Search > Results
You searched for: 2017 (Year of publication)
Showing 51 - 100 of 830
Showing 51 - 100 of 830
Details | EV-TRACK ID | Experiment nr. | Species | Sample type | Separation protocol | First author | Year | EV-METRIC |
---|---|---|---|---|---|---|---|---|
EV210197 | 1/4 | Homo sapiens | Platelets | (d)(U)C | Puhka, Maija | 2017 | 56% | |
Study summaryFull title
All authors
Maija Puhka, Maarit Takatalo, Maria-Elisa Nordberg, Sami Valkonen, Jatin Nandania, Maria Aatonen, Marjo Yliperttula, Saara Laitinen, Vidya Velagapudi, Tuomas Mirtti, Olli Kallioniemi, Antti Rannikko, Pia R-M Siljander, Taija Maria Af Hällström
Journal
Theranostics
Abstract
Body fluids are a rich source of extracellular vesicles (EVs), which carry cargo derived from the se (show more...)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Protein markers
EV: TSG101/ CD63/ CD9
non-EV: TOMM20 Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Platelets
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
75
Pelleting: rotor type
Type 50.2 Ti
Pelleting: speed (g)
110000
Wash: volume per pellet (ml)
16
Wash: time (min)
75
Wash: Rotor Type
Not specified
Wash: speed (g)
110000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD9/ CD63/ TSG101
Not detected contaminants
TOMM20
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
1-500
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
1-1000
|
||||||||
EV210197 | 3/4 | Homo sapiens | Urine |
(d)(U)C Filtration |
Puhka, Maija | 2017 | 56% | |
Study summaryFull title
All authors
Maija Puhka, Maarit Takatalo, Maria-Elisa Nordberg, Sami Valkonen, Jatin Nandania, Maria Aatonen, Marjo Yliperttula, Saara Laitinen, Vidya Velagapudi, Tuomas Mirtti, Olli Kallioniemi, Antti Rannikko, Pia R-M Siljander, Taija Maria Af Hällström
Journal
Theranostics
Abstract
Body fluids are a rich source of extracellular vesicles (EVs), which carry cargo derived from the se (show more...)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Urine
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Filtration Protein markers
EV: TSG101/ CD59/ CD63/ CD9
non-EV: Calnexin/ TOMM20/ GM130 Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Not specified
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
30
Wash: time (min)
90
Wash: Rotor Type
Not specified
Wash: speed (g)
100000
Filtration steps
> 0.45 µm,
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD9/ CD63/ CD59/ TSG101
Not detected contaminants
Calnexin/ TOMM20/ GM130
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
1-500
EV concentration
Yes
EM
EM-type
Immuno-EM/ Transmission-EM
EM protein
Other;CD63;CD59
Image type
Close-up, Wide-field
Report size (nm)
1-1000
|
||||||||
EV200153 | 1/6 | Homo sapiens | HTR-8/SVneo |
DG (d)(U)C Filtration |
Grace Truong | 2017 | 56% | |
Study summaryFull title
All authors
Grace Truong, Dominic Guanzon, Vyjayanthi Kinhal, Omar Elfeky, Andrew Lai, Sherri Longo, Zarin Nuzhat, Carlos Palma, Katherin Scholz-Romero, Ramkumar Menon, Ben W Mol, Gregory E Rice, Carlos Salomon
Journal
PLoS One
Abstract
Our understanding of how cells communicate has undergone a paradigm shift since the recent recogniti (show more...)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
8% oxygen
Focus vesicles
exosome
Separation protocol
Separation protocol
Density gradient
(Differential) (ultra)centrifugation Filtration Protein markers
EV: TSG101/ CD63
non-EV: None Proteomics
no
EV density (g/ml)
1.13-1.19
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HTR-8/SVneo
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Not specified
Cell count
6E8
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Surespin 630/36
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
14.5mL
Sample volume (mL)
0.5mL
Orientation
Top-down
Rotor type
Not specified
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
Not specified
Fraction processing
Centrifugation
Pelleting: volume per fraction
Not spec
Pelleting: duration (min)
120
Pelleting: rotor type
Not specified
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
TSG101
Fluorescent NTA
Relevant measurements variables specified?
NA
Antibody details provided?
No
Detected EV-associated proteins
CD63
Characterization: RNA analysis
RNA analysis
Type
RNA sequencing
Database
Yes
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
108+/-15
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
Around 100nm
|
||||||||
EV170012 | 1/3 | Homo sapiens | adipose tissue mesenchymal stromal cells | (d)(U)C | Gualerzi, Alice | 2017 | 56% | |
Study summaryFull title
All authors
Alice Gualerzi, Stefania Niada, Chiara Giannasi, Silvia Picciolini, Carlo Morasso, Renzo Vanna, Valeria Rossella, Massimo Masserini, Marzia Bedoni, Fabio Ciceri, Maria Ester Bernardo, Anna Teresa Brini & Furio Gramatica
Journal
Scientific Reports
Abstract
Extracellular vesicles (EVs) from mesenchymal stromal cells (MSC) are emerging as valuable therapeut (show more...)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Adj. k-factor
158.5 (pelleting) / 158.5 (washing)
Protein markers
EV: Flotillin-1/ CD63/ CD9
non-EV: Calnexin Proteomics
yes
Show all info
Study aim
New methodological development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
adipose tissue mesenchymal stromal cells
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 55.2 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
158.5
Wash: time (min)
70
Wash: Rotor Type
Type 55.2 Ti
Wash: speed (g)
100000
Wash: adjusted k-factor
158.5
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD9, CD63, Flotillin-1
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
46.5 ± 15.8
Other particle analysis name(1)
Raman spectroscopy
Extra information
Primary antibodies:
- Purified Mouse Anti-Flotillin-1; Clone 18/Flotillin-1; BD Transduction Laboratories™, San Jose, CA, USA
- Rabbit anti-CD63; System Biosciences, Palo Alto, CA, USA
- Rabbit anti-CD9; System Biosciences, Palo Alto, CA, USA
- Rabbit anti-calnexin; clone C5C9, Cell Signaling Technology, Danvers, MA, USA
|
||||||||
EV170012 | 2/3 | Homo sapiens | dermal fibroblasts | (d)(U)C | Gualerzi, Alice | 2017 | 56% | |
Study summaryFull title
All authors
Alice Gualerzi, Stefania Niada, Chiara Giannasi, Silvia Picciolini, Carlo Morasso, Renzo Vanna, Valeria Rossella, Massimo Masserini, Marzia Bedoni, Fabio Ciceri, Maria Ester Bernardo, Anna Teresa Brini & Furio Gramatica
Journal
Scientific Reports
Abstract
Extracellular vesicles (EVs) from mesenchymal stromal cells (MSC) are emerging as valuable therapeut (show more...)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Adj. k-factor
158.5 (pelleting) / 158.5 (washing)
Protein markers
EV: Flotillin-1/ CD63/ CD9
non-EV: Calnexin Proteomics
yes
Show all info
Study aim
New methodological development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
dermal fibroblasts
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 55.2 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
158.5
Wash: time (min)
70
Wash: Rotor Type
Type 55.2 Ti
Wash: speed (g)
100000
Wash: adjusted k-factor
158.5
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD9, CD63, Flotillin-1
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
46.5 ± 15.8
Other particle analysis name(1)
Raman spectroscopy
Extra information
Primary antibodies:
- Purified Mouse Anti-Flotillin-1; Clone 18/Flotillin-1; BD Transduction Laboratories™, San Jose, CA, USA
- Rabbit anti-CD63; System Biosciences, Palo Alto, CA, USA
- Rabbit anti-CD9; System Biosciences, Palo Alto, CA, USA
- Rabbit anti-calnexin; clone C5C9, Cell Signaling Technology, Danvers, MA, USA
|
||||||||
EV170012 | 3/3 | Homo sapiens | bone marrow-derived mesenchymal stromal cells | (d)(U)C | Gualerzi, Alice | 2017 | 56% | |
Study summaryFull title
All authors
Alice Gualerzi, Stefania Niada, Chiara Giannasi, Silvia Picciolini, Carlo Morasso, Renzo Vanna, Valeria Rossella, Massimo Masserini, Marzia Bedoni, Fabio Ciceri, Maria Ester Bernardo, Anna Teresa Brini & Furio Gramatica
Journal
Scientific Reports
Abstract
Extracellular vesicles (EVs) from mesenchymal stromal cells (MSC) are emerging as valuable therapeut (show more...)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Adj. k-factor
158.5 (pelleting) / 158.5 (washing)
Protein markers
EV: Flotillin-1/ CD63/ CD9
non-EV: Calnexin Proteomics
no
Show all info
Study aim
New methodological development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
bone marrow-derived mesenchymal stromal cells
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 55.2 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
158.5
Wash: time (min)
70
Wash: Rotor Type
Type 55.2 Ti
Wash: speed (g)
100000
Wash: adjusted k-factor
158.5
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD9, CD63, Flotillin-1
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
46.5 ± 15.8
Other particle analysis name(1)
Raman spectroscopy
Extra information
Primary antibodies:
- Purified Mouse Anti-Flotillin-1; Clone 18/Flotillin-1; BD Transduction Laboratories™, San Jose, CA, USA
- Rabbit anti-CD63; System Biosciences, Palo Alto, CA, USA
- Rabbit anti-CD9; System Biosciences, Palo Alto, CA, USA
- Rabbit anti-calnexin; clone C5C9, Cell Signaling Technology, Danvers, MA, USA
|
||||||||
EV180047 | 1/1 | Homo sapiens | mesenchymal stem cells |
(d)(U)C Filtration |
O'Brien KP | 2017 | 55% | |
Study summaryFull title
All authors
O'Brien KP, Khan S, Gilligan KE, Zafar H, Lalor P, Glynn C, O'Flatharta C, Ingoldsby H, Dockery P, De Bhulbh A, Schweber JR, St John K, Leahy M, Murphy JM, Gallagher WM, O'Brien T, Kerin MJ, Dwyer RM
Journal
Oncogene
Abstract
Adult Mesenchymal Stem Cells (MSCs) have a well-established tumor-homing capacity, highlighting pote (show more...)
