Search > Results

You searched for: EV230567 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV230567 1/2 Homo sapiens Blood plasma (d)(U)C Li L 2023 56%

Study summary

Full title
All authors
Li L, Li F, Bai X, Jia H, Wang C, Li P, Zhang Q, Guan S, Peng R, Zhang S, Dong JF, Zhang J, Xu X
Journal
Pharmacol Res
Abstract
Endothelial dysfunction is a key proponent of pathophysiological process of traumatic brain injury ( (show more...)Endothelial dysfunction is a key proponent of pathophysiological process of traumatic brain injury (TBI). We previously demonstrated that extracellular vesicles (EVs) released from injured brains led to endothelial barrier disruption and vascular leakage. However, the molecular mechanisms of this EV-induced endothelial dysfunction (endotheliopathy) remain unclear. Here, we enriched plasma EVs from TBI patients (TEVs), and detected high mobility group box 1 (HMGB1) exposure to 50.33 ± 10.17% of TEVs and the number of HMGB1TEVs correlated with injury severity. We then investigated for the first time the impact of TEVs on endothelial function using adoptive transfer models. We found that TEVs induced dysfunction of cultured human umbilical vein endothelial cells and mediated endothelial dysfunction in both normal and TBI mice, which were propagated through the HMGB1-activated receptor for advanced glycation end products (RAGE)/Cathepsin B signaling, and the resultant NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation and canonical caspase-1/gasdermin D (GSDMD)-dependent pyroptosis. Finally, von Willebrand factor (VWF) was detected on the surface of 77.01 ± 7.51% of HMGB1TEVs. The TEV-mediated endotheliopathy was reversed by a polyclonal VWF antibody, indicating that VWF might serve a coupling factor that tethered TEVs to ECs, thus facilitating HMGB1-induced endotheliopathy. These results suggest that circulating EVs isolated from patients with TBI alone are sufficient to induce endothelial dysfunction and contribute to secondary brain injury that are dependent on immunologically active HMGB1 exposed on their surface. This finding provided new insight for the development of potential therapeutic targets and diagnostic biomarkers for TBI. (hide)
EV-METRIC
56% (88th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: CD9/ CD81/ TSG101/ Calnexin
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100,000
Wash: volume per pellet (ml)
0.1
Wash: time (min)
60
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100,000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ CD81/ TSG101
Not detected EV-associated proteins
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
119.2±10.09
Particle analysis: flow cytometry
Flow cytometer type
FACS LSR II flow cytometer
Hardware adjustment
-
Calibration bead size
0.5/ 0.9/ 3
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 5.32±1.82E07 and 2.4 ± 0.69E07
EM
EM-type
Transmission-EM
Image type
Close-up
EV230567 2/2 Homo sapiens Blood plasma (d)(U)C Li L 2023 56%

Study summary

Full title
All authors
Li L, Li F, Bai X, Jia H, Wang C, Li P, Zhang Q, Guan S, Peng R, Zhang S, Dong JF, Zhang J, Xu X
Journal
Pharmacol Res
Abstract
Endothelial dysfunction is a key proponent of pathophysiological process of traumatic brain injury ( (show more...)Endothelial dysfunction is a key proponent of pathophysiological process of traumatic brain injury (TBI). We previously demonstrated that extracellular vesicles (EVs) released from injured brains led to endothelial barrier disruption and vascular leakage. However, the molecular mechanisms of this EV-induced endothelial dysfunction (endotheliopathy) remain unclear. Here, we enriched plasma EVs from TBI patients (TEVs), and detected high mobility group box 1 (HMGB1) exposure to 50.33 ± 10.17% of TEVs and the number of HMGB1TEVs correlated with injury severity. We then investigated for the first time the impact of TEVs on endothelial function using adoptive transfer models. We found that TEVs induced dysfunction of cultured human umbilical vein endothelial cells and mediated endothelial dysfunction in both normal and TBI mice, which were propagated through the HMGB1-activated receptor for advanced glycation end products (RAGE)/Cathepsin B signaling, and the resultant NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation and canonical caspase-1/gasdermin D (GSDMD)-dependent pyroptosis. Finally, von Willebrand factor (VWF) was detected on the surface of 77.01 ± 7.51% of HMGB1TEVs. The TEV-mediated endotheliopathy was reversed by a polyclonal VWF antibody, indicating that VWF might serve a coupling factor that tethered TEVs to ECs, thus facilitating HMGB1-induced endotheliopathy. These results suggest that circulating EVs isolated from patients with TBI alone are sufficient to induce endothelial dysfunction and contribute to secondary brain injury that are dependent on immunologically active HMGB1 exposed on their surface. This finding provided new insight for the development of potential therapeutic targets and diagnostic biomarkers for TBI. (hide)
EV-METRIC
56% (88th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Traumatic brain injury
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: CD9/ CD81/ TSG101/ Calnexin
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100,000
Wash: volume per pellet (ml)
0.1
Wash: time (min)
60
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
100,000
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ CD81/ TSG101
Not detected EV-associated proteins
Calnexin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
118.4±6.98
Particle analysis: flow cytometry
Flow cytometer type
FACS LSR II flow cytometer
Hardware adjustment
nanoscale flow cytometry
Calibration bead size
0.5/ 0.9/ 3
EV concentration
Yes
Particle yield
particles per milliliter of starting sample: 2.4±0.69E07
EM
EM-type
Transmission-EM
Image type
Close-up
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV230567
species
Homo sapiens
sample type
Blood plasma
condition
Control condition
Traumatic
brain injury
separation protocol
dUC
dUC
Exp. nr.
1
2
EV-METRIC %
56
56