Search > Results
You searched for: EV230572 (EV-TRACK ID)
Showing 1 - 6 of 6
Showing 1 - 6 of 6
Details | EV-TRACK ID | Experiment nr. | Species | Sample type | Separation protocol | First author | Year | EV-METRIC |
---|---|---|---|---|---|---|---|---|
EV230572 | 3/6 | Homo sapiens | HEK293-GFP | (d)(U)C | Djeungoue-Petga, Marie-Ange | 2024 | 67% | |
Study summaryFull title
All authors
Marie Ange Djeungoue Petgaa, Catherine Taylora, Alexander Macpherson, Surendar Reddy Dhadi, Thomas Rollin, Jeremy W. Roya, Anirban Ghosh, Stephen M. Lewis, Rodney J. Ouellette
Journal
Abstract
Extracellular vesicles (EVs) are gaining interest as efficient, biocompatible vehicles for cellular (show more...)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
GFP overexpression
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: CD9/ CD63/ Flotillin-1/ HSP70/ GFP
non-EV: GRP94 Proteomics
no
Show all info
Study aim
Mechanism of uptake/transfer/New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HEK293-GFP
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD9/ CD63/ Flotillin-1/ HSP70/ GFP
Not detected contaminants
GRP94
Flow cytometry
Type of Flow cytometry
Beckman Coulter Cytoflex
Hardware adaptation to ~100nm EV's
The better resolution of the CytoFLEX is reached by using the violet side scatter of the 405 nm laser (manually set to 1600 and height threshold) and by performing preanalytical preparations with Fluorescent Megamix-Plus SSC beads (Cosmo Bio Co., LTD, Japan) which are FITC-labeled beads of increasing size (100, 160, 200, 240, 300, 500, 900 nm). beads were used to set the EV gate and manual gating was set to the populations of interest with reference to a negative control sample (GFP- EVs from HEK293 cells)
Calibration bead size
0.1/ 0.16/ 0.2/ 0.24/ 0.3/ 0.5/ 0.9
Detected EV-associated proteins
GFP
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
~172
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 6.00E+09
Particle analysis: flow cytometry
Flow cytometer type
Nanoscale
Hardware adjustment
The better resolution of the CytoFLEX is reached by using the violet side scatter of the 405 nm laser (manually set to 1600 and height threshold) and by performing preanalytical preparations with Fluorescent Megamix-Plus SSC beads (Cosmo Bio Co., LTD, Japan) which are FITC-labeled beads of increasing size (100, 160, 200, 240, 300, 500, 900 nm). beads were used to set the EV gate and manual gating was set to the populations of interest with reference to a negative control sample (GFP- EVs from HEK293 cells)
Calibration bead size
0.1/ 0.16/ 0.2/ 0.24/ 0.3/ 0.5/ 0.9
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 9.00E+06
EM
EM-type
Transmission-EM
Image type
Close-up
|
||||||||
EV230572 | 4/6 | Homo sapiens | HEK293-GFP | PEI precipitation | Djeungoue-Petga, Marie-Ange | 2024 | 63% | |
Study summaryFull title
All authors
Marie Ange Djeungoue Petgaa, Catherine Taylora, Alexander Macpherson, Surendar Reddy Dhadi, Thomas Rollin, Jeremy W. Roya, Anirban Ghosh, Stephen M. Lewis, Rodney J. Ouellette
Journal
Abstract
Extracellular vesicles (EVs) are gaining interest as efficient, biocompatible vehicles for cellular (show more...)
