Search > Results

You searched for: EV230732 (EV-TRACK ID)

Showing 1 - 4 of 4

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV230732 1/4 Salmonella enterica serovar Typhimurium UK-1 (d)(U)C
DG
Filtration
Liu Q 2016 29%

Study summary

Full title
All authors
Liu Q, Liu Q, Yi J, Liang K, Hu B, Zhang X, Curtiss R, Kong Q
Journal
Sci Rep
Abstract
Outer membrane vesicles (OMVs) isolated from Salmonella Typhimurium are potentially useful for devel (show more...)Outer membrane vesicles (OMVs) isolated from Salmonella Typhimurium are potentially useful for developing subunit vaccines because of high immunogenicity and protective efficacy. However, flagella might remain in OMV pellets following OMV purification, resulting in non-essential immune responses and counteraction of bacterial protective immune responses when developing a vaccine against infection of multiple serotypes Salmonella. In this study, a flagellin-deficient S. Typhimurium mutant was constructed. Lipopolysaccharide profiles, protein profiles and cryo-electron microscopy revealed that there were no significant differences between the wild-type and mutant OMVs, with the exception of a large amount of flagellin in the wild-type OMVs. Neither the wild-type OMVs nor the non-flagellin OMVs were toxic to macrophages. Mice immunized with the non-flagellin OMVs produced high concentrations of IgG. The non-flagellin OMVs elicited strong mucosal antibody responses in mice when administered via the intranasal route in addition to provoking higher cross-reactive immune responses against OMPs isolated from S. Choleraesuis and S. Enteritidis. Both intranasal and intraperitoneal immunization with the non-flagellin OMVs provided efficient protection against heterologous S. Choleraesuis and S. Enteritidis challenge. Our results indicate that the flagellin-deficient OMVs may represent a new vaccine platform that could be exploited to facilitate the production of a broadly protective vaccine. (hide)
EV-METRIC
29% (67th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
outer membrane vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Salmonella enterica serovar Typhimurium
Sample Type
Cell culture supernatant
EV-producing cells
UK-1
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: speed (g)
40000
Density gradient
Type
Discontinuous
Lowest density fraction
20%
Highest density fraction
45%
Sample volume (mL)
not spec
Speed (g)
150000
Duration (min)
overnight
Fraction processing
Centrifugation
Pelleting: speed (g)
40000
Pelleting: adjusted k-factor
TDB
Filtration steps
Between 0.22 and 0.45 µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Proteomics database
No
Characterization: Lipid analysis
No
EV230732 4/4 Salmonella enterica serovar Typhimurium UK-1 (d)(U)C
DG
Filtration
Liu Q 2016 29%

Study summary

Full title
All authors
Liu Q, Liu Q, Yi J, Liang K, Hu B, Zhang X, Curtiss R, Kong Q
Journal
Sci Rep
Abstract
Outer membrane vesicles (OMVs) isolated from Salmonella Typhimurium are potentially useful for devel (show more...)Outer membrane vesicles (OMVs) isolated from Salmonella Typhimurium are potentially useful for developing subunit vaccines because of high immunogenicity and protective efficacy. However, flagella might remain in OMV pellets following OMV purification, resulting in non-essential immune responses and counteraction of bacterial protective immune responses when developing a vaccine against infection of multiple serotypes Salmonella. In this study, a flagellin-deficient S. Typhimurium mutant was constructed. Lipopolysaccharide profiles, protein profiles and cryo-electron microscopy revealed that there were no significant differences between the wild-type and mutant OMVs, with the exception of a large amount of flagellin in the wild-type OMVs. Neither the wild-type OMVs nor the non-flagellin OMVs were toxic to macrophages. Mice immunized with the non-flagellin OMVs produced high concentrations of IgG. The non-flagellin OMVs elicited strong mucosal antibody responses in mice when administered via the intranasal route in addition to provoking higher cross-reactive immune responses against OMPs isolated from S. Choleraesuis and S. Enteritidis. Both intranasal and intraperitoneal immunization with the non-flagellin OMVs provided efficient protection against heterologous S. Choleraesuis and S. Enteritidis challenge. Our results indicate that the flagellin-deficient OMVs may represent a new vaccine platform that could be exploited to facilitate the production of a broadly protective vaccine. (hide)
EV-METRIC
29% (67th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
K083 (fliC12 fljB15 mutant)
Focus vesicles
outer membrane vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Salmonella enterica serovar Typhimurium
Sample Type
Cell culture supernatant
EV-producing cells
UK-1
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: speed (g)
40000
Density gradient
Type
Discontinuous
Lowest density fraction
20%
Highest density fraction
45%
Speed (g)
150000
Duration (min)
overnight
Fraction processing
Centrifugation
Pelleting: speed (g)
40000
Pelleting: adjusted k-factor
TDB
Filtration steps
Between 0.22 and 0.45 µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Cryo-EM
Image type
Close-up
Report size (nm)
not specified
EV230732 2/4 Salmonella enterica serovar Typhimurium UK-1 (d)(U)C
DG
Filtration
Liu Q 2016 14%

