Search > Results

You searched for: EV230598 (EV-TRACK ID)

Showing 1 - 3 of 3

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV230598 1/3 Homo sapiens Milk (d)(U)C Ten-Doménech, Isabel 2024 78%

Study summary

Full title
All authors
Isabel Ten-Doménech, Victoria Ramos-Garcia, Abel Albiach-Delgado, Jose Luis Moreno-Casillas, Alba Moreno-Giménez, María Gormaz, Marta Gómez-Ferrer, Pilar Sepúlveda, Máximo Vento, Guillermo Quintás, Julia Kuligowski
Journal
Chemometrics and Intelligent Laboratory Systems
Abstract
Human milk (HM) extracellular vesicles (EVs) are nano-sized, cell-derived particles sheathed in a li (show more...)Human milk (HM) extracellular vesicles (EVs) are nano-sized, cell-derived particles sheathed in a lipid bilayer that encase specific cargo for delivery from mother to infant. The aim of this study was to expand our understanding of the lipidomic fingerprint of HM-EVs, with a specific focus on the impact of data normalization using simulated and experimental data obtained from the analysis of HM samples from mothers of preterm (N = 5) and term infants (N = 5), and a pool of donor human milk from 20 mothers (before and after pasteurization). EVs were isolated by multi-stage ultracentrifugation and characterized in terms of total protein content, total particle count and size, surface tetraspanin profile and protein markers, and morphology. Lipidomic analysis after single-phase extraction was performed by liquid chromatography mass spectrometry (LC-MS). The effect of widely used data normalization strategies (i.e., sample volume, particle count, protein content, total lipids signal) was compared. Results show that for the selection of the optimum normalization approach, the specific study aims, as well as the purity and homogeneity of size distribution of EV isolates should be considered. While normalization attending the particle number can be useful for between sample comparisons in EV populations with similar particle size, normalization to total lipid content is preferred when lipid contamination is encountered. Our findings exemplify the need for guidance with respect to data processing in LC-MS-based lipidomics studies of EVs. (hide)
EV-METRIC
78% (86th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Milk
Sample origin
Mothers of preterm infants
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: CD9/ CD63/ CD81/ HSP70
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Milk
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
Type 50.2 Ti
Pelleting: speed (g)
108763
Wash: volume per pellet (ml)
25
Wash: time (min)
120
Wash: Rotor Type
Type 50.2 Ti
Wash: speed (g)
108763
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
per milliliter of EV isolate
Western Blot
Detected EV-associated proteins
CD9/ CD63/ CD81/ HSP70
Detected EV-associated proteins
CD9/ CD63/ CD81
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
168-238
EV concentration
Yes
Particle yield
as number of particles per milliliter of EV isolate: 1.4E10-1.4E12
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Other particle analysis name(1)
ExoView
Report type
Mean
Report size
58-70
EV-concentration
Yes
Particle yield
as number of particles per milliliter of EV isolate: 6E07-3E08
EV230598 2/3 Homo sapiens Milk (d)(U)C Ten-Doménech, Isabel 2024 56%