EV-METRIC
55% (88th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
miR-379 expressing
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Filtration Adj. k-factor
98.44 (pelleting)
Protein markers
EV: CD63
non-EV: None Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
mesenchymal stem cells
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
S50-A
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
98.44
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD63
Characterization: RNA analysis
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-120
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV170060 | 1/4 | Bos taurus | Other | (d)(U)C | Kornilov R | 2017 | 55% | |
Study summaryFull title
All authors
Kornilov R, Puhka M, Mannerström B, Hiidenmaa H, Peltoniemi H, Siljander P, Seppänen-Kaijansinkko R, Kaur S
Journal
J Extracell Vesicles
Abstract
Fetal bovine serum (FBS) is the most commonly used supplement in studies involving cell-culture expe (show more...)
EV-METRIC
55% (50th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Other
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Adj. k-factor
208.3 (pelleting) / 208.3 (washing)
Protein markers
EV: CD71
non-EV: None Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
Other
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
SW 28
Pelleting: speed (g)
121896
Pelleting: adjusted k-factor
208.3
Wash: time (min)
120
Wash: Rotor Type
SW 28
Wash: speed (g)
121896
Wash: adjusted k-factor
208.3
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD71
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
EV concentration
Yes
Particle yield
1.00E+10 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Extra information
Aim of the study was to compare different EV depletion protocols for fetal bovine serum (FBS).
|
||||||||
EV170060 | 2/4 | Bos taurus | Serum | (d)(U)C | Kornilov R | 2017 | 55% | |
Study summaryFull title
All authors
Kornilov R, Puhka M, Mannerström B, Hiidenmaa H, Peltoniemi H, Siljander P, Seppänen-Kaijansinkko R, Kaur S
Journal
J Extracell Vesicles
Abstract
Fetal bovine serum (FBS) is the most commonly used supplement in studies involving cell-culture expe (show more...)
EV-METRIC
55% (91st percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Serum
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Adj. k-factor
208.3 (pelleting) / 208.3 (washing)
Protein markers
EV: HSP70/ CD63/ CD71
non-EV: None Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
SW 28
Pelleting: speed (g)
121896
Pelleting: adjusted k-factor
208.3
Wash: time (min)
120
Wash: Rotor Type
SW 28
Wash: speed (g)
121896
Wash: adjusted k-factor
208.3
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63, HSP70, CD71
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
EV concentration
Yes
Particle yield
2.50E+11 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Extra information
Aim of the study was to compare different EV depletion protocols for fetal bovine serum (FBS).
|
||||||||
EV170060 | 3/4 | Bos taurus | Other | (d)(U)C | Kornilov R | 2017 | 55% | |
Study summaryFull title
All authors
Kornilov R, Puhka M, Mannerström B, Hiidenmaa H, Peltoniemi H, Siljander P, Seppänen-Kaijansinkko R, Kaur S
Journal
J Extracell Vesicles
Abstract
Fetal bovine serum (FBS) is the most commonly used supplement in studies involving cell-culture expe (show more...)
EV-METRIC
55% (50th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Other
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Adj. k-factor
208.3 (pelleting) / 208.3 (washing)
Protein markers
EV: HSP70/ CD63/ CD71
non-EV: None Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
Other
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
SW 28
Pelleting: speed (g)
121896
Pelleting: adjusted k-factor
208.3
Wash: time (min)
120
Wash: Rotor Type
SW 28
Wash: speed (g)
121896
Wash: adjusted k-factor
208.3
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63, HSP70, CD71
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
EV concentration
Yes
Particle yield
3.00E+10 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Extra information
Aim of the study was to compare different EV depletion protocols for fetal bovine serum (FBS).
|
||||||||
EV170060 | 4/4 | Bos taurus | Other | (d)(U)C | Kornilov R | 2017 | 55% | |
Study summaryFull title
All authors
Kornilov R, Puhka M, Mannerström B, Hiidenmaa H, Peltoniemi H, Siljander P, Seppänen-Kaijansinkko R, Kaur S
Journal
J Extracell Vesicles
Abstract
Fetal bovine serum (FBS) is the most commonly used supplement in studies involving cell-culture expe (show more...)
EV-METRIC
55% (50th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Other
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Adj. k-factor
208.3 (pelleting) / 208.3 (washing)
Protein markers
EV: HSP70/ CD63/ CD71
non-EV: None Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
Other
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
SW 28
Pelleting: speed (g)
121896
Pelleting: adjusted k-factor
208.3
Wash: time (min)
120
Wash: Rotor Type
SW 28
Wash: speed (g)
121896
Wash: adjusted k-factor
208.3
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63, HSP70, CD71
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
EV concentration
Yes
Particle yield
1.00E+10 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Extra information
Aim of the study was to compare different EV depletion protocols for fetal bovine serum (FBS).
|
||||||||
EV170045 | 1/1 | Homo sapiens | Primary glioblastoma cells |
(d)(U)C Filtration |
Treps L | 2017 | 55% | |
Study summaryFull title
All authors
Treps L, Perret R, Edmond S, Ricard D, Gavard J
Journal
J Extracell Vesicles
Abstract
Glioblastoma multiforme (GBM) are mortifying brain tumours that contain a subpopulation of tumour ce (show more...)
EV-METRIC
55% (88th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Brain cancer
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Filtration Adj. k-factor
138.6 (pelleting) / 138.6 (washing)
Protein markers
EV: CD63/ TIMP2/ TIMP1/ VEGF-A/ ANXA5/ MMP1
non-EV: None Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Primary glioblastoma cells
EV-harvesting Medium
Serum free medium
Cell viability (%)
NA
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
240
Pelleting: rotor type
SW 55 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
138.6
Wash: time (min)
120
Wash: Rotor Type
SW 55 Ti
Wash: speed (g)
100000
Wash: adjusted k-factor
138.6
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
microBCA
ELISA
Flow cytometry
Type of Flow cytometry
MACSQuant Analyzer
Other 1
Protein array
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Mean
Reported size (nm)
109
EV concentration
Yes
EM
EM-type
Transmission-EM/ Immune-EM
EM protein
CD63
Image type
Close-up, Wide-field
Extra information
Wash volume not in original publication.
|
||||||||
EV170018 | 2/12 | Homo sapiens | osteoclasts |
(d)(U)C Filtration |
Gebraad A | 2017 | 55% | |
Study summaryFull title
All authors
Gebraad A, Kornilov R, Kaur S, Miettinen S, Haimi S, Peltoniemi H, Mannerström B, Seppänen-Kaijansinkko R
Journal
FEBS J
Abstract
Intercellular communication is essential in bone remodelling to ensure that new bone is formed with (show more...)
