Search > Results

You searched for: EV230629 (EV-TRACK ID)

Showing 1 - 9 of 9

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV230629 2/9 Haemophilus influenzae Rd KW20 (d)(U)C
DG
Filtration
Roier S 2015 56%

Study summary

Full title
All authors
Roier S, Blume T, Klug L, Wagner GE, Elhenawy W, Zangger K, Prassl R, Reidl J, Daum G, Feldman MF, Schild S
Journal
Int J Med Microbiol
Abstract
Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released fro (show more...)Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released from the outer membrane (OM) of Gram-negative bacteria. They have been proposed to possess several biological roles in pathogenesis and interbacterial interactions. Additionally, OMVs have been suggested as potential vaccine candidates against infections caused by pathogenic bacteria like Haemophilus influenzae, a human pathogen of the respiratory tract. Unfortunately, there is still a lack of fundamental knowledge regarding OMV biogenesis, protein sorting into OMVs, OMV size and quantity, as well as OMV composition in H. influenzae. Thus, this study comprehensively characterized and compared OMVs and OMs derived from heterologous encapsulated as well as nonencapsulated H. influenzae strains. Semiquantitative immunoblot analysis revealed that certain OM proteins are enriched or excluded in OMVs suggesting the presence of regulated protein sorting mechanisms into OMVs as well as interconnected OMV biogenesis mechanisms in H. influenzae. Nanoparticle tracking analysis, transmission electron microscopy, as well as protein and lipooligosaccharide quantifications demonstrated that heterologous H. influenzae strains differ in their OMV size and quantity. Lipidomic analyses identified palmitic acid as the most abundant fatty acid, while phosphatidylethanolamine was found to be the most dominant phospholipid present in OMVs and the OM of all strains tested. Proteomic analysis confirmed that H. influenzae OMVs contain vaccine candidate proteins as well as important virulence factors. These findings contribute to the understanding of OMV biogenesis as well as biological roles of OMVs and, in addition, may be important for the future development of OMV based vaccines against H. influenzae infections. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Pure outer membrane vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Filtration
Protein markers
EV: None
non-EV: RpoA
Proteomics
yes
Show all info
Study aim
Biogenesis/cargo sorting/Identification of content (omics approaches)/ vaccine development
Sample
Species
Haemophilus influenzae
Sample Type
Cell culture supernatant
EV-producing cells
Rd KW20
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
240
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
144000
Filtration steps
0.45µm > x > 0.22µm, 0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Protein Yield (µg)
per mL/OD490
Western Blot
Not detected contaminants
RpoA
Proteomics database
No
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
EM
EM-type
Transmission­-EM
Image type
Wide-field
EV230629 4/9 Haemophilus influenzae Hib strain Eagan (d)(U)C
DG
Filtration
Roier S 2015 56%

Study summary

Full title
All authors
Roier S, Blume T, Klug L, Wagner GE, Elhenawy W, Zangger K, Prassl R, Reidl J, Daum G, Feldman MF, Schild S
Journal
Int J Med Microbiol
Abstract
Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released fro (show more...)Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released from the outer membrane (OM) of Gram-negative bacteria. They have been proposed to possess several biological roles in pathogenesis and interbacterial interactions. Additionally, OMVs have been suggested as potential vaccine candidates against infections caused by pathogenic bacteria like Haemophilus influenzae, a human pathogen of the respiratory tract. Unfortunately, there is still a lack of fundamental knowledge regarding OMV biogenesis, protein sorting into OMVs, OMV size and quantity, as well as OMV composition in H. influenzae. Thus, this study comprehensively characterized and compared OMVs and OMs derived from heterologous encapsulated as well as nonencapsulated H. influenzae strains. Semiquantitative immunoblot analysis revealed that certain OM proteins are enriched or excluded in OMVs suggesting the presence of regulated protein sorting mechanisms into OMVs as well as interconnected OMV biogenesis mechanisms in H. influenzae. Nanoparticle tracking analysis, transmission electron microscopy, as well as protein and lipooligosaccharide quantifications demonstrated that heterologous H. influenzae strains differ in their OMV size and quantity. Lipidomic analyses identified palmitic acid as the most abundant fatty acid, while phosphatidylethanolamine was found to be the most dominant phospholipid present in OMVs and the OM of all strains tested. Proteomic analysis confirmed that H. influenzae OMVs contain vaccine candidate proteins as well as important virulence factors. These findings contribute to the understanding of OMV biogenesis as well as biological roles of OMVs and, in addition, may be important for the future development of OMV based vaccines against H. influenzae infections. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Pure outer membrane vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Filtration
Protein markers
EV: None
non-EV: RpoA
Proteomics
yes
Show all info
Study aim
Biogenesis/cargo sorting/Identification of content (omics approaches)/ vaccine development
Sample
Species
Haemophilus influenzae
Sample Type
Cell culture supernatant
EV-producing cells
Hib strain Eagan
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
240
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
144000
Filtration steps
0.45µm > x > 0.22µm, 0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Protein Yield (µg)
per mL/OD490
Western Blot
Not detected contaminants
RpoA
Proteomics database
No
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
EM
EM-type
Transmission­-EM
Image type
Wide-field
EV230629 6/9 Haemophilus influenzae NTHi 2019-R (d)(U)C
DG
Filtration
Roier S 2015 56%