Study summary

Full title
All authors
Liu Q, Liu Q, Yi J, Liang K, Hu B, Zhang X, Curtiss R, Kong Q
Journal
Sci Rep
Abstract
Outer membrane vesicles (OMVs) isolated from Salmonella Typhimurium are potentially useful for devel (show more...)Outer membrane vesicles (OMVs) isolated from Salmonella Typhimurium are potentially useful for developing subunit vaccines because of high immunogenicity and protective efficacy. However, flagella might remain in OMV pellets following OMV purification, resulting in non-essential immune responses and counteraction of bacterial protective immune responses when developing a vaccine against infection of multiple serotypes Salmonella. In this study, a flagellin-deficient S. Typhimurium mutant was constructed. Lipopolysaccharide profiles, protein profiles and cryo-electron microscopy revealed that there were no significant differences between the wild-type and mutant OMVs, with the exception of a large amount of flagellin in the wild-type OMVs. Neither the wild-type OMVs nor the non-flagellin OMVs were toxic to macrophages. Mice immunized with the non-flagellin OMVs produced high concentrations of IgG. The non-flagellin OMVs elicited strong mucosal antibody responses in mice when administered via the intranasal route in addition to provoking higher cross-reactive immune responses against OMPs isolated from S. Choleraesuis and S. Enteritidis. Both intranasal and intraperitoneal immunization with the non-flagellin OMVs provided efficient protection against heterologous S. Choleraesuis and S. Enteritidis challenge. Our results indicate that the flagellin-deficient OMVs may represent a new vaccine platform that could be exploited to facilitate the production of a broadly protective vaccine. (hide)
EV-METRIC
14% (43rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
K081 (fliC12 mutant)
Focus vesicles
outer membrane vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Salmonella enterica serovar Typhimurium
Sample Type
Cell culture supernatant
EV-producing cells
UK-1
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: speed (g)
40000
Density gradient
Type
Discontinuous
Lowest density fraction
20%
Highest density fraction
45%
Speed (g)
150000
Duration (min)
overnight
Fraction processing
Centrifugation
Pelleting: speed (g)
40000
Pelleting: adjusted k-factor
TDB
Filtration steps
Between 0.22 and 0.45 µm
Characterization: Protein analysis
None
Protein Concentration Method
BCA
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV230732 3/4 Salmonella enterica serovar Typhimurium UK-1 (d)(U)C
DG
Filtration
Liu Q 2016 14%

Study summary

Full title
All authors
Liu Q, Liu Q, Yi J, Liang K, Hu B, Zhang X, Curtiss R, Kong Q
Journal
Sci Rep
Abstract
Outer membrane vesicles (OMVs) isolated from Salmonella Typhimurium are potentially useful for devel (show more...)Outer membrane vesicles (OMVs) isolated from Salmonella Typhimurium are potentially useful for developing subunit vaccines because of high immunogenicity and protective efficacy. However, flagella might remain in OMV pellets following OMV purification, resulting in non-essential immune responses and counteraction of bacterial protective immune responses when developing a vaccine against infection of multiple serotypes Salmonella. In this study, a flagellin-deficient S. Typhimurium mutant was constructed. Lipopolysaccharide profiles, protein profiles and cryo-electron microscopy revealed that there were no significant differences between the wild-type and mutant OMVs, with the exception of a large amount of flagellin in the wild-type OMVs. Neither the wild-type OMVs nor the non-flagellin OMVs were toxic to macrophages. Mice immunized with the non-flagellin OMVs produced high concentrations of IgG. The non-flagellin OMVs elicited strong mucosal antibody responses in mice when administered via the intranasal route in addition to provoking higher cross-reactive immune responses against OMPs isolated from S. Choleraesuis and S. Enteritidis. Both intranasal and intraperitoneal immunization with the non-flagellin OMVs provided efficient protection against heterologous S. Choleraesuis and S. Enteritidis challenge. Our results indicate that the flagellin-deficient OMVs may represent a new vaccine platform that could be exploited to facilitate the production of a broadly protective vaccine. (hide)
EV-METRIC
14% (43rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
K082 (fljB15 mutant)
Focus vesicles
outer membrane vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Salmonella enterica serovar Typhimurium
Sample Type
Cell culture supernatant
EV-producing cells
UK-1
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: speed (g)
40000
Density gradient
Type
Discontinuous
Lowest density fraction
20%
Highest density fraction
45%
Speed (g)
150000
Duration (min)
overnight
Fraction processing
Centrifugation
Pelleting: speed (g)
40000
Pelleting: adjusted k-factor
TDB
Filtration steps
Between 0.22 and 0.45 µm
Characterization: Protein analysis
None
Protein Concentration Method
BCA
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
1 - 4 of 4
this entry contains some non-printable text. Please contact the admin. 'ascii' codec can't encode character '\xa0' in position 314: ordinal not in range(128)
EV-TRACK ID
EV230732
species
Salmonella
enterica serovar Typhimurium
sample type
Cell culture
cell type
UK-1