EV-METRIC
55% (88th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Donor 3, grown on hydroxyapatite
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Filtration Adj. k-factor
211.6 (pelleting) / 211.6 (washing)
Protein markers
EV: TSG101/ HSP70/ CD63/ CD90
non-EV: Calnexin Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
osteoclasts
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
>=18h at >= 100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
SW 28
Pelleting: speed (g)
120000
Pelleting: adjusted k-factor
211.6
Wash: time (min)
120
Wash: Rotor Type
SW 28
Wash: speed (g)
120000
Wash: adjusted k-factor
211.6
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63, HSP70, TSG101, CD90
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
120
EV concentration
Yes
Particle yield
1.20E+08 particles/ml start sample
|
||||||||
EV170018 | 4/12 | Homo sapiens | osteoclasts |
(d)(U)C Filtration |
Gebraad A | 2017 | 55% | |
Study summaryFull title
All authors
Gebraad A, Kornilov R, Kaur S, Miettinen S, Haimi S, Peltoniemi H, Mannerström B, Seppänen-Kaijansinkko R
Journal
FEBS J
Abstract
Intercellular communication is essential in bone remodelling to ensure that new bone is formed with (show more...)
EV-METRIC
55% (88th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Donor 4, grown on hydroxyapatite
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Filtration Adj. k-factor
211.6 (pelleting) / 211.6 (washing)
Protein markers
EV: TSG101/ HSP70/ CD63/ CD90
non-EV: Calnexin Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
osteoclasts
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
>=18h at >= 100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
SW 28
Pelleting: speed (g)
120000
Pelleting: adjusted k-factor
211.6
Wash: time (min)
120
Wash: Rotor Type
SW 28
Wash: speed (g)
120000
Wash: adjusted k-factor
211.6
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63, HSP70, TSG101, CD90
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
135
EV concentration
Yes
Particle yield
7.90E+08 particles/ml start sample
|
||||||||
EV170018 | 6/12 | Homo sapiens | primary circulating monocytes |
(d)(U)C Filtration |
Gebraad A | 2017 | 55% | |
Study summaryFull title
All authors
Gebraad A, Kornilov R, Kaur S, Miettinen S, Haimi S, Peltoniemi H, Mannerström B, Seppänen-Kaijansinkko R
Journal
FEBS J
Abstract
Intercellular communication is essential in bone remodelling to ensure that new bone is formed with (show more...)
EV-METRIC
55% (88th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Donor 3, LPS-activated
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Filtration Adj. k-factor
211.6 (pelleting) / 211.6 (washing)
Protein markers
EV: TSG101/ HSP70/ CD90
non-EV: Calnexin Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
primary circulating monocytes
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
>=18h at >= 100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
SW 28
Pelleting: speed (g)
120000
Pelleting: adjusted k-factor
211.6
Wash: time (min)
120
Wash: Rotor Type
SW 28
Wash: speed (g)
120000
Wash: adjusted k-factor
211.6
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
HSP70, TSG101, CD90
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
133
EV concentration
Yes
Particle yield
3.60E+08 particles/ml start sample
|
||||||||
EV170018 | 9/12 | Homo sapiens | osteoclasts |
(d)(U)C Filtration |
Gebraad A | 2017 | 55% | |
Study summaryFull title
All authors
Gebraad A, Kornilov R, Kaur S, Miettinen S, Haimi S, Peltoniemi H, Mannerström B, Seppänen-Kaijansinkko R
Journal
FEBS J
Abstract
Intercellular communication is essential in bone remodelling to ensure that new bone is formed with (show more...)
EV-METRIC
55% (88th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Donor 3, grown on polystyrene
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Filtration Adj. k-factor
211.6 (pelleting) / 211.6 (washing)
Protein markers
EV: TSG101/ HSP70/ CD63/ CD90
non-EV: Calnexin Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
osteoclasts
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
>=18h at >= 100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
SW 28
Pelleting: speed (g)
120000
Pelleting: adjusted k-factor
211.6
Wash: time (min)
120
Wash: Rotor Type
SW 28
Wash: speed (g)
120000
Wash: adjusted k-factor
211.6
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63, HSP70, TSG101, CD90
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
134
EV concentration
Yes
Particle yield
7.40E+08 particles/ml start sample
|
||||||||
EV170018 | 10/12 | Homo sapiens | osteoclasts |
(d)(U)C Filtration |
Gebraad A | 2017 | 55% | |
Study summaryFull title
All authors
Gebraad A, Kornilov R, Kaur S, Miettinen S, Haimi S, Peltoniemi H, Mannerström B, Seppänen-Kaijansinkko R
Journal
FEBS J
Abstract
Intercellular communication is essential in bone remodelling to ensure that new bone is formed with (show more...)
EV-METRIC
55% (88th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Donor 4, grown on polystyrene
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Filtration Adj. k-factor
211.6 (pelleting) / 211.6 (washing)
Protein markers
EV: TSG101/ HSP70/ CD63/ CD90
non-EV: Calnexin Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
osteoclasts
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
>=18h at >= 100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
SW 28
Pelleting: speed (g)
120000
Pelleting: adjusted k-factor
211.6
Wash: time (min)
120
Wash: Rotor Type
SW 28
Wash: speed (g)
120000
Wash: adjusted k-factor
211.6
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63, HSP70, TSG101, CD90
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
131
EV concentration
Yes
Particle yield
5.40E+08 particles/ml start sample
|
||||||||
EV170018 | 11/12 | Homo sapiens | primary circulating monocytes |
(d)(U)C Filtration |
Gebraad A | 2017 | 55% | |
Study summaryFull title
All authors
Gebraad A, Kornilov R, Kaur S, Miettinen S, Haimi S, Peltoniemi H, Mannerström B, Seppänen-Kaijansinkko R
Journal
FEBS J
Abstract
Intercellular communication is essential in bone remodelling to ensure that new bone is formed with (show more...)
EV-METRIC
55% (88th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Donor 4, LPS-activated
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Filtration Adj. k-factor
211.6 (pelleting) / 211.6 (washing)
Protein markers
EV: TSG101/ HSP70/ CD90
non-EV: Calnexin Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
primary circulating monocytes
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
>=18h at >= 100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
SW 28
Pelleting: speed (g)
120000
Pelleting: adjusted k-factor
211.6
Wash: time (min)
120
Wash: Rotor Type
SW 28
Wash: speed (g)
120000
Wash: adjusted k-factor
211.6
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
HSP70, TSG101, CD90
Not detected contaminants
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
147
EV concentration
Yes
Particle yield
3.20E+08 particles/ml start sample
|
||||||||
EV170016 | 2/2 | Mus musculus | adipose tissue-derived macrophages |
(d)(U)C Filtration |
Ying, Wei | 2017 | 55% | |
Study summaryFull title
All authors
Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Seo JB, Ofrecio JM, Wollam J, Hernandez-Carretero A, Fu W, Li P, Olefsky JM
Journal
Cell
Abstract
MiRNAs are regulatory molecules that can be packaged into exosomes and secreted from cells. Here, we (show more...)