Study summary

Full title
All authors
Roier S, Blume T, Klug L, Wagner GE, Elhenawy W, Zangger K, Prassl R, Reidl J, Daum G, Feldman MF, Schild S
Journal
Int J Med Microbiol
Abstract
Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released fro (show more...)Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released from the outer membrane (OM) of Gram-negative bacteria. They have been proposed to possess several biological roles in pathogenesis and interbacterial interactions. Additionally, OMVs have been suggested as potential vaccine candidates against infections caused by pathogenic bacteria like Haemophilus influenzae, a human pathogen of the respiratory tract. Unfortunately, there is still a lack of fundamental knowledge regarding OMV biogenesis, protein sorting into OMVs, OMV size and quantity, as well as OMV composition in H. influenzae. Thus, this study comprehensively characterized and compared OMVs and OMs derived from heterologous encapsulated as well as nonencapsulated H. influenzae strains. Semiquantitative immunoblot analysis revealed that certain OM proteins are enriched or excluded in OMVs suggesting the presence of regulated protein sorting mechanisms into OMVs as well as interconnected OMV biogenesis mechanisms in H. influenzae. Nanoparticle tracking analysis, transmission electron microscopy, as well as protein and lipooligosaccharide quantifications demonstrated that heterologous H. influenzae strains differ in their OMV size and quantity. Lipidomic analyses identified palmitic acid as the most abundant fatty acid, while phosphatidylethanolamine was found to be the most dominant phospholipid present in OMVs and the OM of all strains tested. Proteomic analysis confirmed that H. influenzae OMVs contain vaccine candidate proteins as well as important virulence factors. These findings contribute to the understanding of OMV biogenesis as well as biological roles of OMVs and, in addition, may be important for the future development of OMV based vaccines against H. influenzae infections. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Pure outer membrane vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Filtration
Protein markers
EV: None
non-EV: RpoA
Proteomics
yes
Show all info
Study aim
Biogenesis/cargo sorting/Identification of content (omics approaches)/ vaccine development
Sample
Species
Haemophilus influenzae
Sample Type
Cell culture supernatant
EV-producing cells
NTHi 2019-R
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
240
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
144000
Filtration steps
0.45µm > x > 0.22µm, 0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Protein Yield (µg)
per mL/OD490
Western Blot
Not detected contaminants
RpoA
Proteomics database
No
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
EM
EM-type
Transmission­-EM
Image type
Wide-field
EV230629 1/9 Haemophilus influenzae Rd KW20 (d)(U)C
Filtration
Roier S 2015 33%

