Search > Results

You searched for: EV230764 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV230764 1/1 Porphyromonas gingivalis ATCC 33277 (d)(U)C
Filtration
Yang WW 2016 33%

Study summary

Full title
All authors
Yang WW, Guo B, Jia WY, Jia Y
Journal
FEBS Open Bio
Abstract
The outer membrane vesicle (OMV) derived from plays an essential role in causing inflammation which (show more...)The outer membrane vesicle (OMV) derived from plays an essential role in causing inflammation which, in turn, plays an important part in the pathogenesis of cardiovascular diseases such as atherosclerosis and thromboembolism. However, the contribution of oral bacteria to vascular calcification is yet to be determined. Here, we evaluated the effect of OMV on vascular smooth muscle cell (VSMC) calcification both and . We established a reproducible OMV-induced differentiation and calcification model of VSMCs . The results indicate that OMV promotes VSMC calcification in a concentration-dependent manner, modulating the expression of bone markers and SMC markers both on genes and proteins that are important for osteoblastic differentiation and mineralization of VSMCs. We also showed that the key osteogenic transcription factor, runt-related transcription factor 2 (Runx2), which is affected by upstream extracellular-regulated kinase (ERK) signaling, is a key regulator of OMV-induced VSMC differentiation and calcification. Taken together, our research demonstrates that Runx2 is a crucial component of OMV-induced calcification of VSMCs, and ERK signaling plays a vital role in mediating Runx2 up-regulation and VSMC calcification. (hide)
EV-METRIC
33% (74th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
outer membrane vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Porphyromonas gingivalis
Sample Type
Cell culture supernatant
EV-producing cells
ATCC 33277
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
180
Pelleting: rotor type
Type 40 Ti
Pelleting: speed (g)
150000
Wash: volume per pellet (ml)
not specified
Wash: time (min)
120
Wash: speed (g)
150000
Filtration steps
0.2 or 0.22 µm
Characterization: Protein analysis
None
Protein Concentration Method
Bradford
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Transmission-EM
Image type
Close-up
Report size (nm)
80-150
1 - 1 of 1
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV230764
species
Porphyromonas
gingivalis
sample type
Cell culture
cell type
ATCC 33277
condition
Control condition
separation protocol
dUC/ Filtration
Exp. nr.
1
EV-METRIC %
33