Search > Results

You searched for: EV250046 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV250046 1/2 Mus musculus CT2A UF
qEV original
Schweiger MW 2024 38%

Study summary

Full title
All authors
Schweiger MW, Amoozgar Z, Repiton P, Morris R, Maksoud S, Hla M, Zaniewski E, Noske DP, Haas W, Breyne K, Tannous BA
Journal
iScience
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor, presenting major challenges due to limited tr (show more...)Glioblastoma (GBM) is the most aggressive brain tumor, presenting major challenges due to limited treatment options. Standard care includes radiation therapy (RT) to curb tumor growth and alleviate symptoms, but its impact on GBM is limited. In this study, we investigated the effect of RT on immune suppression and whether extracellular vesicles (EVs) originating from GBM and taken up by the tumor microenvironment (TME) contribute to the induced therapeutic resistance. We observed that (1) ionizing radiation increases immune-suppressive markers on GBM cells, (2) macrophages exacerbate immune suppression in the TME by increasing PD-L1 in response to EVs derived from GBM cells which is further modulated by RT, and (3) RT increases CD206-positive macrophages which have the most potential in inducing a pro-oncogenic environment due to their increased uptake of tumor-derived EVs. In conclusion, RT affects GBM resistance by immuno-modulating EVs taken up by myeloid cells in the TME. (hide)
EV-METRIC
38% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Ultrafiltration
qEV original
Protein markers
EV: Alix/ CD9/ CD81
non-EV: b-actin
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
CT2A
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Commercial kit
qEV original
Other
Name other separation method
qEV original
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Alix/ CD9/ CD81
Not detected contaminants
b-actin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
EV concentration
Yes
EV250046 2/2 Mus musculus CT2A UF
qEV original
Schweiger MW 2024 38%

Study summary

Full title
All authors
Schweiger MW, Amoozgar Z, Repiton P, Morris R, Maksoud S, Hla M, Zaniewski E, Noske DP, Haas W, Breyne K, Tannous BA
Journal
iScience
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor, presenting major challenges due to limited tr (show more...)Glioblastoma (GBM) is the most aggressive brain tumor, presenting major challenges due to limited treatment options. Standard care includes radiation therapy (RT) to curb tumor growth and alleviate symptoms, but its impact on GBM is limited. In this study, we investigated the effect of RT on immune suppression and whether extracellular vesicles (EVs) originating from GBM and taken up by the tumor microenvironment (TME) contribute to the induced therapeutic resistance. We observed that (1) ionizing radiation increases immune-suppressive markers on GBM cells, (2) macrophages exacerbate immune suppression in the TME by increasing PD-L1 in response to EVs derived from GBM cells which is further modulated by RT, and (3) RT increases CD206-positive macrophages which have the most potential in inducing a pro-oncogenic environment due to their increased uptake of tumor-derived EVs. In conclusion, RT affects GBM resistance by immuno-modulating EVs taken up by myeloid cells in the TME. (hide)
EV-METRIC
38% (79th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
5Gy irradiated
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Ultrafiltration
qEV original
Protein markers
EV: Alix/ CD9/ CD81
non-EV: b-actin
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-producing cells
CT2A
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Commercial kit
qEV original
Other
Name other separation method
qEV original
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Alix/ CD9/ CD81
Not detected contaminants
b-actin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
EV concentration
Yes
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV250046
species
Mus musculus
sample type
Cell culture
cell type
CT2A
condition
Control condition
5Gy irradiated
separation protocol
Ultrafiltration/
qEV original
Ultrafiltration/
qEV original
Exp. nr.
1
2
EV-METRIC %
38
38