EV-METRIC
55% (88th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
(d)(U)C
Filtration Adj. k-factor
256 (pelleting) / 256 (washing)
Protein markers
EV: TSG101/ HSP70/ Syntenin1/ CD63/ CD9
non-EV: Grp94 Proteomics
no
Show all info
Study aim
Function, Mechanism of uptake/transfer
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
adipose tissue-derived macrophages
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
240-360
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
256.0
Wash: time (min)
20
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100000
Wash: adjusted k-factor
256.0
Filtration steps
0.22µm or 0.2µm
EV-subtype
Distinction between multiple subtypes
1.13-1.15 g/ml
Used subtypes
Yes
Characterization: Protein analysis
Protein Concentration Method
DC protein assay
Protein Yield (µg)
9-May
Western Blot
Detected EV-associated proteins
CD9, CD63, HSP70, TSG101, Syntenin1
Not detected contaminants
Grp94
Characterization: RNA analysis
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Extra information
Full UC protocol not in original article
|
||||||||
EV230776 | 1/1 | Fibrobacter succinogenes | F. succinogenes S85 (ATCC 19169) |
(d)(U)C DG Filtration UF |
Arntzen MØ | 2017 | 50% | |
Study summaryFull title
All authors
Arntzen MØ, Várnai A, Mackie RI, Eijsink VGH, Pope PB
Journal
Environ Microbiol
Abstract
Fibrobacter succinogenes is an anaerobic bacterium naturally colonising the rumen and cecum of herbi (show more...)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
outer membrane vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Density gradient Filtration Ultrafiltration Protein markers
EV: None
non-EV: None Proteomics
yes
EV density (g/ml)
not specified
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Fibrobacter succinogenes
Sample Type
Cell culture supernatant
EV-producing cells
F. succinogenes S85 (ATCC 19169)
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Pelleting performed
No
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
not specified if it was continuous or not
Lowest density fraction
not specified
Highest density fraction
not specified
Total gradient volume, incl. sample (mL)
not specified
Sample volume (mL)
not spec
Speed (g)
200000
Duration (min)
120
Fraction volume (mL)
not specified
Fraction processing
Centrifugation
Pelleting: volume per fraction
12 ml
Pelleting: speed (g)
100000
Filtration steps
Between 0.22 and 0.45 μm
Ultra filtration
Cut-off size (kDa)
10 en 10
Membrane type
NS
Characterization: Protein analysis
Protein Concentration Method
Bradford
Proteomics database
ProteomeXchange consortium
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Mean
Reported size (nm)
49
EM
EM-type
TransmissionÂ-EM
Image type
Close-up
|
||||||||
EV200114 | 1/4 | Homo sapiens | Trophoblasts |
DG (d)(U)C Filtration |
Elfeky O | 2017 | 50% | |
Study summaryFull title
All authors
Elfeky O, Longo S, Lai A, Rice GE, Salomon C
Journal
Placenta
Abstract
Recent studies report that 35% of women are either overweight or obese at reproductive age. The plac (show more...)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
Density gradient
(Differential) (ultra)centrifugation Filtration Protein markers
EV: CD63/ PLAP/ IgG1
non-EV: None Proteomics
no
Show all info
Study aim
Function/Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Trophoblasts
EV-harvesting Medium
Not specified
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
Not specified
Pelleting: speed (g)
100000
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Sample volume (mL)
0.5mL
Orientation
Top-down
Rotor type
Not specified
Speed (g)
100000
Duration (min)
1200
Fraction volume (mL)
Not specified
Fraction processing
Not specified
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Fluorescent NTA
Relevant measurements variables specified?
NA
Antibody details provided?
Yes
Detected EV-associated proteins
PLAP/ IgG1/ CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Not Reported
Used for determining EV concentration?
Yes
NTA
Report type
Not Reported
EV concentration
Yes
|
||||||||
EV200114 | 3/4 | Homo sapiens | Blood plasma |
DG (d)(U)C |
Elfeky O | 2017 | 50% | |
Study summaryFull title
All authors
Elfeky O, Longo S, Lai A, Rice GE, Salomon C
Journal
Placenta
Abstract
Recent studies report that 35% of women are either overweight or obese at reproductive age. The plac (show more...)
EV-METRIC
50% (82nd percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Blood plasma
Sample origin
Overweight (BMI=25-29.9kg/m2)
Focus vesicles
exosome
Separation protocol
Separation protocol
Density gradient
(Differential) (ultra)centrifugation No extra separation steps Protein markers
EV: CD63/ PLAP/ IgG1
non-EV: None Proteomics
no
Show all info
Study aim
Function/Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
Not specified
Pelleting: speed (g)
100000
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Sample volume (mL)
0.5mL
Orientation
Top-down
Rotor type
Not specified
Speed (g)
100000
Duration (min)
1200
Fraction volume (mL)
Not specified
Fraction processing
Not specified
Other
Name other separation method
No extra separation steps
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Fluorescent NTA
Relevant measurements variables specified?
NA
Antibody details provided?
Yes
Detected EV-associated proteins
PLAP/ IgG1/ CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Mean
Used for determining EV concentration?
Yes
NTA
Report type
Not Reported
EV concentration
Yes
Particle yield
as number of particles per milliliter of starting sample: 4.20e+7
|
||||||||
EV200114 | 4/4 | Homo sapiens | Blood plasma |
DG (d)(U)C |
Elfeky O | 2017 | 50% | |
Study summaryFull title
All authors
Elfeky O, Longo S, Lai A, Rice GE, Salomon C
Journal
Placenta
Abstract
Recent studies report that 35% of women are either overweight or obese at reproductive age. The plac (show more...)
EV-METRIC
50% (82nd percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Blood plasma
Sample origin
Obese (BMI= >30kg/m2)
Focus vesicles
exosome
Separation protocol
Separation protocol
Density gradient
(Differential) (ultra)centrifugation No extra separation steps Protein markers
EV: CD63/ PLAP/ IgG1
non-EV: None Proteomics
no
Show all info
Study aim
Function/Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
Not specified
Pelleting: speed (g)
100000
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Sample volume (mL)
0.5mL
Orientation
Top-down
Rotor type
Not specified
Speed (g)
100000
Duration (min)
1200
Fraction volume (mL)
Not specified
Fraction processing
Not specified
Other
Name other separation method
No extra separation steps
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Fluorescent NTA
Relevant measurements variables specified?
NA
Antibody details provided?
Yes
Detected EV-associated proteins
PLAP/ IgG1/ CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Mean
Used for determining EV concentration?
Yes
NTA
Report type
Not Reported
EV concentration
Yes
Particle yield
as number of particles per milliliter of starting sample: 6.30e+7
|
||||||||
EV170062 | 1/1 | Homo sapiens | Blood plasma |
(d)(U)C ExoQuick IAF |
Mustapic M | 2017 | 50% | |
Study summaryFull title
All authors
Mustapic M, Eitan E, Werner JK, Berkowitz ST, Lazaropoulos MP, Tran J, Goetzl EJ, Kapogiannis D
Journal
J Cell Sci
Abstract
Our team has been a pioneer in harvesting extracellular vesicles (EVs) enriched for neuronal origin (show more...)
