Search > Results

You searched for: EV120181 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV120181 1/1 Mus musculus BALF (d)(U)C Zhu M 2012 0%

Study summary

Full title
All authors
Zhu M, Tian X, Song X, Li Y, Tian Y, Zhao Y, Nie G
Journal
Small
Abstract
The mechanisms associated with the induction of systemic immune responses by nanoparticles are not f (show more...)The mechanisms associated with the induction of systemic immune responses by nanoparticles are not fully understood, but their elucidation is critical to address safety issues associated with the broader medical application of nanotechnology. In this study, a key role of nanoparticle-induced exosomes (extracellularly secreted membrane vesicles) as signaling mediators in the induction of T helper cell type 1 (Th1) immune activation is demonstrated. In vivo exposure to magnetic iron oxide nanoparticles (MIONs) results in significant exosome generation in the alveolar region of Balb/c mice. These act as a source of nanoparticle-induced, membrane-bound antigen/signaling cargo, which transfer their components to antigen-presenting cells (APCs) in the reticuloendothelial system. Through exosome-initiated signals, immature dendritic cells (iDCs) undergo maturation and differentiation to the DC1 subtype, while macrophages go through classical activation and differentiation to the M1 subtype. Simultaneously, iDCs and macrophages release various Th1 cytokines (including interleukin-12 and tumor necrosis factor ?) driving T-cell activation and differentiation. Activated APCs (especially DC1 and M1 subtypes) consequently prime T-cell differentiation towards a Th1 subtype, thereby resulting in an orchestrated Th1-type immune response. Th1-polarized immune activation is associated with delayed-type hypersensitivity, which might underlie the long-term inflammatory effects frequently associated with nanoparticle exposure. These studies suggest that nanoparticle-induced exosomes provoke the immune activation and inflammatory responses that can accompany nanoparticle exposure. (hide)
EV-METRIC
0% (median: 13% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
BALF
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
BALF
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
1 - 1 of 1
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV120181
species
Mus musculus
sample type
BALF
condition
NAY
separation protocol
(d)(U)C
Exp. nr.
1
EV-METRIC %
0