EV-METRIC
63% (93rd percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
GFP overexpresion
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
PEI precipitation
Protein markers
EV: CD9/ CD63/ Flotillin-1/ HSP70/ GFP
non-EV: GRP94 Proteomics
no
Show all info
Study aim
Mechanism of uptake/transfer/New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HEK293-GFP
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
Other
Name other separation method
PEI precipitation
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD9/ CD63/ Flotillin-1/ HSP70/ GFP
Not detected contaminants
GRP94
Flow cytometry
Type of Flow cytometry
Beckman Coulter Cytoflex
Hardware adaptation to ~100nm EV's
The better resolution of the CytoFLEX is reached by using the violet side scatter of the 405 nm laser (manually set to 1600 and height threshold) and by performing preanalytical preparations with Fluorescent Megamix-Plus SSC beads (Cosmo Bio Co., LTD, Japan) which are FITC-labeled beads of increasing size (100, 160, 200, 240, 300, 500, 900 nm). beads were used to set the EV gate and manual gating was set to the populations of interest with reference to a negative control sample (GFP- EVs from HEK293 cells)
Calibration bead size
0.1/ 0.16/ 0.2/ 0.24/ 0.3/ 0.5/ 0.9
Detected EV-associated proteins
GFP
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
146-200
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 1-6E10
Particle analysis: flow cytometry
Flow cytometer type
Nanoscale
Hardware adjustment
The better resolution of the CytoFLEX is reached by using the violet side scatter of the 405 nm laser (manually set to 1600 and height threshold) and by performing preanalytical preparations with Fluorescent Megamix-Plus SSC beads (Cosmo Bio Co., LTD, Japan) which are FITC-labeled beads of increasing size (100, 160, 200, 240, 300, 500, 900 nm). beads were used to set the EV gate and manual gating was set to the populations of interest with reference to a negative control sample (GFP- EVs from HEK293 cells)
Calibration bead size
0.1/ 0.16/ 0.2/ 0.24/ 0.3/ 0.5/ 0.9
Particle yield
particles per milliliter of starting sample: 1-6E10
EM
EM-type
Transmission-EM
Image type
Close-up
|
||||||||
EV230572 | 1/6 | Homo sapiens | HEK293 | (d)(U)C | Djeungoue-Petga, Marie-Ange | 2024 | 56% | |
Study summaryFull title
All authors
Marie Ange Djeungoue Petgaa, Catherine Taylora, Alexander Macpherson, Surendar Reddy Dhadi, Thomas Rollin, Jeremy W. Roya, Anirban Ghosh, Stephen M. Lewis, Rodney J. Ouellette
Journal
Abstract
Extracellular vesicles (EVs) are gaining interest as efficient, biocompatible vehicles for cellular (show more...)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: CD9/ CD63/ Flotillin-1/ HSP70/ GFP
non-EV: GRP94 Proteomics
no
Show all info
Study aim
Mechanism of uptake/transfer/New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HEK293
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD9/ CD63/ Flotillin-1/ HSP70
Not detected EV-associated proteins
GFP
Not detected contaminants
GRP94
Flow cytometry
Type of Flow cytometry
Beckman Coulter Cytoflex
Hardware adaptation to ~100nm EV's
The better resolution of the CytoFLEX is reached by using the violet side scatter of the 405 nm laser (manually set to 1600 and height threshold) and by performing preanalytical preparations with Fluorescent Megamix-Plus SSC beads (Cosmo Bio Co., LTD, Japan) which are FITC-labeled beads of increasing size (100, 160, 200, 240, 300, 500, 900 nm). beads were used to set the EV gate and manual gating was set to the populations of interest with reference to a negative control sample (GFP- EVs from HEK293 cells)
Calibration bead size
0.1/ 0.16/ 0.2/ 0.24/ 0.3/ 0.5/ 0.9
Not detected EV-associated proteins
GFP
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
Extra information
two kinds of PEI were used. Linear PEI 25 kDa and Branched 10 kDa
|
||||||||
EV230572 | 2/6 | Homo sapiens | HEK293 | PEI precipitation | Djeungoue-Petga, Marie-Ange | 2024 | 50% | |
Study summaryFull title
All authors
Marie Ange Djeungoue Petgaa, Catherine Taylora, Alexander Macpherson, Surendar Reddy Dhadi, Thomas Rollin, Jeremy W. Roya, Anirban Ghosh, Stephen M. Lewis, Rodney J. Ouellette
Journal
Abstract
Extracellular vesicles (EVs) are gaining interest as efficient, biocompatible vehicles for cellular (show more...)