Study summary

Full title
All authors
Roier S, Blume T, Klug L, Wagner GE, Elhenawy W, Zangger K, Prassl R, Reidl J, Daum G, Feldman MF, Schild S
Journal
Int J Med Microbiol
Abstract
Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released fro (show more...)Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released from the outer membrane (OM) of Gram-negative bacteria. They have been proposed to possess several biological roles in pathogenesis and interbacterial interactions. Additionally, OMVs have been suggested as potential vaccine candidates against infections caused by pathogenic bacteria like Haemophilus influenzae, a human pathogen of the respiratory tract. Unfortunately, there is still a lack of fundamental knowledge regarding OMV biogenesis, protein sorting into OMVs, OMV size and quantity, as well as OMV composition in H. influenzae. Thus, this study comprehensively characterized and compared OMVs and OMs derived from heterologous encapsulated as well as nonencapsulated H. influenzae strains. Semiquantitative immunoblot analysis revealed that certain OM proteins are enriched or excluded in OMVs suggesting the presence of regulated protein sorting mechanisms into OMVs as well as interconnected OMV biogenesis mechanisms in H. influenzae. Nanoparticle tracking analysis, transmission electron microscopy, as well as protein and lipooligosaccharide quantifications demonstrated that heterologous H. influenzae strains differ in their OMV size and quantity. Lipidomic analyses identified palmitic acid as the most abundant fatty acid, while phosphatidylethanolamine was found to be the most dominant phospholipid present in OMVs and the OM of all strains tested. Proteomic analysis confirmed that H. influenzae OMVs contain vaccine candidate proteins as well as important virulence factors. These findings contribute to the understanding of OMV biogenesis as well as biological roles of OMVs and, in addition, may be important for the future development of OMV based vaccines against H. influenzae infections. (hide)
EV-METRIC
33% (74th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Outer membrane vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: None
non-EV: RpoA
Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting/Identification of content (omics approaches)/ vaccine development
Sample
Species
Haemophilus influenzae
Sample Type
Cell culture supernatant
EV-producing cells
Rd KW20
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
240
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
144000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
8
Lowest density fraction
20%
Highest density fraction
50%
Total gradient volume, incl. sample (mL)
9.8 + sample
Sample volume (mL)
not spec
Orientation
top-down
Speed (g)
150000
Duration (min)
1020
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
not spec
Pelleting: duration (min)
240
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
144000
Filtration steps
0.45µm > x > 0.22µm, 0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Bradford
Protein Yield (µg)
per mL/OD490
Western Blot
Not detected contaminants
RpoA
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
89
EV230629 3/9 Haemophilus influenzae Hib strain Eagan (d)(U)C
Filtration
Roier S 2015 33%

Study summary

Full title
All authors
Roier S, Blume T, Klug L, Wagner GE, Elhenawy W, Zangger K, Prassl R, Reidl J, Daum G, Feldman MF, Schild S
Journal
Int J Med Microbiol
Abstract
Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released fro (show more...)Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released from the outer membrane (OM) of Gram-negative bacteria. They have been proposed to possess several biological roles in pathogenesis and interbacterial interactions. Additionally, OMVs have been suggested as potential vaccine candidates against infections caused by pathogenic bacteria like Haemophilus influenzae, a human pathogen of the respiratory tract. Unfortunately, there is still a lack of fundamental knowledge regarding OMV biogenesis, protein sorting into OMVs, OMV size and quantity, as well as OMV composition in H. influenzae. Thus, this study comprehensively characterized and compared OMVs and OMs derived from heterologous encapsulated as well as nonencapsulated H. influenzae strains. Semiquantitative immunoblot analysis revealed that certain OM proteins are enriched or excluded in OMVs suggesting the presence of regulated protein sorting mechanisms into OMVs as well as interconnected OMV biogenesis mechanisms in H. influenzae. Nanoparticle tracking analysis, transmission electron microscopy, as well as protein and lipooligosaccharide quantifications demonstrated that heterologous H. influenzae strains differ in their OMV size and quantity. Lipidomic analyses identified palmitic acid as the most abundant fatty acid, while phosphatidylethanolamine was found to be the most dominant phospholipid present in OMVs and the OM of all strains tested. Proteomic analysis confirmed that H. influenzae OMVs contain vaccine candidate proteins as well as important virulence factors. These findings contribute to the understanding of OMV biogenesis as well as biological roles of OMVs and, in addition, may be important for the future development of OMV based vaccines against H. influenzae infections. (hide)
EV-METRIC
33% (74th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Outer membrane vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: None
non-EV: RpoA
Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting/Identification of content (omics approaches)/ vaccine development
Sample
Species
Haemophilus influenzae
Sample Type
Cell culture supernatant
EV-producing cells
Hib strain Eagan
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
240
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
144000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
8
Lowest density fraction
20%
Highest density fraction
50%
Total gradient volume, incl. sample (mL)
9.8 + sample
Sample volume (mL)
not spec
Orientation
top-down
Speed (g)
150000
Duration (min)
1020
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
not spec
Pelleting: duration (min)
240
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
144000
Filtration steps
0.45µm > x > 0.22µm, 0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Bradford
Protein Yield (µg)
per mL/OD490
Western Blot
Not detected contaminants
RpoA
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
152
EV230629 5/9 Haemophilus influenzae NTHi 2019-R (d)(U)C
Filtration
Roier S 2015 33%