EV-METRIC
50% (82nd percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Blood plasma
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
ExoQuick IAF Protein markers
EV: TSG101/ MAP2/ gamma-enolase/ L1CAMandCD81/ L1CAM/ pTau23/ CD9/ tubulin-betaIII
non-EV: None Proteomics
no
Show all info
Study aim
Biomarker, Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Pelleting performed
No
Commercial kit
ExoQuick
Immunoaffinity capture
Selected surface protein(s)
L1CAM
Other
Name other separation method
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD9, L1CAM, MAP2, gamma-enolase, pTau23, tubulin-betaIII
ELISA
Other 1
Proteome Profiler Human Phospho-Mitogen-activated Protein Kinase (MAPK) Antibody Array (Catalog # ARY002B), Human Kidney Biomarker Antibody Array (Catalog # ARY019), Human Phospho-Kinase Antibody Arra
Characterization: Lipid analysis
No
Characterization: Particle analysis
PMID previous EV particle analysis
Nanoparticle tracking analysis
Extra particle analysis
NTA
Report type
Size range/distribution
EV concentration
Yes
EM
EM-type
Immune-EM
EM protein
L1CAM and CD81
Image type
Close-up, Wide-field
|
||||||||
EV170061 | 2/3 | Homo sapiens | BEAS2B | (d)(U)C | Benedikter BJ | 2017 | 50% | |
Study summaryFull title
All authors
Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM
Journal
J Cell Sci
Abstract
Appropriate isolation methods are essential for unravelling the relative contribution of extracellul (show more...)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Adj. k-factor
133.2 (pelleting) / 48.17 (washing)
Protein markers
EV: CD81/ CD63
non-EV: None Proteomics
yes
Show all info
Study aim
Function, Identification of content (omics approaches), Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
BEAS2B
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
>=18h at >= 100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
150
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
117734
Pelleting: adjusted k-factor
133.2
Wash: time (min)
150
Wash: Rotor Type
NVT 90
Wash: speed (g)
110656
Wash: adjusted k-factor
48.17
Characterization: Protein analysis
Protein Concentration Method
Bradford
Flow cytometry specific beads
Selected surface protein(s)
CD63
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
EV concentration
Yes
Particle yield
2.00E+00
|
||||||||
EV170061 | 3/3 | Homo sapiens | BEAS2B | (d)(U)C | Benedikter BJ | 2017 | 50% | |
Study summaryFull title
All authors
Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM
Journal
J Cell Sci
Abstract
Appropriate isolation methods are essential for unravelling the relative contribution of extracellul (show more...)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Adj. k-factor
133.2 (pelleting)
Protein markers
EV: CD81/ CD63
non-EV: None Proteomics
yes
Show all info
Study aim
Function, Identification of content (omics approaches), Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
BEAS2B
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
>=18h at >= 100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
150
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
117734
Pelleting: adjusted k-factor
133.2
Characterization: Protein analysis
Protein Concentration Method
Bradford
Flow cytometry specific beads
Selected surface protein(s)
CD63
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Median
Reported size (nm)
74.6
EV concentration
Yes
Particle yield
1.50E+01
EM
EM-type
Cryo-EM
Image type
Close-up
Report size (nm)
25-200
|
||||||||
EV170002 | 1/1 | Homo sapiens | Umbilical cord mesenchymal stem cells |
(d)(U)C SEC UF |
Monguió-Tortajada M | 2017 | 50% | |
Study summaryFull title
All authors
Monguió-Tortajada M, Roura S, Gálvez-Montón C, Pujal JM, Aran G, Sanjurjo L, Franquesa M, Sarrias MR, Bayes-Genis A, Borràs FE
Journal
Theranostics
Abstract
Undesired immune responses have drastically hampered outcomes after allogeneic organ transplantation (show more...)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
SEC UF Adj. k-factor
138.6 (pelleting)
Protein markers
EV: CD63/ CD73/ CD90/ MHC2/ CD9/ MHC1
non-EV: None Proteomics
no
Show all info
Study aim
Function, Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Umbilical cord mesenchymal stem cells
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
SW 55 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
138.6
Ultra filtration
Cut-off size (kDa)
100
Membrane type
NS
Size-exclusion chromatography
Total column volume (mL)
1
Sample volume/column (mL)
0.1
Resin type
Sepharose CL-2B
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean;Median and size distribution
Reported size (nm)
160-230
EV concentration
Yes
EM
EM-type
Cryo-EM
Image type
Close-up, Wide-field
|
||||||||
EV210220 | 1/6 | Homo sapiens | Blood plasma |
DG (d)(U)C ExoQuick |
Ermini, Leonardo | 2017 | 45% | |
Study summaryFull title
All authors
Leonardo Ermini, Jonathan Ausman, Megan Melland-Smith, Behzad Yeganeh, Alessandro Rolfo, Michael L Litvack, Tullia Todros, Michelle Letarte, Martin Post 10 11 , Isabella Caniggia 12
Journal
Sci Rep
Abstract
Preeclampsia (PE), an hypertensive disorder of pregnancy, exhibits increased circulating levels of a (show more...)
EV-METRIC
45% (77th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Blood plasma
Sample origin
Healthy pregnant
Focus vesicles
exosome
Separation protocol
Separation protocol
DG
(d)(U)C Commercial method Protein markers
EV: CD63/ PLAP/ sENG/ sFLT-1
non-EV: None Proteomics
no
EV density (g/ml)
*
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
1200
Pelleting: rotor type
TLA-55
Pelleting: speed (g)
200000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
Not specified
Lowest density fraction
0.25M
Highest density fraction
2.5M
Total gradient volume, incl. sample (mL)
Not specified
Sample volume (mL)
Not spec
Orientation
Not specified
Rotor type
TLA-100
Speed (g)
110000
Duration (min)
1200
Fraction volume (mL)
10 fractions, 0.3mL per fraction
Fraction processing
None
Commercial kit
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63/ PLAP
Not detected EV-associated proteins
sENG/ sFLT-1
Characterization: Lipid analysis
Lipi
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
100-400
EM
EM-type
Transmission-EM
Image type
Close-up
Report size (nm)
100nm
|
||||||||
EV210220 | 2/6 | Homo sapiens | Blood plasma |
DG (d)(U)C ExoQuick Immunoaffinity capture |
Ermini, Leonardo | 2017 | 45% | |
Study summaryFull title
All authors
Leonardo Ermini, Jonathan Ausman, Megan Melland-Smith, Behzad Yeganeh, Alessandro Rolfo, Michael L Litvack, Tullia Todros, Michelle Letarte, Martin Post 10 11 , Isabella Caniggia 12
Journal
Sci Rep
Abstract
Preeclampsia (PE), an hypertensive disorder of pregnancy, exhibits increased circulating levels of a (show more...)
EV-METRIC
45% (77th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Blood plasma
Sample origin
Healthy pregnant
Focus vesicles
exosome
Separation protocol
Separation protocol
DG
(d)(U)C Commercial method Immunoaffinity capture Protein markers
EV: CD63/ TGFBR1/ TGFBR2/ sENG
non-EV: None Proteomics
no
EV density (g/ml)
*
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
1200
Pelleting: rotor type
TLA-55
Pelleting: speed (g)
200000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
Not specified
Lowest density fraction
0.25M
Highest density fraction
2.5M
Total gradient volume, incl. sample (mL)
Not specified
Sample volume (mL)
Not spec
Orientation
Not specified
Rotor type
TLA-100
Speed (g)
110000
Duration (min)
1200
Fraction volume (mL)
10 fractions, 0.3mL per fraction
Fraction processing
None
Commercial kit
ExoQuick
Immunoaffinity capture
Selected surface protein(s)
PLAP
Other
Name other separation method
Immunoaffinity capture
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63/ TGFBR1/ TGFBR2
Not detected EV-associated proteins
sENG
Characterization: Lipid analysis
Lipi
Characterization: Particle analysis
None
|
||||||||
EV210220 | 3/6 | Homo sapiens | Blood plasma |
DG (d)(U)C ExoQuick |
Ermini, Leonardo | 2017 | 45% | |
Study summaryFull title
All authors
Leonardo Ermini, Jonathan Ausman, Megan Melland-Smith, Behzad Yeganeh, Alessandro Rolfo, Michael L Litvack, Tullia Todros, Michelle Letarte, Martin Post 10 11 , Isabella Caniggia 12
Journal
Sci Rep
Abstract
Preeclampsia (PE), an hypertensive disorder of pregnancy, exhibits increased circulating levels of a (show more...)
EV-METRIC
45% (77th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Blood plasma
Sample origin
Preeclampsia
Focus vesicles
exosome
Separation protocol
Separation protocol
DG
(d)(U)C Commercial method Protein markers
EV: CD63/ PLAP/ sENG/ sFLT-1
non-EV: None Proteomics
no
EV density (g/ml)
*
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
1200
Pelleting: rotor type
TLA-55
Pelleting: speed (g)
200000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
Not specified
Lowest density fraction
0.25M
Highest density fraction
2.5M
Total gradient volume, incl. sample (mL)
Not specified
Sample volume (mL)
Not spec
Orientation
Not specified
Rotor type
TLA-100
Speed (g)
110000
Duration (min)
1200
Fraction volume (mL)
10 fractions, 0.3mL per fraction
Fraction processing
None
Commercial kit
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
sENG/ CD63/ PLAP
Not detected EV-associated proteins
sFLT-1
Flow cytometry
Type of Flow cytometry
Beckman Coulter Gallios 10/3
Detected EV-associated proteins
PLAP
Characterization: Lipid analysis
Lipi
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
100-400
|
||||||||
EV210220 | 4/6 | Homo sapiens | Blood plasma |
DG (d)(U)C ExoQuick Immunoaffinity capture |
Ermini, Leonardo | 2017 | 45% | |
Study summaryFull title
All authors
Leonardo Ermini, Jonathan Ausman, Megan Melland-Smith, Behzad Yeganeh, Alessandro Rolfo, Michael L Litvack, Tullia Todros, Michelle Letarte, Martin Post 10 11 , Isabella Caniggia 12
Journal
Sci Rep
Abstract
Preeclampsia (PE), an hypertensive disorder of pregnancy, exhibits increased circulating levels of a (show more...)
