Search > Results

You searched for: EV230700 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV230700 1/2 Vibrio mediterranei AK1 (d)(U)C
DG
Filtration
UF
Li J 2016 57%

Study summary

Full title
All authors
Li J, Azam F, Zhang S
Journal
Environ Microbiol
Abstract
Production and release of outer-membrane vesicles (OMVs) is known in many bacteria including human p (show more...)Production and release of outer-membrane vesicles (OMVs) is known in many bacteria including human pathogens. To date, OMV release has not been reported in coral-associated bacteria. We discovered that Vibrio shilonii AK1, a well-studied coral pathogen, produces OMVs in culture. Transmission electron microscopy showed that V. shilonii cultures release two types of vesicles, with a single membrane or two membranes, as well as vesicle chain-like morphotype in purified vesicle fraction. No significant difference was observed in the amount of OMVs produced by cultures grown at 20°C or 30°C. OMV proteomic analysis, never before done in a coral isolate, showed that a large number of low abundance proteins were exclusively detected in OMVs released by 20°C cultures. Further, the OMVs purified from AK1 cultures grown at both 20°C and 30°C carry N-acylhomoserine lactone quorum sensing signals, as well as alkaline phosphatase, lipase and chitinase activities. Our results show that V. shilonii OMVs are conduits of signalling molecules, active enzymes and other proteins to its environment. These findings suggest important ecophysiological roles of OMVs in coral reef environment. We discuss the importance of OMV release for V. shilonii fitness and propose several hypotheses as well as a conceptual model. (hide)
EV-METRIC
57% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Grown at 20°C
Focus vesicles
outer membrane vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Filtration
Ultrafiltration
Protein markers
EV: None
non-EV: None
Proteomics
yes
EV density (g/ml)
not specified
Show all info
Study aim
Function
Sample
Species
Vibrio mediterranei
Sample Type
Cell culture supernatant
EV-producing cells
AK1
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
P27A
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
9
Lowest density fraction
0%
Highest density fraction
45%
Total gradient volume, incl. sample (mL)
not specified
Sample volume (mL)
1.3
Orientation
Bottom-up
Speed (g)
111132
Duration (min)
360
Fraction volume (mL)
not specified
Fraction processing
Centrifugation
Pelleting: volume per fraction
not spec
Pelleting: rotor type
P90AT
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
TDB
Filtration steps
0.2 or 0.22 µm
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Polyethersulfone (PES)
Characterization: Protein analysis
Protein Concentration Method
Bradford
Protein Yield (µg)
per 4 l of starting sample
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
20-120
EV230700 2/2 Vibrio mediterranei AK1 (d)(U)C
DG
Filtration
UF
Li J 2016 57%

Study summary

Full title
All authors
Li J, Azam F, Zhang S
Journal
Environ Microbiol
Abstract
Production and release of outer-membrane vesicles (OMVs) is known in many bacteria including human p (show more...)Production and release of outer-membrane vesicles (OMVs) is known in many bacteria including human pathogens. To date, OMV release has not been reported in coral-associated bacteria. We discovered that Vibrio shilonii AK1, a well-studied coral pathogen, produces OMVs in culture. Transmission electron microscopy showed that V. shilonii cultures release two types of vesicles, with a single membrane or two membranes, as well as vesicle chain-like morphotype in purified vesicle fraction. No significant difference was observed in the amount of OMVs produced by cultures grown at 20°C or 30°C. OMV proteomic analysis, never before done in a coral isolate, showed that a large number of low abundance proteins were exclusively detected in OMVs released by 20°C cultures. Further, the OMVs purified from AK1 cultures grown at both 20°C and 30°C carry N-acylhomoserine lactone quorum sensing signals, as well as alkaline phosphatase, lipase and chitinase activities. Our results show that V. shilonii OMVs are conduits of signalling molecules, active enzymes and other proteins to its environment. These findings suggest important ecophysiological roles of OMVs in coral reef environment. We discuss the importance of OMV release for V. shilonii fitness and propose several hypotheses as well as a conceptual model. (hide)
EV-METRIC
57% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Grown at 30°C
Focus vesicles
outer membrane vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Filtration
Ultrafiltration
Protein markers
EV: None
non-EV: None
Proteomics
yes
EV density (g/ml)
not specified
Show all info
Study aim
Function
Sample
Species
Vibrio mediterranei
Sample Type
Cell culture supernatant
EV-producing cells
AK1
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
P27A
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
9
Lowest density fraction
0%
Highest density fraction
45%
Total gradient volume, incl. sample (mL)
not specified
Sample volume (mL)
1.3
Orientation
Bottom-up
Speed (g)
111132
Duration (min)
360
Fraction volume (mL)
not specified
Fraction processing
Centrifugation
Pelleting: volume per fraction
not spec
Pelleting: rotor type
P90AT
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
TDB
Filtration steps
0.2 or 0.22 µm
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Polyethersulfone (PES)
Characterization: Protein analysis
Protein Concentration Method
Bradford
Protein Yield (µg)
per 4 l of starting sample
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
20-120
1 - 2 of 2
this entry contains some non-printable text. Please contact the admin. 'ascii' codec can't encode character '\xb0' in position 195: ordinal not in range(128)
EV-TRACK ID
EV230700
species
Vibrio mediterranei
sample type
Cell culture
cell type
AK1