EV-METRIC
50% (87th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
PEI precipitation
Protein markers
EV: CD9/ CD63/ Flotillin-1/ HSP70/ GFP
non-EV: GRP94 Proteomics
no
Show all info
Study aim
Mechanism of uptake/transfer/New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HEK293
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
Other
Name other separation method
PEI precipitation
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD9/ CD63/ Flotillin-1/ HSP70
Not detected EV-associated proteins
GFP
Not detected contaminants
GRP94
Flow cytometry
Type of Flow cytometry
Beckman Coulter Cytoflex
Hardware adaptation to ~100nm EV's
The better resolution of the CytoFLEX is reached by using the violet side scatter of the 405 nm laser (manually set to 1600 and height threshold) and by performing preanalytical preparations with Fluorescent Megamix-Plus SSC beads (Cosmo Bio Co., LTD, Japan) which are FITC-labeled beads of increasing size (100, 160, 200, 240, 300, 500, 900 nm). beads were used to set the EV gate and manual gating was set to the populations of interest with reference to a negative control sample (GFP- EVs from HEK293 cells)
Calibration bead size
0.1/ 0.16/ 0.2/ 0.24/ 0.3/ 0.5/ 0.9
Not detected EV-associated proteins
GFP
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
|
||||||||
EV230572 | 5/6 | Homo sapiens | SUM159-DSP1-CD63/DSP2 | (d)(U)C | Djeungoue-Petga, Marie-Ange | 2024 | 14% | |
Study summaryFull title
All authors
Marie Ange Djeungoue Petgaa, Catherine Taylora, Alexander Macpherson, Surendar Reddy Dhadi, Thomas Rollin, Jeremy W. Roya, Anirban Ghosh, Stephen M. Lewis, Rodney J. Ouellette
Journal
Abstract
Extracellular vesicles (EVs) are gaining interest as efficient, biocompatible vehicles for cellular (show more...)
EV-METRIC
14% (44th percentile of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
DSP1-CD63/DSP2 overexpression
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
(Differential) (ultra)centrifugation
Protein markers
EV: None
non-EV: None Proteomics
no
Show all info
Study aim
Mechanism of uptake/transfer/New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SUM159-DSP1-CD63/DSP2
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
100000
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
~180
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 5-7E07
|
||||||||
EV230572 | 6/6 | Homo sapiens | SUM159-DSP1-CD63/DSP2 | PEI precipitation | Djeungoue-Petga, Marie-Ange | 2024 | 0% | |
Study summaryFull title
All authors
Marie Ange Djeungoue Petgaa, Catherine Taylora, Alexander Macpherson, Surendar Reddy Dhadi, Thomas Rollin, Jeremy W. Roya, Anirban Ghosh, Stephen M. Lewis, Rodney J. Ouellette
Journal
Abstract
Extracellular vesicles (EVs) are gaining interest as efficient, biocompatible vehicles for cellular (show more...)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
Reported
Not reported Not applicable EV-enriched
proteins
Protein analysis: analysis of three or more EV-enriched proteins
non
EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative
and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron
microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density
gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody
specifics
Protein analysis: antibody clone/reference number and dilution
lysate
preparation
Protein analysis: lysis buffer composition
Study dataSample type
Cell culture supernatant
Sample origin
DSP1-CD63/DSP2 overexpression
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
PEI precipitation
Protein markers
EV: None
non-EV: None Proteomics
no
Show all info
Study aim
Mechanism of uptake/transfer/New methodological development/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
SUM159-DSP1-CD63/DSP2
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
>=18h at >= 100,000g
Separation Method
Other
Name other separation method
PEI precipitation
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
200-300
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 2-3.5E06
|
||||||||
1 - 6 of 6 |
EV-TRACK ID | EV230572 | |||||
---|---|---|---|---|---|---|
species | Homo sapiens | |||||
sample type | Cell culture | |||||
cell type | HEK293-GFP | HEK293-GFP | HEK293 | HEK293 | SUM159-DSP1-CD63/DSP2 | SUM159-DSP1-CD63/DSP2 |
condition | GFP overexpression | GFP overexpresion | Control condition | Control condition | DSP1-CD63/DSP2 overexpression | DSP1-CD63/DSP2 overexpression |
separation protocol | dUC | PEI precipitation | dUC | PEI precipitation | dUC | PEI precipitation |
Exp. nr. | 3 | 4 | 1 | 2 | 5 | 6 |
EV-METRIC % | 67 | 63 | 56 | 50 | 14 | 0 |