EV-METRIC
45% (77th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Blood plasma
Sample origin
Preeclampsia
Focus vesicles
exosome
Separation protocol
Separation protocol
DG
(d)(U)C Commercial method Immunoaffinity capture Protein markers
EV: CD63/ TGFBR1/ TGFBR2/ sENG
non-EV: None Proteomics
no
EV density (g/ml)
*
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
1200
Pelleting: rotor type
TLA-55
Pelleting: speed (g)
200000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
Not specified
Lowest density fraction
0.25M
Highest density fraction
2.5M
Total gradient volume, incl. sample (mL)
Not specified
Sample volume (mL)
Not spec
Orientation
Not specified
Rotor type
TLA-100
Speed (g)
110000
Duration (min)
1200
Fraction volume (mL)
10 fractions, 0.3mL per fraction
Fraction processing
None
Commercial kit
ExoQuick
Immunoaffinity capture
Selected surface protein(s)
PLAP
Other
Name other separation method
Immunoaffinity capture
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63/ TGFBR1/ TGFBR2/ sENG
Characterization: Lipid analysis
Lipi
Characterization: Particle analysis
None
|
||||||||
EV210220 | 5/6 | Homo sapiens | Blood plasma |
DG (d)(U)C ExoQuick |
Ermini, Leonardo | 2017 | 45% | |
Study summaryFull title
All authors
Leonardo Ermini, Jonathan Ausman, Megan Melland-Smith, Behzad Yeganeh, Alessandro Rolfo, Michael L Litvack, Tullia Todros, Michelle Letarte, Martin Post 10 11 , Isabella Caniggia 12
Journal
Sci Rep
Abstract
Preeclampsia (PE), an hypertensive disorder of pregnancy, exhibits increased circulating levels of a (show more...)
EV-METRIC
45% (77th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Blood plasma
Sample origin
pre-term birth
Focus vesicles
exosome
Separation protocol
Separation protocol
DG
(d)(U)C Commercial method Protein markers
EV: CD63/ PLAP/ sENG/ sFLT-1
non-EV: None Proteomics
no
EV density (g/ml)
*
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
1200
Pelleting: rotor type
TLA-55
Pelleting: speed (g)
200000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
Not specified
Lowest density fraction
0.25M
Highest density fraction
2.5M
Total gradient volume, incl. sample (mL)
Not specified
Sample volume (mL)
Not spec
Orientation
Not specified
Rotor type
TLA-100
Speed (g)
110000
Duration (min)
1200
Fraction volume (mL)
10 fractions, 0.3mL per fraction
Fraction processing
None
Commercial kit
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63/ PLAP
Not detected EV-associated proteins
sENG/ sFLT-1
Flow cytometry
Type of Flow cytometry
Beckman Coulter Gallios 10/3
Detected EV-associated proteins
PLAP
Characterization: Lipid analysis
Lipi
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
100-400
|
||||||||
EV210220 | 6/6 | Homo sapiens | Blood plasma |
DG (d)(U)C ExoQuick Immunoaffinity capture |
Ermini, Leonardo | 2017 | 45% | |
Study summaryFull title
All authors
Leonardo Ermini, Jonathan Ausman, Megan Melland-Smith, Behzad Yeganeh, Alessandro Rolfo, Michael L Litvack, Tullia Todros, Michelle Letarte, Martin Post 10 11 , Isabella Caniggia 12
Journal
Sci Rep
Abstract
Preeclampsia (PE), an hypertensive disorder of pregnancy, exhibits increased circulating levels of a (show more...)
EV-METRIC
45% (77th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Blood plasma
Sample origin
pre-term birth
Focus vesicles
exosome
Separation protocol
Separation protocol
DG
(d)(U)C Commercial method Immunoaffinity capture Protein markers
EV: CD63/ TGFBR1/ TGFBR2/ sENG
non-EV: None Proteomics
no
EV density (g/ml)
*
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
1200
Pelleting: rotor type
TLA-55
Pelleting: speed (g)
200000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
Not specified
Lowest density fraction
0.25M
Highest density fraction
2.5M
Total gradient volume, incl. sample (mL)
Not specified
Sample volume (mL)
Not spec
Orientation
Not specified
Rotor type
TLA-100
Speed (g)
110000
Duration (min)
1200
Fraction volume (mL)
10 fractions, 0.3mL per fraction
Fraction processing
None
Commercial kit
ExoQuick
Immunoaffinity capture
Selected surface protein(s)
PLAP
Other
Name other separation method
Immunoaffinity capture
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63/ TGFBR1/ TGFBR2
Not detected EV-associated proteins
sENG
Characterization: Lipid analysis
Lipi
Characterization: Particle analysis
None
|
||||||||
EV210202 | 6/7 | Mus musculus | Primary adipocytes | (d)(U)C | Durcin, Maëva | 2017 | 45% | |
Study summaryFull title
All authors
Maëva Durcin, Audrey Fleury, Emiliane Taillebois, Grégory Hilairet, Zuzana Krupova, Céline Henry, Sandrine Truchet, Martin Trötzmüller, Harald Köfeler, Guillaume Mabilleau, Olivier Hue, Ramaroson Andriantsitohaina, Patrice Martin, Soazig Le Lay
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) are biological vectors that can modulate the metabolism of target cells (show more...)
EV-METRIC
45% (86th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Large extracellular vesicles
Separation protocol
Separation protocol
(d)(U)C
Protein markers
EV: None
non-EV: None Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
Primary adipocytes
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
MLA-50
Pelleting: speed (g)
13000
Wash: volume per pellet (ml)
Not specified
Wash: time (min)
60
Wash: Rotor Type
MLA-50
Wash: speed (g)
13000
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Detected EV-associated proteins
Mfge8/ Flotillin2/ caveolin-1
Not detected EV-associated proteins
CD9/ CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
Reported size (nm)
110-150
EV concentration
Yes
Particle yield
EV sercreted per adipocyte;Yes, other: 100
EM
EM-type
Transmission-EM
Image type
Close-up
|
||||||||
EV210202 | 7/7 | Mus musculus | Primary adipocytes | (d)(U)C | Durcin, Maëva | 2017 | 45% | |
Study summaryFull title
All authors
Maëva Durcin, Audrey Fleury, Emiliane Taillebois, Grégory Hilairet, Zuzana Krupova, Céline Henry, Sandrine Truchet, Martin Trötzmüller, Harald Köfeler, Guillaume Mabilleau, Olivier Hue, Ramaroson Andriantsitohaina, Patrice Martin, Soazig Le Lay
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) are biological vectors that can modulate the metabolism of target cells (show more...)
EV-METRIC
45% (86th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Small extracellular vesicles
Separation protocol
Separation protocol
(d)(U)C
Protein markers
EV: None
non-EV: None Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
Primary adipocytes
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
MLA-50
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
Not specified
Wash: time (min)
60
Wash: Rotor Type
MLA-50
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD9/ CD63/ Mfge8/ Flotillin2/ caveolin-1
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
Reported size (nm)
80-100
EV concentration
Yes
Particle yield
EV sercreted per adipocyte;Yes, other: 200
EM
EM-type
Transmission-EM
Image type
Close-up
|
||||||||
EV200153 | 2/6 | Homo sapiens | HTR-8/SVneo |
DG (d)(U)C Filtration |
Grace Truong | 2017 | 45% | |
Study summaryFull title
All authors
Grace Truong, Dominic Guanzon, Vyjayanthi Kinhal, Omar Elfeky, Andrew Lai, Sherri Longo, Zarin Nuzhat, Carlos Palma, Katherin Scholz-Romero, Ramkumar Menon, Ben W Mol, Gregory E Rice, Carlos Salomon
Journal
PLoS One
Abstract
Our understanding of how cells communicate has undergone a paradigm shift since the recent recogniti (show more...)