Study summary

Full title
All authors
Roier S, Blume T, Klug L, Wagner GE, Elhenawy W, Zangger K, Prassl R, Reidl J, Daum G, Feldman MF, Schild S
Journal
Int J Med Microbiol
Abstract
Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released fro (show more...)Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released from the outer membrane (OM) of Gram-negative bacteria. They have been proposed to possess several biological roles in pathogenesis and interbacterial interactions. Additionally, OMVs have been suggested as potential vaccine candidates against infections caused by pathogenic bacteria like Haemophilus influenzae, a human pathogen of the respiratory tract. Unfortunately, there is still a lack of fundamental knowledge regarding OMV biogenesis, protein sorting into OMVs, OMV size and quantity, as well as OMV composition in H. influenzae. Thus, this study comprehensively characterized and compared OMVs and OMs derived from heterologous encapsulated as well as nonencapsulated H. influenzae strains. Semiquantitative immunoblot analysis revealed that certain OM proteins are enriched or excluded in OMVs suggesting the presence of regulated protein sorting mechanisms into OMVs as well as interconnected OMV biogenesis mechanisms in H. influenzae. Nanoparticle tracking analysis, transmission electron microscopy, as well as protein and lipooligosaccharide quantifications demonstrated that heterologous H. influenzae strains differ in their OMV size and quantity. Lipidomic analyses identified palmitic acid as the most abundant fatty acid, while phosphatidylethanolamine was found to be the most dominant phospholipid present in OMVs and the OM of all strains tested. Proteomic analysis confirmed that H. influenzae OMVs contain vaccine candidate proteins as well as important virulence factors. These findings contribute to the understanding of OMV biogenesis as well as biological roles of OMVs and, in addition, may be important for the future development of OMV based vaccines against H. influenzae infections. (hide)
EV-METRIC
33% (74th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Outer membrane vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: None
non-EV: RpoA
Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting/Identification of content (omics approaches)/ vaccine development
Sample
Species
Haemophilus influenzae
Sample Type
Cell culture supernatant
EV-producing cells
NTHi 2019-R
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
240
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
144000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
8
Lowest density fraction
20%
Highest density fraction
50%
Total gradient volume, incl. sample (mL)
9.8 + sample
Sample volume (mL)
not spec
Orientation
top-down
Speed (g)
150000
Duration (min)
1020
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
not spec
Pelleting: duration (min)
240
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
144000
Filtration steps
0.45µm > x > 0.22µm, 0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Bradford
Protein Yield (µg)
per mL/OD490
Western Blot
Not detected contaminants
RpoA
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
82
EV230629 7/9 Haemophilus influenzae NTHi 1479-R (d)(U)C
Filtration
Roier S 2015 14%

