pigment epithelium (RPE). In this study, we have investigated the intracellular pathway following uptake of bevacizumab in RPE cells, tested both in primary porcine RPE cells and in the human cell line ARPE19. Bevacizumab displays a characteristic, time-dependent pattern of intracellular distribution, as detected by immunofluorescence and pulse chase experiments. In both primary cells and the cell line, intracellular bevacizumab can be found after seven days, as detected by immunofluorescence and Western blotting. Immediately after application, bevacizumab partially colocalizes with Rab5, indicating some uptake in early endosomes. Intracellularly, bevacizumab is detected in the cytoskeletal fraction, aligning with actin filaments, as revealed by subcellular fractioning and immunofluorescence. Bevacizumab seems to travel along actin filaments by myosin7a, as determined by triple staining immunofluorescence. Interestingly, over a period of seven days, bevacizumab seems to accumulate in certain storage areas, as observed by immunofluorescence. Furthermore, results obtained with immunocytochemistry, Western blotting and flow cytometry indicate that bevacizumab may be released from the RPE cells via exosomes. In conclusion, bevacizumab is taken up by and transported in the retinal pigment epithelial cells in a characteristic, time-dependent manner, where it seems to move along actin filaments by myosin7a and seem to be partially released from the cells via exosomes. (hide)
EV-METRIC
33% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
UF
Protein markers
EV: TSG101/ CD63
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Sus scrofa
Sample Type
Cell culture supernatant
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
CD63/ TSG101
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up, Wide-field
1 - 1 of 1
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV140019
species
Sus scrofa
sample type
Cell culture
cell type
NAY
condition
NAY
separation protocol
(d)(U)C
Filtration
UF
Exp. nr.
1
EV-METRIC %
33