EV-METRIC
45% (86th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
1% oxygen
Focus vesicles
exosome
Separation protocol
Separation protocol
Density gradient
(Differential) (ultra)centrifugation Filtration Protein markers
EV: CD63
non-EV: None Proteomics
no
EV density (g/ml)
1.13-1.19
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HTR-8/SVneo
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Not specified
Cell count
6E8
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
Surespin 630/36
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
14.5mL
Sample volume (mL)
0.5mL
Orientation
Top-down
Rotor type
Not specified
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
Not specified
Fraction processing
Centrifugation
Pelleting: volume per fraction
Not spec
Pelleting: duration (min)
120
Pelleting: rotor type
Not specified
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Fluorescent NTA
Relevant measurements variables specified?
NA
Antibody details provided?
No
Detected EV-associated proteins
CD63
Characterization: RNA analysis
RNA analysis
Type
RNAsequencing
Database
Yes
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
108+/-15
EV concentration
Yes
|
||||||||
EV210480 | 1/4 | Homo sapiens | MDA-MB-231 |
(d)(U)C DG |
Li XJ | 2017 | 44% | |
Study summaryFull title
All authors
Li XJ, Ren ZJ, Tang JH, Yu Q
Journal
Cell Physiol Biochem
Abstract
Treatment of breast cancer remains a clinical challenge. This study aims to validate exosomal microR (show more...)
EV-METRIC
44% (84th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Density gradient Protein markers
EV: TSG101/ Alix/ CD63/ CD9
non-EV: None Proteomics
no
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MDA-MB-231
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: rotor type
SW40 Ti
Pelleting: speed (g)
110000
Wash: time (min)
70
Wash: Rotor Type
SW40 Ti
Wash: speed (g)
110000
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
5
Lowest density fraction
5%
Highest density fraction
40%
Orientation
Top-down
Rotor type
SW 40 Ti
Speed (g)
110000
Duration (min)
960
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: duration (min)
70
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
110000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD9/ CD63/ TSG101/ Alix
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR/ RNA sequencing
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
|
||||||||
EV210457 | 1/2 | Bos taurus | Primary oviduct epithelial cells | (d)(U)C | Almiñana C | 2017 | 44% | |
Study summaryFull title
All authors
Almiñana C, Corbin E, Tsikis G, Alcântara-Neto AS, Labas V, Reynaud K, Galio L, Uzbekov R, Garanina AS, Druart X, Mermillod P
Journal
Reproduction
Abstract
Successful pregnancy requires an appropriate communication between the mother and the embryo. Recent (show more...)
EV-METRIC
44% (84th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: HSPA8/ HSP70/ MYH9/ OVGP
non-EV: Grp78 Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Bos taurus
Sample Type
Cell culture supernatant
EV-producing cells
Primary oviduct epithelial cells
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Wash: time (min)
90
Wash: Rotor Type
SW 41 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
MYH9/ HSPA8/ HSP70
Not detected EV-associated proteins
OVGP
Not detected contaminants
Grp78
Proteomics database
Yes:
Characterization: Lipid analysis
No
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
30-250
|
||||||||
EV210457 | 2/2 | Bos taurus | Oviduct flushing | (d)(U)C | Almiñana C | 2017 | 44% | |
Study summaryFull title
All authors
Almiñana C, Corbin E, Tsikis G, Alcântara-Neto AS, Labas V, Reynaud K, Galio L, Uzbekov R, Garanina AS, Druart X, Mermillod P
Journal
Reproduction
Abstract
Successful pregnancy requires an appropriate communication between the mother and the embryo. Recent (show more...)
EV-METRIC
44% (50th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Oviduct flushing
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: HSPA8/ HSP70/ MYH9/ OVGP
non-EV: Grp78 Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Bos taurus
Sample Type
Oviduct flushing
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Wash: time (min)
90
Wash: Rotor Type
SW 41 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
OVGP/ MYH9/ HSPA8/ HSP70
Not detected contaminants
Grp78
Proteomics database
Yes:
Characterization: Lipid analysis
No
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
30-250
|
||||||||
EV200146 | 1/2 | Homo sapiens | Blood plasma |
"DG (d)(U)C Filtration" |
Salomon, Carlos | 2017 | 44% | |
Study summaryFull title
All authors
Carlos Salomon, Dominic Guanzon, Katherin Scholz-Romero, Sherri Longo, Paula Correa, Sebastian E Illanes, Gregory E Rice
Journal
J Clin Endocrinol Metab
Abstract
Context: There is a need to develop strategies for early prediction of patients who will develop pre (show more...)
EV-METRIC
44% (76th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Blood plasma
Sample origin
Healthy pregnant
Focus vesicles
exosome
Separation protocol
Separation protocol
"Density gradient
(Differential) (ultra)centrifugation Filtration" Protein markers
EV: "TSG101/ PLAP"
non-EV: None Proteomics
no
EV density (g/ml)
1.12-1.19
Show all info
Study aim
"Biomarker/Identification of content (omics approaches)"
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
T-8100
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
10
Wash: time (min)
120
Wash: Rotor Type
T-8100
Wash: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
14.5mL
Sample volume (mL)
0.5mL
Orientation
Top-down
Rotor type
T-8100
Speed (g)
100000
Duration (min)
1200
Fraction volume (mL)
0.05
Fraction processing
Centrifugation
Pelleting: volume per fraction
0.05
Pelleting: duration (min)
120
Pelleting: rotor type
T-8100
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Other
Name other separation method
"Density gradient
Other
Name other separation method
Filtration"
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
TSG101
ELISA
Detected EV-associated proteins
PLAP
Characterization: RNA analysis
RNA analysis
Type
RNA sequencing
Database
Yes
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
40-130nm
EM
EM-type
Transmission-EM
Image type
Close-up
|
||||||||
EV200114 | 2/4 | Homo sapiens | Blood plasma |
DG (d)(U)C |
Elfeky O | 2017 | 44% | |
Study summaryFull title
All authors
Elfeky O, Longo S, Lai A, Rice GE, Salomon C
Journal
Placenta
Abstract
Recent studies report that 35% of women are either overweight or obese at reproductive age. The plac (show more...)
EV-METRIC
44% (76th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Blood plasma
Sample origin
Healthy pregnant
Focus vesicles
exosome
Separation protocol
Separation protocol
Density gradient
(Differential) (ultra)centrifugation No extra separation steps Protein markers
EV: CD63/ PLAP/ IgG1
non-EV: None Proteomics
no
Show all info
Study aim
Function/Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
Not specified
Pelleting: speed (g)
100000
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Sample volume (mL)
0.5mL
Orientation
Top-down
Rotor type
Not specified
Speed (g)
100000
Duration (min)
1200
Fraction volume (mL)
Not specified
Fraction processing
Not specified
Other
Name other separation method
No extra separation steps
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63
Fluorescent NTA
Relevant measurements variables specified?
NA
Antibody details provided?
Yes
Detected EV-associated proteins
PLAP/ IgG1/ CD63
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Mean
Used for determining EV concentration?
Yes
NTA
Report type
Not Reported
EV concentration
Yes
Particle yield
as number of particles per milliliter of starting sample: 4.70e+7
EM
EM-type
Transmission-EM
Image type
Close-up
|
||||||||
EV170053 | 1/1 | Homo sapiens | HUVEC | (d)(U)C | Pérez-Boza J | 2017 | 44% | |
Study summaryFull title
All authors
Pérez-Boza J, Lion M, Struman I
Journal
RNA
Abstract
Exosomes are small extracellular vesicles of around 100 nm of diameter produced by most cell types. (show more...)
EV-METRIC
44% (84th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
(d)(U)C
Adj. k-factor
232.7 (pelleting) / 232.7 (washing)
Protein markers
EV: CD81/ ANXA2/ CD63/ CD9
non-EV: CytochromeC Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting, Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HUVEC
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
110000
Pelleting: adjusted k-factor
232.7
Wash: time (min)
120
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
110000
Wash: adjusted k-factor
232.7
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD9, CD63, CD81, ANXA2
Not detected contaminants
CytochromeC
Characterization: RNA analysis
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Mean
Reported size (nm)
110
|
||||||||
EV170047 | 1/8 | Homo sapiens | LNCaP | (d)(U)C | Soekmadji C | 2017 | 44% | |
Study summaryFull title
All authors
Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM, Hill MM, Nelson CC
Journal
Oncotarget
Abstract
Proliferation and maintenance of both normal and prostate cancer (PCa) cells is highly regulated by (show more...)