Study summary

Full title
All authors
Isabel Ten-Doménech, Victoria Ramos-Garcia, Abel Albiach-Delgado, Jose Luis Moreno-Casillas, Alba Moreno-Giménez, María Gormaz, Marta Gómez-Ferrer, Pilar Sepúlveda, Máximo Vento, Guillermo Quintás, Julia Kuligowski
Journal
Chemometrics and Intelligent Laboratory Systems
Abstract
Human milk (HM) extracellular vesicles (EVs) are nano-sized, cell-derived particles sheathed in a li (show more...)Human milk (HM) extracellular vesicles (EVs) are nano-sized, cell-derived particles sheathed in a lipid bilayer that encase specific cargo for delivery from mother to infant. The aim of this study was to expand our understanding of the lipidomic fingerprint of HM-EVs, with a specific focus on the impact of data normalization using simulated and experimental data obtained from the analysis of HM samples from mothers of preterm (N = 5) and term infants (N = 5), and a pool of donor human milk from 20 mothers (before and after pasteurization). EVs were isolated by multi-stage ultracentrifugation and characterized in terms of total protein content, total particle count and size, surface tetraspanin profile and protein markers, and morphology. Lipidomic analysis after single-phase extraction was performed by liquid chromatography mass spectrometry (LC-MS). The effect of widely used data normalization strategies (i.e., sample volume, particle count, protein content, total lipids signal) was compared. Results show that for the selection of the optimum normalization approach, the specific study aims, as well as the purity and homogeneity of size distribution of EV isolates should be considered. While normalization attending the particle number can be useful for between sample comparisons in EV populations with similar particle size, normalization to total lipid content is preferred when lipid contamination is encountered. Our findings exemplify the need for guidance with respect to data processing in LC-MS-based lipidomics studies of EVs. (hide)
EV-METRIC
56% (76th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Milk
Sample origin
Mothers of term infants
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: CD9/ CD63/ CD81/ HSP70
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Milk
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
Type 50.2 Ti
Pelleting: speed (g)
108763
Wash: volume per pellet (ml)
25
Wash: time (min)
120
Wash: Rotor Type
Type 50.2 Ti
Wash: speed (g)
108763
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
per milliliter of EV isolate
Western Blot
Detected EV-associated proteins
CD9/ CD63/ CD81/ HSP70
Detected EV-associated proteins
CD9/ CD63/ CD81
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
168-238
EV concentration
Yes
Particle yield
as number of particles per milliliter of EV isolate: 1.4E10-1.4E12
Other particle analysis name(1)
ExoView
Report type
Mean
Report size
58-70
EV-concentration
Yes
Particle yield
as number of particles per milliliter of EV isolate: 6E07-3E08
EV230598 3/3 Homo sapiens Milk (d)(U)C Ten-Doménech, Isabel 2024 44%

Study summary

Full title
All authors
Isabel Ten-Doménech, Victoria Ramos-Garcia, Abel Albiach-Delgado, Jose Luis Moreno-Casillas, Alba Moreno-Giménez, María Gormaz, Marta Gómez-Ferrer, Pilar Sepúlveda, Máximo Vento, Guillermo Quintás, Julia Kuligowski
Journal
Chemometrics and Intelligent Laboratory Systems
Abstract
Human milk (HM) extracellular vesicles (EVs) are nano-sized, cell-derived particles sheathed in a li (show more...)Human milk (HM) extracellular vesicles (EVs) are nano-sized, cell-derived particles sheathed in a lipid bilayer that encase specific cargo for delivery from mother to infant. The aim of this study was to expand our understanding of the lipidomic fingerprint of HM-EVs, with a specific focus on the impact of data normalization using simulated and experimental data obtained from the analysis of HM samples from mothers of preterm (N = 5) and term infants (N = 5), and a pool of donor human milk from 20 mothers (before and after pasteurization). EVs were isolated by multi-stage ultracentrifugation and characterized in terms of total protein content, total particle count and size, surface tetraspanin profile and protein markers, and morphology. Lipidomic analysis after single-phase extraction was performed by liquid chromatography mass spectrometry (LC-MS). The effect of widely used data normalization strategies (i.e., sample volume, particle count, protein content, total lipids signal) was compared. Results show that for the selection of the optimum normalization approach, the specific study aims, as well as the purity and homogeneity of size distribution of EV isolates should be considered. While normalization attending the particle number can be useful for between sample comparisons in EV populations with similar particle size, normalization to total lipid content is preferred when lipid contamination is encountered. Our findings exemplify the need for guidance with respect to data processing in LC-MS-based lipidomics studies of EVs. (hide)
EV-METRIC
44% (67th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Milk
Sample origin
Pool of donors
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: CD9/ CD63/ CD81
non-EV: None
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Milk
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
Type 50.2 Ti
Pelleting: speed (g)
108763
Wash: volume per pellet (ml)
25
Wash: time (min)
120
Wash: Rotor Type
Type 50.2 Ti
Wash: speed (g)
108763
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
per milliliter of EV isolate
Detected EV-associated proteins
CD9/ CD63/ CD81
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
Other particle analysis name(1)
ExoView¨
Report type
Mean
Report size
58-70
EV-concentration
Yes
Particle yield
as number of particles per milliliter of EV isolate: 6E07-3E08
1 - 3 of 3
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV230598
species
Homo sapiens
sample type
Milk
condition
Mothers
of preterm infants
Mothers
of term infants
Pool of donors
separation protocol
dUC
dUC
dUC
Exp. nr.
1
2
3
EV-METRIC %
78
56
44