Study summary

Full title
All authors
Roier S, Blume T, Klug L, Wagner GE, Elhenawy W, Zangger K, Prassl R, Reidl J, Daum G, Feldman MF, Schild S
Journal
Int J Med Microbiol
Abstract
Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released fro (show more...)Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released from the outer membrane (OM) of Gram-negative bacteria. They have been proposed to possess several biological roles in pathogenesis and interbacterial interactions. Additionally, OMVs have been suggested as potential vaccine candidates against infections caused by pathogenic bacteria like Haemophilus influenzae, a human pathogen of the respiratory tract. Unfortunately, there is still a lack of fundamental knowledge regarding OMV biogenesis, protein sorting into OMVs, OMV size and quantity, as well as OMV composition in H. influenzae. Thus, this study comprehensively characterized and compared OMVs and OMs derived from heterologous encapsulated as well as nonencapsulated H. influenzae strains. Semiquantitative immunoblot analysis revealed that certain OM proteins are enriched or excluded in OMVs suggesting the presence of regulated protein sorting mechanisms into OMVs as well as interconnected OMV biogenesis mechanisms in H. influenzae. Nanoparticle tracking analysis, transmission electron microscopy, as well as protein and lipooligosaccharide quantifications demonstrated that heterologous H. influenzae strains differ in their OMV size and quantity. Lipidomic analyses identified palmitic acid as the most abundant fatty acid, while phosphatidylethanolamine was found to be the most dominant phospholipid present in OMVs and the OM of all strains tested. Proteomic analysis confirmed that H. influenzae OMVs contain vaccine candidate proteins as well as important virulence factors. These findings contribute to the understanding of OMV biogenesis as well as biological roles of OMVs and, in addition, may be important for the future development of OMV based vaccines against H. influenzae infections. (hide)
EV-METRIC
14% (44th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Outer membrane vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting/Identification of content (omics approaches)/ vaccine development
Sample
Species
Haemophilus influenzae
Sample Type
Cell culture supernatant
EV-producing cells
NTHi 1479-R
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
240
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
144000
Filtration steps
0.45µm > x > 0.22µm, 0.22µm or 0.2µm
Characterization: Protein analysis
None
Protein Concentration Method
Bradford
Protein Yield (µg)
per mL/OD490
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
99
EV230629 8/9 Haemophilus influenzae NTHi 3198-R (d)(U)C
Filtration
Roier S 2015 14%

Study summary

Full title
All authors
Roier S, Blume T, Klug L, Wagner GE, Elhenawy W, Zangger K, Prassl R, Reidl J, Daum G, Feldman MF, Schild S
Journal
Int J Med Microbiol
Abstract
Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released fro (show more...)Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released from the outer membrane (OM) of Gram-negative bacteria. They have been proposed to possess several biological roles in pathogenesis and interbacterial interactions. Additionally, OMVs have been suggested as potential vaccine candidates against infections caused by pathogenic bacteria like Haemophilus influenzae, a human pathogen of the respiratory tract. Unfortunately, there is still a lack of fundamental knowledge regarding OMV biogenesis, protein sorting into OMVs, OMV size and quantity, as well as OMV composition in H. influenzae. Thus, this study comprehensively characterized and compared OMVs and OMs derived from heterologous encapsulated as well as nonencapsulated H. influenzae strains. Semiquantitative immunoblot analysis revealed that certain OM proteins are enriched or excluded in OMVs suggesting the presence of regulated protein sorting mechanisms into OMVs as well as interconnected OMV biogenesis mechanisms in H. influenzae. Nanoparticle tracking analysis, transmission electron microscopy, as well as protein and lipooligosaccharide quantifications demonstrated that heterologous H. influenzae strains differ in their OMV size and quantity. Lipidomic analyses identified palmitic acid as the most abundant fatty acid, while phosphatidylethanolamine was found to be the most dominant phospholipid present in OMVs and the OM of all strains tested. Proteomic analysis confirmed that H. influenzae OMVs contain vaccine candidate proteins as well as important virulence factors. These findings contribute to the understanding of OMV biogenesis as well as biological roles of OMVs and, in addition, may be important for the future development of OMV based vaccines against H. influenzae infections. (hide)
EV-METRIC
14% (44th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Outer membrane vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting/Identification of content (omics approaches)/ vaccine development
Sample
Species
Haemophilus influenzae
Sample Type
Cell culture supernatant
EV-producing cells
NTHi 3198-R
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
240
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
144000
Filtration steps
0.45µm > x > 0.22µm, 0.22µm or 0.2µm
Characterization: Protein analysis
None
Protein Concentration Method
Bradford
Protein Yield (µg)
per mL/OD490
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
101
EV230629 9/9 Haemophilus influenzae NTHi 9274-R (d)(U)C
Filtration
Roier S 2015 14%