EV-METRIC
44% (84th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Enzalutamide
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Protein markers
EV: Alix/ TSG101/ PSA/ CD9
non-EV: GAPDH Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
LNCaP
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: speed (g)
100000
Wash: time (min)
90
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
Alix/ CD9/ TSG101
Not detected EV-associated proteins
PSA
Not detected contaminants
GAPDH
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Size range/distribution,Mode
Reported size (nm)
120
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV170047 | 3/8 | Homo sapiens | LNCaP | (d)(U)C | Soekmadji C | 2017 | 44% | |
Study summaryFull title
All authors
Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM, Hill MM, Nelson CC
Journal
Oncotarget
Abstract
Proliferation and maintenance of both normal and prostate cancer (PCa) cells is highly regulated by (show more...)
EV-METRIC
44% (84th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
DHT
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Protein markers
EV: Alix/ TSG101/ PSA/ CD9
non-EV: GAPDH Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
LNCaP
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: speed (g)
100000
Wash: time (min)
90
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
0.017
Western Blot
Detected EV-associated proteins
Alix/ CD9/ TSG101
Not detected EV-associated proteins
PSA
Not detected contaminants
GAPDH
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Size range/distribution,Mode
Reported size (nm)
150
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV170047 | 4/8 | Homo sapiens | LNCaP | (d)(U)C | Soekmadji C | 2017 | 44% | |
Study summaryFull title
All authors
Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM, Hill MM, Nelson CC
Journal
Oncotarget
Abstract
Proliferation and maintenance of both normal and prostate cancer (PCa) cells is highly regulated by (show more...)
EV-METRIC
44% (84th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Charcoal stripped serum
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Protein markers
EV: Alix/ TSG101/ PSA/ CD9
non-EV: GAPDH Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
LNCaP
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: speed (g)
100000
Wash: time (min)
90
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
0.012
Western Blot
Detected EV-associated proteins
Alix/ CD9/ TSG101
Not detected EV-associated proteins
PSA
Not detected contaminants
GAPDH
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Size range/distribution,Mode
Reported size (nm)
120
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV170047 | 5/8 | Homo sapiens | LNCaP | (d)(U)C | Soekmadji C | 2017 | 44% | |
Study summaryFull title
All authors
Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM, Hill MM, Nelson CC
Journal
Oncotarget
Abstract
Proliferation and maintenance of both normal and prostate cancer (PCa) cells is highly regulated by (show more...)
EV-METRIC
44% (84th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Protein markers
EV: Alix/ TSG101/ PSA/ CD9
non-EV: GAPDH Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
LNCaP
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: speed (g)
100000
Wash: time (min)
90
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
0.005
Western Blot
Detected EV-associated proteins
Alix/ CD9/ TSG101
Not detected EV-associated proteins
PSA
Not detected contaminants
GAPDH
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Size range/distribution,Mode
Reported size (nm)
150
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV170026 | 1/1 | Mus musculus | bone marrow-derived mesenchymal stem cells |
DC (d)(U)C Filtration |
Prakash Gangadaran | 2017 | 44% | |
Study summaryFull title
All authors
Gangadaran P, Rajendran RL, Lee HW, Kalimuthu S, Hong CM, Jeong SY, Lee SW, Lee J, Ahn BC
Journal
J Control Release
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) are potential therapies for (show more...)
EV-METRIC
44% (84th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
DC
(d)(U)C Filtration Adj. k-factor
253.9 (pelleting) / 253.9 (washing)
Protein markers
EV: Alix/ CD63
non-EV: calnexin/ cytochrome c/ GM130/ cytochromec Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
bone marrow-derived mesenchymal stem cells
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
>=18h at >= 100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
SW 28
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
253.9
Wash: time (min)
60
Wash: Rotor Type
SW 28
Wash: speed (g)
100000
Wash: adjusted k-factor
253.9
Density cushion
Density medium
Iodixanol
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
Alix, CD63
Not detected contaminants
GM130, calnexin, cytochrome c
Characterization: RNA analysis
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
135
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
|
||||||||
EV170021 | 1/2 | Homo sapiens | LIM1215 | (d)(U)C | Liem, Michael | 2017 | 44% | |
Study summaryFull title
All authors
Liem M, Ang CS, Mathivanan S
Journal
Proteomics
Abstract
Epidemiological studies suggest that diabetes and obesity increases the risk of colorectal cancer (C (show more...)
EV-METRIC
44% (84th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Insulin induced
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Adj. k-factor
253.9 (pelleting) / 89.2 (washing)
Protein markers
EV: TSG101/ TSG101,AKT,pAKT,beta-actin,FAT1,p-cadherin/ AKT/ Alix/ FAT1/ pAKT/ beta-actin/ p-cadherin
non-EV: None Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
LIM1215
EV-harvesting Medium
Serum free medium
Cell viability (%)
NA
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
SW 28
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
253.9
Wash: time (min)
60
Wash: Rotor Type
TLA-55
Wash: speed (g)
100000
Wash: adjusted k-factor
89.20
Characterization: Protein analysis
Protein Concentration Method
Densitometry (SYPRO Ruby)
Western Blot
Detected EV-associated proteins
Alix, TSG101,AKT,pAKT,beta-actin,FAT1,p-cadherin
Proteomics database
Yes
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-150
EV concentration
Yes
Particle yield
3.08E+07 particles/million cells
|
||||||||
EV170021 | 2/2 | Homo sapiens | LIM1215 | (d)(U)C | Liem, Michael | 2017 | 44% | |
Study summaryFull title
All authors
Liem M, Ang CS, Mathivanan S
Journal
Proteomics
Abstract
Epidemiological studies suggest that diabetes and obesity increases the risk of colorectal cancer (C (show more...)
EV-METRIC
44% (84th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(d)(U)C
Adj. k-factor
253.9 (pelleting) / 89.2 (washing)
Protein markers
EV: TSG101/ AKT/ Alix/ FAT1/ beta-actin/ p-cadherin/ TSG101,AKT,beta-actin,FAT1,p-cadherin
non-EV: None Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
LIM1215
EV-harvesting Medium
Serum free medium
Cell viability (%)
NA
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
SW 28
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
253.9
Wash: time (min)
60
Wash: Rotor Type
TLA-55
Wash: speed (g)
100000
Wash: adjusted k-factor
89.20
Characterization: Protein analysis
Protein Concentration Method
Densitometry (SYPRO Ruby)
Western Blot
Detected EV-associated proteins
Alix, TSG101,AKT,beta-actin,FAT1,p-cadherin
Proteomics database
Yes
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-150
EV concentration
Yes
Particle yield
1.85E+07 particles/million cells
|
||||||||
EV170003 | 1/1 | Mus musculus | mIMCD3 | (d)(U)C | Nager AR | 2017 | 44% | |
Study summaryFull title
All authors
Nager AR, Goldstein JS, Herranz-Pérez V, Portran D, Ye F, Garcia-Verdugo JM, Nachury MV
Journal
Cell
Abstract
Signaling receptors dynamically exit cilia upon activation of signaling pathways such as Hedgehog. H (show more...)
EV-METRIC
44% (84th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
GPCR signaling in BBS mutant
Focus vesicles
Ciliary Ectosome
Separation protocol
Separation protocol
(d)(U)C
Adj. k-factor
253.9 (pelleting) / 99.86 (washing)
Protein markers
EV: CD81/ Arl13B/ BiotinylatedGPCRs
non-EV: None Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
mIMCD3
EV-harvesting Medium
Serum-containing medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g Between 10,000 g and 50,000 g Between 100,000 g and 150,000 g Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
SW 28
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
253.9
Wash: time (min)
90
Wash: Rotor Type
TLS-55
Wash: speed (g)
100000
Wash: adjusted k-factor
99.86
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD81, Arl13B
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Transmission-EM/ Immune-EM
EM protein
Biotinylated GPCRs
Image type
Close-up, Wide-field
Report size (nm)
70-120
|
||||||||
51 - 100 of 830 | keyboard_arrow_leftkeyboard_arrow_right |