Search > Results

You searched for: EV240026 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV240026 1/2 Homo sapiens Human Wharton's Jelly-Mesenchymal Stromal Cells (d)(U)C Seydi H 2024 78%

Study summary

Full title
All authors
Seydi H, Nouri K, Shokouhian B, Piryaei A, Hassan M, Cordani M, Zarrabi A, Shekari F, Vosough M
Journal
Eur J Pharm Biopharm
Abstract
In spite of significant advancements in theraputic modalities for hepatocellular carcinoma (HCC), th (show more...)In spite of significant advancements in theraputic modalities for hepatocellular carcinoma (HCC), there is still a high annual mortality rate with a rising incidence. Major challenges in the HCC clinical managment are related to the development of therapy resistance, and evasion of tumor cells apoptosis which leading unsatisfactory outcomes in HCC patients. Previous investigations have shown that autophagy plays crucial role in contributing to drug resistance development in HCC. Although, miR-29a is known to counteract authophagy, increasing evidence revealed a down-regulation of miR-29a in HCC patients which correlates with poor prognosis. Beside, evidences showed that miR-29a serves as a negative regulator of autophagy in other cancers. In the current study, we aim to investigate the impact of miR-29a on the autophagy and apoptosis in HCC cells using extracellular vesicles (EVs) as a natural delivery system given their potential in the miRNA delivery both in vitro and in vivo. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
EV20K
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: CD9/ CD63/ CD81/ TSG101
non-EV: Albumin
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Human Wharton's Jelly-Mesenchymal Stromal Cells
EV-harvesting Medium
Serum-containing medium
Cell viability (%)
87
Cell count
4000000000
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: rotor type
NA-1HS
Pelleting: speed (g)
20000
Wash: volume per pellet (ml)
1
Wash: time (min)
30
Wash: Rotor Type
NA-1HS
Wash: speed (g)
20000
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
per million cells
Western Blot
Detected EV-associated proteins
CD9/ CD63/ CD81/ TSG101
Not detected contaminants
Albumin
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Mean
Reported size (nm)
332
EM
EM-type
Scanning-EM
Image type
Wide-field
Report size (nm)
250.77
EV240026 2/2 Homo sapiens Human Wharton's Jelly-Mesenchymal Stromal Cells (d)(U)C Seydi H 2024 78%

Study summary

Full title
All authors
Seydi H, Nouri K, Shokouhian B, Piryaei A, Hassan M, Cordani M, Zarrabi A, Shekari F, Vosough M
Journal
Eur J Pharm Biopharm
Abstract
In spite of significant advancements in theraputic modalities for hepatocellular carcinoma (HCC), th (show more...)In spite of significant advancements in theraputic modalities for hepatocellular carcinoma (HCC), there is still a high annual mortality rate with a rising incidence. Major challenges in the HCC clinical managment are related to the development of therapy resistance, and evasion of tumor cells apoptosis which leading unsatisfactory outcomes in HCC patients. Previous investigations have shown that autophagy plays crucial role in contributing to drug resistance development in HCC. Although, miR-29a is known to counteract authophagy, increasing evidence revealed a down-regulation of miR-29a in HCC patients which correlates with poor prognosis. Beside, evidences showed that miR-29a serves as a negative regulator of autophagy in other cancers. In the current study, we aim to investigate the impact of miR-29a on the autophagy and apoptosis in HCC cells using extracellular vesicles (EVs) as a natural delivery system given their potential in the miRNA delivery both in vitro and in vivo. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
EV110K
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: CD9/ CD63/ CD81/ TSG101
non-EV: Albumin
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Human Wharton's Jelly-Mesenchymal Stromal Cells
EV-harvesting Medium
Serum-containing medium
Cell viability (%)
87
Cell count
4000000000
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
110000
Wash: volume per pellet (ml)
1
Wash: time (min)
120
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
110000
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
per million cells
Western Blot
Detected EV-associated proteins
CD9/ CD63/ CD81/ TSG101
Not detected contaminants
Albumin
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Mean
Reported size (nm)
239
EM
EM-type
Scanning-EM
Image type
Wide-field
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV240026
species
Homo sapiens
sample type
Cell culture
cell type
Human
Wharton's
Jelly-Mesenchymal Stromal
Cells
condition
Control condition
separation protocol
dUC
dUC
vesicle related term
EV20K
EV110K
Exp. nr.
1
2
EV-METRIC %
78
78