Study summary

Full title
All authors
Roier S, Blume T, Klug L, Wagner GE, Elhenawy W, Zangger K, Prassl R, Reidl J, Daum G, Feldman MF, Schild S
Journal
Int J Med Microbiol
Abstract
Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released fro (show more...)Outer membrane vesicles (OMVs) are spherical and bilayered particles that are naturally released from the outer membrane (OM) of Gram-negative bacteria. They have been proposed to possess several biological roles in pathogenesis and interbacterial interactions. Additionally, OMVs have been suggested as potential vaccine candidates against infections caused by pathogenic bacteria like Haemophilus influenzae, a human pathogen of the respiratory tract. Unfortunately, there is still a lack of fundamental knowledge regarding OMV biogenesis, protein sorting into OMVs, OMV size and quantity, as well as OMV composition in H. influenzae. Thus, this study comprehensively characterized and compared OMVs and OMs derived from heterologous encapsulated as well as nonencapsulated H. influenzae strains. Semiquantitative immunoblot analysis revealed that certain OM proteins are enriched or excluded in OMVs suggesting the presence of regulated protein sorting mechanisms into OMVs as well as interconnected OMV biogenesis mechanisms in H. influenzae. Nanoparticle tracking analysis, transmission electron microscopy, as well as protein and lipooligosaccharide quantifications demonstrated that heterologous H. influenzae strains differ in their OMV size and quantity. Lipidomic analyses identified palmitic acid as the most abundant fatty acid, while phosphatidylethanolamine was found to be the most dominant phospholipid present in OMVs and the OM of all strains tested. Proteomic analysis confirmed that H. influenzae OMVs contain vaccine candidate proteins as well as important virulence factors. These findings contribute to the understanding of OMV biogenesis as well as biological roles of OMVs and, in addition, may be important for the future development of OMV based vaccines against H. influenzae infections. (hide)
EV-METRIC
14% (44th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Outer membrane vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting/Identification of content (omics approaches)/ vaccine development
Sample
Species
Haemophilus influenzae
Sample Type
Cell culture supernatant
EV-producing cells
NTHi 9274-R
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
240
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
144000
Filtration steps
0.45µm > x > 0.22µm, 0.22µm or 0.2µm
Characterization: Protein analysis
None
Protein Concentration Method
Bradford
Protein Yield (µg)
per mL/OD490
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
93
1 - 9 of 9
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV230629
species
Haemophilus
influenzae
sample type
Cell
culture
cell type
Rd
KW20
Hib
strain
Eagan
NTHi
2019-R
Rd
KW20
Hib
strain
Eagan
NTHi
2019-R
NTHi
1479-R
NTHi
3198-R
NTHi
9274-R
condition
Control
condition
Control
condition
Control
condition
Control
condition
Control
condition
Control
condition
Control
condition
Control
condition
Control
condition
separation protocol
dUC/
Density
gradient/
Filtration
dUC/
Density
gradient/
Filtration
dUC/
Density
gradient/
Filtration
dUC/
Filtration
dUC/
Filtration
dUC/
Filtration
dUC/
Filtration
dUC/
Filtration
dUC/
Filtration
vesicle related term
Pure
outer
membrane
vesicle
Pure
outer
membrane
vesicle
Pure
outer
membrane
vesicle
Outer
membrane
vesicle
Outer
membrane
vesicle
Outer
membrane
vesicle
Outer
membrane
vesicle
Outer
membrane
vesicle
Outer
membrane
vesicle
Exp. nr.
2
4
6
1
3
5
7
8
9
EV-METRIC %
56
56
56
33
33
33
14
14
14